Algorithm
Design and Analysis

Hashing: Universal and Perfect Hashing

Roadmap for today

* Review the dictionary problem and motivate hashing
* See universal hashing and how to prove that a family is universal

* See an algorithm for static perfect hashing

Formal model of computation

* Model (word-RAM):

* We have unlimited constant-time addressable memory (“registers”)
* Each register can store a w-bit integer (a “word”)

* Reading/writing, arithmetic, logic, bitwise operations on a constant number
of words takes constant time

* With input size n, we need w = log n.

Dictionaries & Hashing

The dictionary problem

The dictionary data type stores items that have associated unique keys

STUDENT
unique key mmp | id: integer
name:. string
grade: character

Dictionary Interface Python equivalent
insert(item): Insert the given item (associated with its key) d[key] = item
lookup(key): Return the item with the given key if it exists item = d[key] (throws KeyError if not present)

delete(key): Delete the item with the given key if it exists d.pop(key) (throws KeyError if not present)

Formal setup for hashing/hash tables

* The keys come from U = [0 ...u — 1] (the universe of keys)

 We want to store items in a table A of size m. Assume u > m, so we
can not just store key x at A[x]

* Key idea (Hash function): Define a function

h:U-{01,.. m—1}

* Try to store item with key x at A[h(x)]

Handling collisions

Approach #1 (Open addressing): When a collision occurs, cleverly find
a different location in the table for the new item

* Very hard to analyze, bad performance if not implemented well

 Amazing performance if done well! All state-of-the-art hashtables do this

Approach #2 (Chaining): Instead of storing a single item in each slot,
store a list of items. Add all items that hash to that slot to the list

* Simple to analyze and implement

* Decent performance in practice, used by the C++ standard library

* Much easier to parallelize

Prehashing non-integer keys

Idea (prehashing): For non-integer keys, we want to convert them into
some representative integer.

Example (strings): Strings can be interpreted as integers by interpreting
each character as a digit, in base alphabet size

BAC/Z

10 2 25
=1-262+0-26%+2-26+ 25

= 17653

Choosing a hash function h

* Main goal: We want it to be unlikely that h(x) = h(y) forx # y

* We want m = 0O(n), where n is the number of keys in the table
* We could just pick m = u then there are no collisions!!
e But this is an unacceptable amount of memory if u > n

* We also want h(x) to be fast to compute. Ideally O(1) time

* How long does a hashtable operation take using chaining?

Can we just pick... the best hash function?

* For any hash function you choose, | can find a set of n items that hash
to the same location...

* There’s no such thing as a hash function that works for every input.

* Big idea (randomization): We need to employ randomization to build
a hash function that doesn’t have a horrible worst-case behaviour

* Specifically, we want to choose a random hash function from some
big set of possible hash functions

10

Random hash families

* Definition (totally random hash): A set H of hash functions is totally
randomifforallx € U, t € {0,...m — 1}, independent of all y € U

1
s M) = =5

 Essentially equivalent to “Simple uniform hashing” (if you know it)

* Totally random hashing has all nice properties, but its not possible to
do practically...

11

Less random, but still random

* Goal: We need a hash function that is still “pretty random”, but not
totally random, since that’s too expensive

Definition (Universal Hashing): A set H of hash functions h : U —
{0, ..., m — 1} is called universal if for all x # y

1
Pr [h(x) = h(y)] < —

Can compute probability by counting:

h = h c
PrRGe) = ()] = e

12

Examples: Universal or not?
u|=2, M=2

_ a b [| a | b | a b

hy O 0 hy O 0 hy O 1

h, 0 1 h, 1 1 h, 1 0

13

More examples
|U| = 3, M=2
__a b |c
hy 0 0 1

h, 1 1 0
hy 1 0 1

ul=3, M
 la|b|c

h, 0 0 O

h, 0 1 2

hy 1 2 0

h, 2 0 1

14

Analysis of Universal Hashing

Theorem: If is a universal family, then for any set S € U with |S| =

n, forany x € S, if h is chosen at random from H, then the expected
number of collisions between x and other elements is at most n/m.

15

Corollary

Definition (Load Factor): The quantity n/m is called the load factor

Corollary: Using separate chaining, given a universal family H, the
expected cost of each operationis O(1 + n/m)

Corollary: Using separate chaining, given a universal family H, if the
load factor is always at most 1, for any sequence of L insert, lookup,
delete operations, the expected cost of the L operations over a random
h e HisO(L).

Assumes h can be computed in O(1) time

16

Okay... how do we construct one?

e Universal families sound great. How do we make one?

e Construction (Random binary matrix): Assume |U| = 2V, m = 2P
* Let A be arandom w X b matrix of zeros and ones
* Interpret x € U as a w length vector of its bits
 Let h(x) = Ax mod 2, again interpreting h(x) as a b length vector of bits

< w »
b] I

17

Analysis of random binary matrix

Theorem: Its universal, i.e., for x # vy, hlzgf[h(x) = h(y)] = %

18

Wait, that’s not constant time!

* How efficient is computing h(x)?

* Thankfully, there exists universal families whose hash functions can
be computed in constant time (but they are harder to analyze).

Example (The multiplication method): Suppose |U| = 2% and choose a
power of two table size m = 2" and a random odd integer a

h(x) = [(ax) mod 2%] >» (w — 1)

19

Even more randomness!

* Can we make a hash family that is “more random” than universal, but
still less than totally random? Yes!

* Definition (pairwise independent): A hash family H is called pairwise
independent if for every pair x; # x, of distinct keys and every pair
of values v4, v, € {0, ..., m — 1} (not necessarily distinct),

1
hfég[[h(xﬂ =v; and h(xy) = v,] =)

Intuitively, for every pair of distinct keys (x4, x,), all pairs of values (v, V,)
are equally likely to occur (there are m? possible pairs of values).

20

- Ja b |
h, 0 O

Example :
h, 0 1 1

NERE . =h@®hw)
* |s this hash function hy 1 1 0
pairwise independent?
s it totally random? __lalc b

h, 0 O 0

h, 0 1 1
-nnu e 1 1 0 = h(a) @ h(c)
h, 0 0 O h, 1 0 1
h, 0 1 1
hs 10 1 b c a_
h, 1 1 0 hy 0 O 0

h, 1 1 0

h, 0 1 ;T HBI®RE

h, 1 0 1

Even more randomness!

* Definition (k-wise independent): A hash family H is called k-wise
independent if for every set of k distinct keys x4, ..., X5 and k values
vy, ..., Vg (not necessarily distinct) we have

1
hfégf[h(xl) = v, and ... and h(xy) = v,] = —

* The k = 1 case is usually called uniform (since “1-wise independent”
sounds funny)

 The k = 2 case is pairwise independence from the previous slides

22

Static perfect hashing
(not required)

Static perfect hashing

Problem: Suppose we know the n keys in advance want deterministic
constant query time in the worst case? Is this possible?

Idea: Reduce collision probability by making the table really really big!

Theorem: Given a universal family 7, taking m = n? gives us

. o2
hg;{ Ino collisions] = >

24

Some analysis

Theorem: Given a universal family £, taking m = n? gives us

1
. o2
hl;% Ino collisions] > >

25

That’s a bit too much

* Okay, no collisions is nice, but n? space is way too much.
* Can we achieve the same with only O(n) space?

* |dea: The number of collisions per element is usually small anyway.
Squaring those numbers might not be too big

26

FKS Hashing

* Choose a hash function t Lo = Table of size (Lg)?

h € H (universal) tems

h:U - {0,..,n— 1} tems L Tableof size (1)
* Let L; be the number h |

of keys x such that U — " .

h(x) =i
: Use a random hash
) Fs)gzrifi;:ei lllrl1 ;cems at function for each
: second-level table
second-level table of W U — {0 [.)2
size (L-)z v Ly, iU —>{0,..., (L)}
l items

27

Analysis of second-level tables

* We know that for each second-level table, we havea = 1/2
probability that there are no collisions

* There are n such tables, so there are bound to be some with collisions

 Solution: If there are collisions in a second-level table, just pick
another random hash from the family until there isn’t.

28

Analysis of top

Theorem: If h is chosen from a universal family H, then

Pr
heH

level

ZL% > 4n

<

1
2

29

Analysis continued...

Lemma: Define Cy,, = 1if h(x) = h(y), else Cyy =0

Y=Y 36

30

Analysis continued continued...

Lemma: If his chosen from a universal family H, then

E E(Li)z- < 2N

Completing the analysis

Theorem: If h is chosen from a universal family H, then

) 2 _ .
Pr z Li > 4n < —
heEH 2

Summary of today

* Universal hashing gives us “enough” randomness to get nice results
* Operations on a hash table with separate chaining runin O(1 + n/m) time.

 Static FKS hashing gives deterministic lookup in constant worst-case time.

* Proving that a hash family is universal / k-wise independent can be
quite tricky, but is very important

* For “more randomness”, we can employ pairwise independent, or k-
wise independent hashing.

33

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal model of computation
	Slide 4: Dictionaries & Hashing
	Slide 5: The dictionary problem
	Slide 6: Formal setup for hashing/hash tables
	Slide 7: Handling collisions
	Slide 8: Prehashing non-integer keys
	Slide 9: Choosing a hash function bold italic h
	Slide 10: Can we just pick… the best hash function?
	Slide 11: Random hash families
	Slide 12: Less random, but still random
	Slide 13: Examples: Universal or not?
	Slide 14: More examples
	Slide 15: Analysis of Universal Hashing
	Slide 16: Corollary
	Slide 17: Okay… how do we construct one?
	Slide 18: Analysis of random binary matrix
	Slide 19: Wait, that’s not constant time!
	Slide 20: Even more randomness!
	Slide 21: Example
	Slide 22: Even more randomness!
	Slide 23: Static perfect hashing (not required)
	Slide 24: Static perfect hashing
	Slide 25: Some analysis
	Slide 26: That’s a bit too much
	Slide 27: FKS Hashing
	Slide 28: Analysis of second-level tables
	Slide 29: Analysis of top level
	Slide 30: Analysis continued…
	Slide 31: Analysis continued continued…
	Slide 32: Completing the analysis
	Slide 33: Summary of today

