
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Dynamic Programming I

Dynamic Programming is a powerful technique that often allows you to solve problems that
seem like they should take exponential time in polynomial time. Sometimes it allows you to
solve exponential time problems in slightly better exponential time. It is most often used in
combinatorial problems, like optimization (find the minimum or maximum weight way of do-
ing something) or counting problems (count how many ways you can do something). We will
review this technique and present a few key examples.

Objectives of this lecture

In this lecture, we will:

- Review and understand the fundamental ideas of Dynamic Programming.

- Study several example problems:

– Longest Common Subsequence

– Knapsack

– Independent Sets on Trees

1 Introduction
Dynamic Programming is a powerful technique that can be used to solve many combinatorial
problems in polynomial time for which a naive approach would take exponential time. Dy-
namic Programming is a general approach to solving problems, much like “divide-and-conquer”,
except that the subproblems will overlap.

We will assume that you have seen the idea of dynamic programming from your previous courses,
but we will take a step back and review it in detail rather than diving straight into problems.

Key Idea: Dynamic programming

Dynamic programming involves formulating a problem as a set of subproblems, express-
ing the solution to the problem recursively in terms of those subproblems and solving
the recursion without repeating the same subproblem twice.

The two key sub-ideas that make DP work are memoization (don’t repeat yourself) and opti-
mal substructure. Memoization means that we should never try to compute the solution to

1

the same subproblem twice. Instead, we should store the solutions to previously computed
subproblems, and look them up if we need them again.

Optimal substructure is trickier, and is really where the challenge of dynamic programming
comes from. A problem has optimal substructure if it can be broken into smaller problems
such that the optimal solution to the big problem can be deduced from the optimal solution to
the smaller problems. If the solutions to the smaller problems are completely unrelated to the
solution to the bigger problem, then dynamic programming does not work. To make this a bit
less vague and abstract, lets see an example.

Recall the shortest path problem that you may have seen before. We have a graph with two
vertices u and v and we are interested in knowing the shortest path from u to v . Suppose the
shortest path is P , and then consider any vertex k on the P somewhere between u and v . What
can we say for certain about the path from u to k and the path from k to v ? Here’s a diagram
to help picture this:

For certain, we can say that the path from u to k must be a shortest possible path from u to
k , and similarly the path from k to v must be a shortest possible path from k to v . Why? We
could argue by contradiction. Suppose that there was a shorter path from u to k . Then we
could take that path, then follow the path from k to v and we would obtain a shorter path than
P from u to v . This would contradict that u to v is a shortest path. This is exactly what we
mean by optimal substructure. We know that an optimal solution to a big problem is made up
from gluing together optimal solutions from the smaller subproblems!

With these key ideas in mind, lets give a high-level recipe for dynamic programming (DP). A
high-level solution to a dynamic programming problem usually consists of the following steps:

1. Identify the set of subproblems You should clearly and unambiguously define the set of
subproblems that will make up your DP algorithm. These subproblems must exhibit some
kind of optimal substructure property. The smaller ones should help to solve the larger ones.
This is often the hardest part of a DP problem, since locating the optimal substructure can
be tricky.

2. Identify the relationship between subproblems This usually takes the form of a recurrence
relation. Given a subproblem, you need to be able to solve it by combining the solutions to
some set of smaller subproblems, or solve it directly if it is a base case. You should also make
sure you are able to solve the original problem in terms of the subproblems (it may just be
one of them)!

3. Analyze the required runtime The runtime is usually the number of subproblems multi-
plied by the time required to process each subproblem. In uncommon cases, it can be less

2

if you can prove that some subproblems can be solved faster than others, or sometimes it
may be more if you can’t look up subproblems in constant time.

This is just a high-level approach to using dynamic programming. There are more details that
we need to account for if we actually want to implement the algorithm. Sometimes we are
satisfied with just the high-level solution and won’t go further. Sometimes we will want to go
down to the details. These include:

4. Selecting a data structure to store subproblems The vast majority of the time, our sub-
problems can be identified by an integer, or a tuple of integers, in which case we can store
our subproblem solutions in an array or multidimensional array. If things are more com-
plicated, we may wish to store our subproblem solutions in a hashtable or balanced binary
search tree.

5. Choose between a bottom-up or top-down implementation A bottom-up implementation
needs to figure out an appropriate dependency order in which to evaluate the subproblems.
That is, whenever we are solving a particular subproblem, whatever it depends on must
have already been computed and stored. For a top-down algorithm, this isn’t necessary,
and recursion takes care of the ordering for us.

6. Write the algorithm For a bottom-up implementation, this usually consists of (possibly
nested) for loops that evaluate the recurrence in the appropriate dependency order. For
a top-down implementation, this involves writing a recursive algorithm with memoization.

2 Example 1: Longest Common Subsequence

Definition: Longest Common Subsequence

We are given two strings: string S of length n , and string T of length m . Our goal is to
produce their longest common subsequence: the longest sequence of characters that
appear left-to-right (but not necessarily contiguously) in both strings.

For example, consider:

S = ABAZDC

T = BACBAD

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are
finding a 1-1 matching between some of the letters in S and some of the letters in T such that
none of the edges in the matching cross each other.

3

This type of problem comes up all the time in genomics: given two DNA fragments, the LCS
gives information about what they have in common and the best way to line them up. Let’s
now solve the LCS problem using Dynamic Programming.

Step 1: Identify the optimal substructure The first step is finding some optimal substructure
that will inspire our subproblems. Lets take another look at the alignment in the picture above.
Lets look at the last pair of aligned characters, the pair of D that are matched at the end. What
can we say about the rest of the strings / the rest of the optimal alignment? Well, it must be the
case that the optimal alignment consists of this pair of D plus whatever the optimal alignment
is for everything that came before! In other words, the length of the optimal alignment is

1+LCS(“AB AZ ′′, “B AC D A′′)

This should hopefully provide some inspiration for our subproblems.

Step 2: Defining our subproblems Based on the above, it looks like recursively considering
one less character in the string gives us some optimal substructure, so we will define our sub-
problems as

LCS[i , j] = the length of the LCS of S [1 . . . i] and T [1 . . . j]

The solution to the original problem is the value of LCS[n , m]. Note that for now we are only
looking for the value of the solution, i.e., the length of the LCS, rather than the actual string
itself. We will see later that once we have the result, we can reconstruct the actual string.

Step 3: Deriving a recurrence The next step is to derive a recurrence relation between the
subproblems LCS[i , j] that we can use to solve the problem. When we found the optimal sub-
structure, we already found an important piece of it: If we choose to match S [i] to T [j], then we
know that we should optimally align the remaining characters S [1 . . . (i −1)] and T [1 . . . (j −1)],
which would mean recursively solving for LCS[i −1, j −1]. This would give us

LCS[i , j] = 1+LCS[i −1, j −1] if S [i] = T [j].

What if we don’t want to match S [i] and T [j] though because they are just not the same char-
acter? In that case, we claim that the optimal alignment just ignores either S [i] or T [j] or both
(it can not use both of them, because doing so would make the lines cross). This corresponds
to the subproblems LCS[i −1, j] and LCS[i , j −1], of which we can just choose the better one.

LCS[i , j] =max(LCS[i −1, j], LCS[i , j −1]) if S [i] ̸= T [j]

Lastly, like any sensible recurrence, we need base cases. The base cases should be subproblems
that can be solved easily without recursing. In this problem, any string has an LCS of length
zero with an empty string, so that would make a good base case. Putting all of this together, we
can write

4

Algorithm: Dynamic programming recurrence for LCS

The following recurrence gives the length of the LCS between the prefixes S [1 . . . i] and
T [1 . . . j]

LCS[i , j] =

0 if i = 0 or j = 0
max{LCS[i −1, j], LCS[i , j −1]} if S [i] ̸= T [j]
1+LCS[i −1, j −1] if S [i] = T [j]

Step 4: Analysis What would be the time complexity of evaluating this recurrence? Well, each
evaluation of LCS(i , j) makes three recursive calls to problems of size 1 or 2 smaller, so a naive
analysis would lead us to believe that the runtime is exponential. This is bad, but wait! Re-
member that one of the key ideas of DP was to never repeat yourself. If we only evaluate each
subproblem once, then we get a much better algorithm. There are O (nm) subproblems, and
each of them does a constant amount of work to combine the results of the subproblems that it
depends on recursively, so if we use dynamic programming, we get a runtime of O (nm)which
is pretty good!

That’s it for the high-level solution. Lets take a moment to think about the lower-level details.

2.1 Possible implementation: Bottom-up
For the bottom-up strategy, we keep a table of values storing the solutions to LCS[i , j] and com-
pute them in a sensible order. What is a sensible order for this problem? Well, remember that
each subproblem depends on the subproblems that are one character shorter, so we should
solve them in increasing order of length. So, we can just do two loops (over values of i and j) ,
filling in the LCS using these rules.

LCS : (S: string, T : string) −> int = {
n = size(S)
m = size(T)
lcs : array〈int〉[n+1][m+1] = {0} // this table is zero indexed
for i = 1 to n do {
for j = 1 to n do {
if (S[i] == T[j]) lcs[i][j] = 1 + lcs[i−1][j−1] // but the strings are one indexed!!
else lcs[i][j] = max(lcs[i−1][j], lcs[i][j−1])

}
}
return lcs[n][m]

}

Here’s what it looks like pictorially for the example above, with S along the leftmost column and
T along the top row.

5

B A C B A D
A 0 1 1 1 1 1
B 1 1 1 2 2 2
A 1 2 2 2 3 3
Z 1 2 2 2 3 3
D 1 2 2 2 3 4
C 1 2 3 3 3 4

We just fill out this matrix row by row, doing constant amount of work per entry, so this takes
O (mn) time overall. The final answer (the length of the LCS of S and T) is in the lower-right
corner.

How can we now find the sequence? To find the sequence, we just walk backwards through
matrix starting the lower-right corner. If either the cell directly above or directly to the left
contains a value equal to the value in the current cell, then move to that cell (if both do, then
chose either one). If both such cells have values strictly less than the value in the current cell,
then move diagonally up-left (this corresponts to applying Case 2), and output the associated
character. This will output the characters in the LCS in reverse order. For instance, running on
the matrix above, this outputs DABA.

2.2 Possible implementation: Top-down
Since dynamic programming algorithms are usually defines by recurrences, it is sometimes
most natural to think of implementing them recursively rather than iteratively.

For example, for the LCS problem, using our analysis we had at the beginning we might have
produced the following exponential-time recursive program (assume arrays start at 1):

LCS : (S : string, n : int, T : string, m : int) −> int = {
if (n==0 || m==0) return 0;
if (S[n] == T[m]) result := 1 + LCS(S,n−1,T,m−1); // no harm in matching up
else result := max(LCS(S,n−1,T,m), LCS(S,n,T,m−1));
return result;

}

This algorithm runs in exponential time. In fact, if S and T use completely disjoint sets of char-
acters (so that we never have S[n]==T[m]) then the number of times that LCS(S,1,T,1) is
recursively called equals

�n+m−2
m−1

�

.1 In the memoized version, we store the results in a matrix so
that any given set of arguments to LCS only produces new work (new recursive calls) once. The
memoized version begins by initializing a “memoization table” memo[i][j] to unknown for
all 0≤ i ≤ n and 0≤ j ≤m and then proceeds as follows:

LCS : (S : string, n : int, T : string, m : int) −> int = {
if (n==0 || m==0) return 0;
if (memo[n][m] != unknown) return memo[n][m]; // <− added this line (*)
if (S[n] == T[m]) result := 1 + LCS(S,n−1,T,m−1);
else result := max(LCS(S,n−1,T,m), LCS(S,n,T,m−1));
memo[n][m] = result; // <− and this line (**)

1This is the number of different “monotone walks” between the upper-left and lower-right corners of an n by m
grid. For this course you don’t need to know this bound or how to prove it. But if you are interested, look up Catalan
numbers.

6

http://en.wikipedia.org/wiki/Catalan_number#Second_proof
http://en.wikipedia.org/wiki/Catalan_number#Second_proof

return result;
}

All we have done is saved our work in line (**) and made sure that we only embark on new
recursive calls if we haven’t already computed the answer in line (*).

In this memoized version, our running time is now just O (mn). One easy way to see this is as
follows. First, notice that we reach line (**) at most mn times (at most once for any given value
of the parameters). This means we make at most 2mn recursive calls total (at most two calls for
each time we reach that line). Any given call of LCS involves only O (1)work (performing some
equality checks and taking a max or adding 1), so overall the total running time is O (mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work.
The top-down version pays a penalty in recursion overhead, but can potentially be faster than
the bottom-up version in situations where some of the subproblems never get examined at all.
These differences, however, are minor: you should use whichever version is easiest and most
intuitive for you for the given problem at hand.

2.3 More about LCS: Discussion and Extensions.
An equivalent problem to LCS is the “minimum edit distance” problem, where the legal oper-
ations are insert and delete. (E.g., the unix “diff” command, where S and T are files, and the
elements of S and T are lines of text). The minimum edit distance to transform S into T is
achieved by doing |S | −LCS(S , T) deletes and |T | −LCS(S , T) inserts.

In computational biology applications, often one has a more general notion of sequence align-
ment. Many of these different problems all allow for basically the same kind of Dynamic Pro-
gramming solution.

3 Example 2: The Knapsack Problem
Imagine you have a homework assignment with different parts labeled A through G. Each part
has a “value” (in points) and a “size” (time in hours to complete). For example, say the values
and times for our assignment are:

A B C D E F G
value 7 9 5 12 14 6 12
time 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that
was proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5
points) then the best approach is to work on problems in order of points-per-hour (a greedy
strategy). But, what if there is no partial credit? In that case, which parts should you do, and
what is the best total value possible?2

2Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!

7

The above is an instance of the knapsack problem, formally defined as follows:

Definition: The Knapsack Problem

We are given a set of n items, where each item i is specified by a size si and a value vi .
We are also given a size bound S (the size of our knapsack). The goal is to find the subset
of items of maximum total value such that sum of their sizes is at most S (they all fit into
the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O (nS). Lets go through our recipe book for
dynamic programming and see how we can solve this.

Step 1: Identify some optimal substructure Lets imagine we have some instance of the knap-
sack problem, such as our example {A, B , C , D , E , F,G } above with total size capacity S = 15.
Here’s a seemingly useless but actually very useful observation: The optimal solution either
does contain G or it does not contain G . How does this help us? Well, suppose it does contain
G , then what does the rest of the optimal solution look like? It can’t contain G since we’ve al-
ready used it, and it has capacity S ′ = S − sG . What does the optimal solution to this remainder
look like? Well, by similar logic to before, it must be the optimal solution to a knapsack problem
of total capacity S ′ on the set of items not including G ! (Formally we could prove this by con-
tradiction again—if there was a more optimal knapsack solution for capacity S ′ without G , we
could use it to improve our solution.) This is another case of optimal substructure appearing!

Step 2: Defining our subproblems Now that we’ve observed some optimal substructure, lets
try to define some subproblems. Our observation seems to suggest that the subproblems should
involve considering a smaller capacity, and considering one fewer item. How should we keep
track of which items we are allowed to use? We could define a subproblem for every subset of
the input items, but then we would have Ω(2n) subproblems, and that’s no better than brute
force! But here’s another observation: it doesn’t really matter what order we consider inserting
the items if for every single item we either use it or don’t use it, so we can instead just consider
subproblems where we are using items 1 . . . i for 0 ≤ i ≤ n . Combining these two ideas, both
the capacity reduction and the subset of items, we define our subproblems as:

V(k , B) = The value of the best subset of items from {1, 2, . . . , k} that uses at most B space

The solution to the original problem is the subproblem V (n ,S).

Step 3: Deriving a recurrence Now that we have our subproblems, we can use our substruc-
ture observation to make a recurrence. If we choose to include item k , then our knapsack has
B − sk space remaining, and we can no longer use item k , so this gives us

v (k , B) = vk +V (k −1, B − sk) if we take item k

Otherwise, if we don’t take item k , then we get

v (k , B) =V (k −1, B) if we don’t take item k

8

Finally, we need some base case(s). Well, if we have no items left to use k = 0, that seems like a
good base case because we know the answer is zero! So, putting this together, we can write the
recurrence:

Algorithm: Dynamic programming recurrence for Knapsack

V (k , B) =

0 if k = 0
V (k −1, B) if sk > B
max{vk +V (k −1, B − sk), V (k −1, B)} otherwise

Note here that we had to check whether sk > B . In this case, we can’t choose item k even if we
wanted to because it doesn’t fit in the knapsack, so we are forced to skip it. Otherwise, if it fits,
we try both options of taking item k or not taking item k , then use the best of the two choices.

Step 4: Analysis We have O (nS) subproblems and each of them requires a constant amount
of work to evaluate for the first time. So, using dynamic programming, we can implement this
solution in O (nS) time.

A top-down implementation This can be turned into a recursive algorithm. Naively this
again would take exponential time. But, since there are only O (nS) different pairs of values
the arguments can possibly take on, so this is perfect for memoizing. As with the LCS prob-
lem, let us initialize a 2-d memoization table memo[k][b] to “unknown” for all 0 ≤ k ≤ n and
0≤ b ≤ S .

V : (k : int, B : int) −> int = {
if (k == 0) return 0;
if (memo[k][B] != unknown) return memo[k][B]; // <− added this
if (s_k > B) result := V(k−1,B);
else result := max{v_k + V(k−1, B−s_k), V(k−1, B)};
memo[k][B] = result; // <− and this
return result;

}

Since any given pair of arguments to V can pass through the memo check only once, and in
doing so produces at most two recursive calls, we have at most 2n (S + 1) recursive calls total,
and the total time is O (nS).

Just like with LCS, so far we have only discussed computing the value of the optimal solution.
How can we get the items? As usual for Dynamic Programming, we can do this by just work-
ing backwards: if memo[k][B] = memo[k-1][B] then we didn’t use the k th item so we just
recursively work backwards from memo[k-1][B]. Otherwise, we did use that item, so we just
output the k th item and recursively work backwards from memo[k-1][B-s_k]. One can also
do bottom-up Dynamic Programming.

9

4 Example 3: Max-Weight Indep. Sets on Trees (Tree DP)
Given a graph G with vertices V and edges E , an independent set is a subset of vertices S ⊆ V
such that none of the vertices are adjacent (i.e., none of the edges have both of their endpoints
in S). If each vertex v has a non-negative weight wv , the goal of the Max-Weight Independent
Set (MWIS) problem is to find an independent set with the maximum weight. We now give a
Dynamic Programming solution for the case when the graph is a tree. Let us assume that the
tree is rooted at some vertex r , which defines a notion of parents/children (and ancestors/de-
scendents) for the tree. Lets go through our usual motions.

Step 1: Identify some optimal substructure Suppose we choose to include r (the root) in the
independent set. What does this say about the rest of the solution? By definition, it means that
the children of the root are not allowed to be in the set. Anything else though is fair game. In
particular, for every granchild of the root, we would like to build a max-weight independent
set rooted at that vertex. A proof by contradiction would as usual verify that this has optimal
substructure.

On the other hand, if we choose to not include r in our independent set, then all of the chil-
dren are valid candidates to include. Specifically, we would like to construct a max-weight in-
dependent set in all of the subtrees rooted at the children (which may or may not contain those
children themselves).

Step 2: Define our subproblems The optimal substructure suggests that our subproblems
should be based on particular subtrees. This general technique is often referred to as “tree DP”
for this reason. Our set of subproblems might therefore be

W (v) = the max weight independent set of the subtree rooted at v

The solution to the original problem is W (r).

Step 3: Deriving a recurrence Like many of our previous algorithms, we build the recurrence
by casing on possible decisions we can make. Keeping with the spirit of that, it seems like the
decision we can make at any given problem W (v) is whether or not to include the root vertex
v in the independent set. If we choose to not include it, then we should just recursively find a
max-weight set in the children’s subtrees. We let C (v) be the set of children of vertex v . Then
we have

W (v) =
∑

u∈C (v)

W (u) if we don’t choose v.

Suppose we do choose v , then what can we do? As discussed, we can no longer include any of
v ’s children without violating the rules, but we can consider any of v ’s grandchildren and their
subtrees. Let G C (v) denote the set of v ’s grandchildren. Then we have

W (v) =wv +
∑

u∈G C (v)

W (u) if we choose v.

10

Finally, what about base cases? If v is a leaf then the max-weight independent set just contains
v for sure. To write the full recurrence, we just take the best of the two choices, choose v or
don’t choose v .

Algorithm: Dynamic programming recurrence for max-weight independent set on a tree

W (v) =max

(

∑

u∈C (v)

W (u), wv +
∑

u∈G C (v)

W (u)

)

Wait, stop! Where’s the base case? We must have forgotten it. Or did we? Suppose v is a leaf.
Then both of the sums in the recurrence are empty because C (v) and G C (v)will both be empty.
Therefore W (v) =wv for a leaf from the second case. This means that this particular recurrence
doesn’t need an explicit base case, because it sort of comes built in to the sum over the children.
Cool!

Step 4: Analysis This is our first example of a DP where the runtime needs a more sophisti-
cated analysis than just multiplying the number of subproblems by the work per subproblem.
If we were to do that naive analysis, we would get O (n 2) since there are O (n) subproblems and
each might have to loop over up to O (n) children/grandchildren. However, we can do better.
Note that each vertex is only the child or grandchild of exactly one other vertex (its parent or
its grandparent respectively). Therefore, each subproblem is only ever referred to by at most
two other vertices. So we can do the analysis “in reverse” or “upside down” in some sense, and
argue that each subproblem is only used at most twice, and hence the total work done is just
two times the number of subproblems, or O (n).

11

Exercises: Dynamic Programming

Problem 1. One way in which top-down DP can occasionally be faster is when not all of the
subproblems need to be solved in order to solve the original problem. Can you come up with an
example input for the longest common subsequence problem in which the solution depends
only on a linear number of subproblems?

Problem 2. We made a slightly greedy assumption in our algorithm for longest common sub-
sequence. We assumed that whenever S [i] = T [j], we should always match them. What if
there was some more optimal matching where we didn’t match them? Prove that this can not
happen, i.e., that this greedy choice is optimal.

Problem 3. We showed how to find the weight of the max-weight independent set. Show how
to find the actual independent set as well, in O (n) time.

Problem 4. Give an example where using the greedy strategy for the 0-1 knapsack problem will
get you less than 1% of the optimal value.

Problem 5. Suppose you are given a tree T with vertex-weights wv and also an integer K ≥ 1.
You want to find, over all independent sets of cardinality K , the one with maximum weight. (Or
say “there exists no independent set of cardinality K ”.) Give a dynamic programming solution
to this problem.

12

