Algorithm Design and Analysis

Hashing: Universal and Perfect Hashing

Roadmap for today

- Review the *dictionary problem* and motivate hashing
- See *universal hashing* and how to prove that a family is universal
- See an algorithm for *static perfect hashing*

Formal model of computation

• Model (word-RAM):

- We have unlimited constant-time addressable memory ("registers")
- Each register can store a *w*-bit integer (a "word")
- Reading/writing, arithmetic, logic, bitwise operations on a constant number of words takes constant time
- With input size n, we need $w \ge \log n$.

Dictionaries & Hashing

The dictionary problem

The dictionary data type stores *items* that have associated unique *keys*

Dictionary Interface

insert(item): Insert the given item (associated with its key)
lookup(key): Return the item with the given key if it exists
delete(key): Delete the item with the given key if it exists

Python equivalent

d[key] = item

item = d[key] (throws KeyError if not present)
d.pop(key) (throws KeyError if not present)

Formal setup for hashing/hash tables

- The keys come from $U = [0 \dots u 1]$ (the *universe* of keys)
- We want to store items in a table A of size m. Assume $u \gg m$, so we can not just store key x at A[x]
- Key idea (Hash function): Define a function

$$h: U \to \{0,1,\ldots,m-1\}$$

• Try to store item with key x at A[h(x)]

Handling collisions

Approach #1 (Open addressing): When a collision occurs, cleverly find a **different location in the table** for the new item

- Very hard to analyze, bad performance if not implemented well
- Amazing performance if done well! **All state-of-the-art hashtables do this**

Approach #2 (Chaining): Instead of storing a single item in each slot, store a **list of items**. Add all items that hash to that slot to the list

- Simple to analyze and implement
- Decent performance in practice, used by the C++ standard library
- Much easier to parallelize

Prehashing non-integer keys

Idea (prehashing): For non-integer keys, we want to convert them into some representative integer.

Example (strings): Strings can be interpreted as integers by interpreting each character as a digit, in base alphabet size

$\begin{array}{l} \textbf{B} \ \textbf{A} \ \textbf{C} \ \textbf{Z} \\ \textbf{1} \ \textbf{0} \ \textbf{2} \ \textbf{25} \end{array} \\ = 1 \cdot 26^3 + 0 \cdot 26^2 + 2 \cdot 26 + 25 \\ = \textbf{17653} \end{array}$

Choosing a hash function h

- Main goal: We want it to be unlikely that h(x) = h(y) for $x \neq y$
- We want m = O(n), where n is the number of keys in the table
 - We could just pick m = u then there are no collisions!!
 - But this is an unacceptable amount of memory if $u \gg n$
- We also want h(x) to be fast to compute. Ideally O(1) time
- How long does a hashtable operation take using chaining?

Can we just pick... the best hash function?

- For any hash function you choose, I can find a set of *n* items that hash to the same location...
- There's no such thing as a hash function that works for every input.
- **Big idea (randomization):** We need to employ randomization to build a hash function that doesn't have a horrible worst-case behaviour
- Specifically, we want to choose a random hash function from some big set of possible hash functions

Random hash families

• **Definition (totally random hash)**: A set \mathcal{H} of hash functions is **totally random** if for all $x \in U, t \in \{0, ..., m - 1\}$, independent of all $y \in U$

$$\Pr_{h\in\mathcal{H}}[h(x)=t]=\frac{1}{m}$$

- Essentially equivalent to "Simple uniform hashing" (if you know it)
- Totally random hashing has all nice properties, but its not possible to do practically...

Less random, but still random

• **Goal**: We need a hash function that is still "pretty random", but not totally random, since that's too expensive

Definition (Universal Hashing): A set \mathcal{H} of hash functions $h : U \rightarrow \{0, ..., m-1\}$ is called **universal** if for all $x \neq y$ $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{1}{m}$

Can compute probability by counting:

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{|h(x) = h(y)|_{h \in \mathcal{H}}}{|\mathcal{H}|}$$

Examples: Universal or not?

$$|U|=2, \qquad M=2$$

More examples

$$|U|=3, \qquad M=2$$

	a	b	С
h_1	0	0	1
h_2	1	1	0
h_3	1	0	1

$$|U|=3, \qquad M=3$$

	a	b	С
h_1	0	0	0
h_2	0	1	2
h_3	1	2	0
h_4	2	0	1

Analysis of Universal Hashing

Theorem: If \mathcal{H} is a universal family, then for any set $S \subseteq U$ with |S| = n, for any $x \in S$, if h is chosen at random from \mathcal{H} , then the **expected** number of collisions between x and other elements is at most n/m.

Corollary

Definition (Load Factor): The quantity n/m is called the **load factor**

Corollary: Using separate chaining, given a universal family \mathcal{H} , the expected cost of each operation is O(1 + n/m)

Corollary: Using separate chaining, given a universal family \mathcal{H} , if the load factor is always at most 1, for any sequence of L insert, lookup, delete operations, the expected cost of the L operations over a random $h \in \mathcal{H}$ is O(L).

Assumes h can be computed in O(1) time

Okay... how do we construct one?

- Universal families sound great. How do we make one?
- Construction (Random binary matrix): Assume $|U| = 2^w$, $m = 2^b$
 - Let A be a random $w \times b$ matrix of zeros and ones
 - Interpret $x \in U$ as a w length vector of its bits
 - Let $h(x) = Ax \mod 2$, again interpreting h(x) as a *b* length vector of bits

Analysis of random binary matrix

Theorem: Its universal, i.e., for $x \neq y$, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{m}$

Wait, that's not constant time!

• How efficient is computing h(x)?

• Thankfully, there exists universal families whose hash functions can be computed in constant time (but they are harder to analyze).

Example (The multiplication method): Suppose $|U| = 2^w$ and choose a power of two table size $m = 2^r$ and a **random odd integer** a

$$h(x) = [(ax) \mod 2^w] \gg (w - r)$$

Even more randomness!

- Can we make a hash family that is "more random" than universal, but still less than totally random? Yes!
- **Definition (pairwise independent):** A hash family \mathcal{H} is called **pairwise independent** if for every pair $x_1 \neq x_2$ of distinct keys and every pair of values $v_1, v_2 \in \{0, ..., m-1\}$ (not necessarily distinct),

$$\Pr_{h \in \mathcal{H}}[h(x_1) = v_1 \text{ and } h(x_2) = v_2] = \frac{1}{m^2}$$

Intuitively, for every pair of distinct keys (x_1, x_2) , all pairs of values (v_1, v_2) are equally likely to occur (there are m^2 possible pairs of values).

Example

 Is this hash function pairwise independent? Is it totally random?

	a	b	С
h_1	0	0	0
h_2	0	1	1
h_3	1	0	1
h_4	1	1	0

		_
	a	b
h_1	0	0
h_2	0	1
h_3	1	0
h_4	1	1
	a	С
h_1	0	0
h_2	0	1
h_3	1	1
h_4	1	0
	b	С
h_1	0	0
h_2	1	1
h_3	0	1
h	1	0

С	
0	
1	$-h(a) \oplus h(b)$
1	$= n(u) \oplus n(b)$
0	
b	
0	
1	$-h(z) \oplus h(z)$
0	$= n(a) \oplus n(c)$
1	
a	
0	
0	$-h(h) \oplus h(h)$
1	$= n(v) \oplus n(c)$
1	

Even more randomness!

• **Definition (k-wise independent):** A hash family \mathcal{H} is called k-wise independent if for every set of k distinct keys x_1, \ldots, x_k and k values v_1, \ldots, v_k (not necessarily distinct) we have

$$\Pr_{h \in \mathcal{H}} [h(x_1) = v_1 \text{ and } \dots \text{ and } h(x_k) = v_k] = \frac{1}{m^k}$$

- The k = 1 case is usually called *uniform* (since "1-wise independent" sounds funny)
- The k = 2 case is pairwise independence from the previous slides

Static perfect hashing (not required)

Static perfect hashing

Problem: Suppose we **know the** *n* **keys in advance** want deterministic constant query time in the worst case? Is this possible?

Idea: Reduce collision probability by making the table really really big!

Theorem: Given a universal family \mathcal{H} , taking $m = n^2$ gives us $\Pr_{h \in \mathcal{H}} [\text{no collisions}] \ge \frac{1}{2}$

Some analysis

Theorem: Given a universal family \mathcal{H} , taking $m = n^2$ gives us $\Pr_{h \in \mathcal{H}} [\text{no collisions}] \ge \frac{1}{2}$

That's a bit too much

- Okay, no collisions is nice, but n^2 space is way too much.
- Can we achieve the same with only O(n) space?
- *Idea*: The number of collisions per element is usually small anyway. Squaring those numbers might not be too big

FKS Hashing

- Choose a hash function $h \in \mathcal{H}$ (universal) $h: U \rightarrow \{0, ..., n-1\}$
- Let L_i be the number of keys x such that

h(x) = i

• Store the L_i items at position i in a second-level table of size $(L_i)^2$

h

Analysis of second-level tables

- We know that for each second-level table, we have a $\geq 1/2$ probability that there are no collisions
- There are *n* such tables, so there are bound to be *some* with collisions
- **Solution**: If there are collisions in a second-level table, just pick another random hash from the family until there isn't.

Analysis of top level

Theorem: If h is chosen from a universal family \mathcal{H} , then

$$\Pr_{h \in \mathcal{H}} \left[\sum L_i^2 > 4n \right] \le \frac{1}{2}$$

Analysis continued...

Lemma: Define $C_{xy} = 1$ if h(x) = h(y), else $C_{xy} = 0$

$$\sum (L_i)^2 = \sum \sum C_{xy}$$

Analysis continued continued...

Lemma: If h is chosen from a universal family \mathcal{H} , then

$$\mathbb{E}\left[\sum (L_i)^2\right] < 2N$$

Completing the analysis

Theorem: If h is chosen from a universal family \mathcal{H} , then

$$\Pr_{h \in \mathcal{H}} \left[\sum L_i^2 > 4n \right] \le \frac{1}{2}$$

Summary of today

- Universal hashing gives us "enough" randomness to get nice results
 - Operations on a hash table with separate chaining run in O(1 + n/m) time.
 - Static FKS hashing gives deterministic lookup in constant worst-case time.
- Proving that a hash family is universal / k-wise independent can be quite tricky, but is very important
- For "more randomness", we can employ pairwise independent, or kwise independent hashing.