
Algorithm
Design and Analysis

Hashing: Universal and Perfect Hashing

Roadmap for today

• Review the dictionary problem and motivate hashing

• See universal hashing and how to prove that a family is universal

• See an algorithm for static perfect hashing

2

Formal model of computation

• Model (word-RAM):
• We have unlimited constant-time addressable memory (“registers”)

• Each register can store a 𝑤-bit integer (a “word”)

• Reading/writing, arithmetic, logic, bitwise operations on a constant number
of words takes constant time

• With input size 𝑛, we need 𝑤 ≥ log 𝑛.

3

Dictionaries & Hashing

4

The dictionary problem

The dictionary data type stores items that have associated unique keys

Dictionary Interface

insert(item): Insert the given item (associated with its key)

lookup(key): Return the item with the given key if it exists

delete(key): Delete the item with the given key if it exists

STUDENT

id: integer

name: string

grade: character

unique key

Python equivalent

d[key] = item

item = d[key] (throws KeyError if not present)

d.pop(key) (throws KeyError if not present)

5

Formal setup for hashing/hash tables

• The keys come from 𝑈 = [0 … 𝑢 − 1] (the universe of keys)

• We want to store items in a table 𝐴 of size 𝑚. Assume 𝑢 ≫ 𝑚, so we
can not just store key 𝑥 at 𝐴[𝑥]

• Key idea (Hash function): Define a function

ℎ ∶ 𝑈 → {0,1, … , 𝑚 − 1}

• Try to store item with key 𝑥 at 𝐴[ℎ 𝑥]

6

Handling collisions

Approach #1 (Open addressing): When a collision occurs, cleverly find
a different location in the table for the new item

• Very hard to analyze, bad performance if not implemented well

• Amazing performance if done well! All state-of-the-art hashtables do this

Approach #2 (Chaining): Instead of storing a single item in each slot,
store a list of items. Add all items that hash to that slot to the list

• Simple to analyze and implement

• Decent performance in practice, used by the C++ standard library

• Much easier to parallelize

7

Prehashing non-integer keys

Idea (prehashing): For non-integer keys, we want to convert them into
some representative integer.

Example (strings): Strings can be interpreted as integers by interpreting
each character as a digit, in base alphabet size

B A C Z
1 0 2 25

= 𝟏 ⋅ 𝟐𝟔𝟑 + 𝟎 ⋅ 𝟐𝟔𝟐 + 𝟐 ⋅ 𝟐𝟔 + 𝟐𝟓

= 17653
8

Choosing a hash function 𝒉

• Main goal: We want it to be unlikely that ℎ 𝑥 = ℎ(𝑦) for 𝑥 ≠ 𝑦

• We want 𝑚 = 𝑂(𝑛), where 𝑛 is the number of keys in the table
• We could just pick 𝑚 = 𝑢 then there are no collisions!!

• But this is an unacceptable amount of memory if 𝑢 ≫ 𝑛

• We also want ℎ(𝑥) to be fast to compute. Ideally 𝑂(1) time

• How long does a hashtable operation take using chaining?

9

Can we just pick… the best hash function?

• For any hash function you choose, I can find a set of 𝑛 items that hash
to the same location…

• There’s no such thing as a hash function that works for every input.

• Big idea (randomization): We need to employ randomization to build
a hash function that doesn’t have a horrible worst-case behaviour

• Specifically, we want to choose a random hash function from some
big set of possible hash functions

10

Random hash families

• Definition (totally random hash): A set ℋ of hash functions is totally
random if for all 𝑥 ∈ 𝑈, 𝑡 ∈ {0, … 𝑚 − 1}, independent of all 𝑦 ∈ 𝑈

Pr
ℎ∈ℋ

ℎ 𝑥 = 𝑡 =
1

𝑚

• Essentially equivalent to “Simple uniform hashing” (if you know it)

• Totally random hashing has all nice properties, but its not possible to
do practically…

11

Less random, but still random

• Goal: We need a hash function that is still “pretty random”, but not
totally random, since that’s too expensive

Definition (Universal Hashing): A set ℋ of hash functions ℎ ∶ 𝑈 →
{0, … , 𝑚 − 1} is called universal if for all 𝑥 ≠ 𝑦

Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) ≤
1

𝑚

Can compute probability by counting:

Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) =
ℎ 𝑥 = ℎ 𝑦 ℎ∈ℋ

ℋ
12

Examples: Universal or not?

𝒂 𝒃

ℎ1 0 0

ℎ2 0 1

𝒂 𝒃

ℎ1 0 1

ℎ2 1 0

𝒂 𝒃

ℎ1 0 1

ℎ2 1 0

ℎ3 0 1

𝑼 = 𝟐, 𝑴 = 𝟐

𝒂 𝒃

ℎ1 0 0

ℎ2 1 1

13

More examples

𝒂 𝒃 c

ℎ1 0 0 0

ℎ2 0 1 2

ℎ3 1 2 0

ℎ4 2 0 1

𝑼 = 𝟑, 𝑴 = 𝟑

𝒂 𝒃 c

ℎ1 0 0 1

ℎ2 1 1 0

ℎ3 1 0 1

𝑼 = 𝟑, 𝑴 = 𝟐

14

Analysis of Universal Hashing

Theorem: If ℋ is a universal family, then for any set 𝑆 ⊆ 𝑈 with 𝑆 =
𝑛, for any 𝑥 ∈ 𝑆, if ℎ is chosen at random from ℋ, then the expected
number of collisions between 𝑥 and other elements is at most 𝑛/𝑚.

15

Corollary

Definition (Load Factor): The quantity 𝑛/𝑚 is called the load factor

Corollary: Using separate chaining, given a universal family ℋ, the
expected cost of each operation is 𝑂(1 + 𝑛/𝑚)

Corollary: Using separate chaining, given a universal family ℋ, if the
load factor is always at most 1, for any sequence of 𝐿 insert, lookup,
delete operations, the expected cost of the 𝐿 operations over a random
ℎ ∈ ℋ is 𝑂(𝐿).

Assumes ℎ can be computed in 𝑂(1) time

16

Okay… how do we construct one?

• Universal families sound great. How do we make one?

• Construction (Random binary matrix): Assume 𝑈 = 2𝑤, 𝑚 = 2𝑏

• Let 𝐴 be a random 𝑤 × 𝑏 matrix of zeros and ones

• Interpret 𝑥 ∈ 𝑈 as a 𝑤 length vector of its bits

• Let ℎ 𝑥 = 𝐴𝑥 mod 2, again interpreting ℎ(𝑥) as a 𝑏 length vector of bits

𝐴

𝒘

𝒃

𝒘

𝑥 =

17

Analysis of random binary matrix

Theorem: Its universal, i.e., for 𝑥 ≠ 𝑦, Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) =
1

𝑚

18

Wait, that’s not constant time!

• How efficient is computing ℎ(𝑥)?

• Thankfully, there exists universal families whose hash functions can
be computed in constant time (but they are harder to analyze).

Example (The multiplication method): Suppose 𝑈 = 2𝑤 and choose a
power of two table size 𝑚 = 2𝑟 and a random odd integer 𝒂

ℎ 𝑥 = 𝑎𝑥 mod 2𝑤 ≫ (𝑤 − 𝑟)
19

Even more randomness!

• Can we make a hash family that is “more random” than universal, but
still less than totally random? Yes!

• Definition (pairwise independent): A hash family ℋ is called pairwise
independent if for every pair 𝑥1 ≠ 𝑥2 of distinct keys and every pair
of values 𝑣1, 𝑣2 ∈ {0, … , 𝑚 − 1} (not necessarily distinct),

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑣1 and ℎ 𝑥2 = 𝑣2 =
1

𝑚2

Intuitively, for every pair of distinct keys (𝑥1, 𝑥2), all pairs of values (𝑣1, 𝑣2)
are equally likely to occur (there are 𝑚2 possible pairs of values).

20

Example

𝒂 𝒃 c

ℎ1 0 0 0

ℎ2 0 1 1

ℎ3 1 0 1

ℎ4 1 1 0

𝒂 𝒃

ℎ1 0 0

ℎ2 0 1

ℎ3 1 0

ℎ4 1 1

𝒂 c

ℎ1 0 0

ℎ2 0 1

ℎ3 1 1

ℎ4 1 0

𝒃 c

ℎ1 0 0

ℎ2 1 1

ℎ3 0 1

ℎ4 1 0

c

0

1

1

0

= ℎ 𝑎 ⊕ ℎ(𝑏)

𝒃

0

1

0

1

= ℎ 𝑎 ⊕ ℎ(𝑐)

𝒂

0

0

1

1

= ℎ 𝑏 ⊕ ℎ(𝑐)

21

• Is this hash function
pairwise independent?
Is it totally random?

Even more randomness!

• Definition (𝒌-wise independent): A hash family ℋ is called 𝑘-wise
independent if for every set of 𝑘 distinct keys 𝑥1, … , 𝑥𝑘 and 𝑘 values
𝑣1, … , 𝑣𝑘 (not necessarily distinct) we have

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑣1 and … and ℎ 𝑥𝑘 = 𝑣𝑘 =
1

𝑚𝑘

• The 𝑘 = 1 case is usually called uniform (since “1-wise independent”
sounds funny)

• The 𝑘 = 2 case is pairwise independence from the previous slides

22

Static perfect hashing
(not required)

23

Static perfect hashing

Problem: Suppose we know the 𝒏 keys in advance want deterministic
constant query time in the worst case? Is this possible?

Idea: Reduce collision probability by making the table really really big!

Theorem: Given a universal family ℋ, taking 𝑚 = 𝑛2 gives us

Pr
ℎ∈ℋ

no collisions ≥
1

2

24

Some analysis

Theorem: Given a universal family ℋ, taking 𝑚 = 𝑛2 gives us

Pr
ℎ∈ℋ

no collisions ≥
1

2

25

That’s a bit too much

• Okay, no collisions is nice, but 𝑛2 space is way too much.

• Can we achieve the same with only 𝑂(𝑛) space?

• Idea: The number of collisions per element is usually small anyway.
Squaring those numbers might not be too big

26

FKS Hashing

𝑼

𝐿0
items

𝐿1
items

⋮

⋮

𝐿𝑛−1
items

𝒏
𝒉• Let 𝐿𝑖 be the number

of keys 𝑥 such that

 ℎ 𝑥 = 𝑖

Table of size 𝐿0
2

• Store the 𝐿𝑖 items at
position 𝑖 in a
second-level table of
size 𝐿𝑖

2

Table of size 𝐿1
2

⋮

• Choose a hash function
ℎ ∈ ℋ (universal)

ℎ: 𝑈 → {0, … , 𝑛 − 1}

• Use a random hash
function for each
second-level table
ℎ𝑖 ∶ 𝑈 → {0, … , 𝐿𝑖

2}

27

Analysis of second-level tables

• We know that for each second-level table, we have a ≥ 1/2
probability that there are no collisions

• There are 𝑛 such tables, so there are bound to be some with collisions

• Solution: If there are collisions in a second-level table, just pick
another random hash from the family until there isn’t.

28

Analysis of top level

Theorem: If ℎ is chosen from a universal family ℋ, then

Pr
ℎ∈ℋ

 𝐿𝑖
2 > 4𝑛 ≤

1

2

29

Analysis continued…

Lemma: Define 𝐶𝑥𝑦 = 1 if ℎ 𝑥 = ℎ 𝑦 , else 𝐶𝑥𝑦 = 0

 𝐿𝑖
2 = 𝐶𝑥𝑦

30

Analysis continued continued…

Lemma: If ℎ is chosen from a universal family ℋ, then

𝔼 𝐿𝑖
2 < 2𝑁

31

Completing the analysis

Theorem: If ℎ is chosen from a universal family ℋ, then

Pr
ℎ∈ℋ

 𝐿𝑖
2 > 4𝑛 ≤

1

2

32

Summary of today

• Universal hashing gives us “enough” randomness to get nice results
• Operations on a hash table with separate chaining run in 𝑂(1 + 𝑛/𝑚) time.

• Static FKS hashing gives deterministic lookup in constant worst-case time.

• Proving that a hash family is universal / 𝒌-wise independent can be
quite tricky, but is very important

• For “more randomness”, we can employ pairwise independent, or 𝑘-
wise independent hashing.

33

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal model of computation
	Slide 4: Dictionaries & Hashing
	Slide 5: The dictionary problem
	Slide 6: Formal setup for hashing/hash tables
	Slide 7: Handling collisions
	Slide 8: Prehashing non-integer keys
	Slide 9: Choosing a hash function bold italic h
	Slide 10: Can we just pick… the best hash function?
	Slide 11: Random hash families
	Slide 12: Less random, but still random
	Slide 13: Examples: Universal or not?
	Slide 14: More examples
	Slide 15: Analysis of Universal Hashing
	Slide 16: Corollary
	Slide 17: Okay… how do we construct one?
	Slide 18: Analysis of random binary matrix
	Slide 19: Wait, that’s not constant time!
	Slide 20: Even more randomness!
	Slide 21: Example
	Slide 22: Even more randomness!
	Slide 23: Static perfect hashing (not required)
	Slide 24: Static perfect hashing
	Slide 25: Some analysis
	Slide 26: That’s a bit too much
	Slide 27: FKS Hashing
	Slide 28: Analysis of second-level tables
	Slide 29: Analysis of top level
	Slide 30: Analysis continued…
	Slide 31: Analysis continued continued…
	Slide 32: Completing the analysis
	Slide 33: Summary of today

