Algorithm Design and Analysis

Dynamic Programming

Roadmap for today

- Learn about (maybe review) *dynamic programming*
- Understand the key elements:
 - Memoization
 - Optimal Substructure
 - Overlapping subproblems
- Practice a lot of DP problems!

Starter example: Counting steps

You can climb up the stairs in increments of 1 or 2 steps. How many ways are there to jump up n stairs?

Could we solve this problem in terms of **smaller subproblems?**

Implementation #1

```
function stairs(int n) {
  if (n <= 1) then return 1
  else {
    let waysToTake1Step = stairs(n-1)
    let waysToTake2Steps = stairs(n-2)
    return waysToTake1Step + waysToTake2Steps
  }
}</pre>
```

Issue? Exponentially many recursive calls!!

Implementation #2

dict<int, int> memo

```
Don't solve the same problem
function stairs(int n) {
                                     twice! Store the result and reuse it!
 if (n <= 1) then return 1</pre>
  if (n not in memo) {
     memo[n] = stairs(n-1) + stairs(n-2)
  }
  return memo[n]
```

Key Idea: Memoization

When can we use DP?

• We could solve the stairs problem by using solutions to *smaller* instances of the stairs problem

```
stairs(n) = stairs(n-1) + stairs(n-2)
```

Key Idea: Optimal substructure

We say that a problem has *optimal substructure* if the optimal solution to the problem can be derived from optimal solutions to smaller instances (called *subproblems*) of the problem.

When can we use DP?

• The DP implementation of stairs was faster because each subproblem was solved *only once* instead of *exponentially many times*

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea: Overlapping subproblems

Overlapping subproblems are subproblems that occur multiple (often exponentially many) times throughout the recursion tree. This is what distinguishes DP from ordinary recursion.

"Recipe" for dynamic programming

1. Identify a set of optimal subproblems

- Write down a clear and unambiguous definition of the subproblems.
- 2. Identify the relationship between the subproblems
 - Write down a recurrence that gives the solution to a problem in terms of its subproblems
- 3. Analyze the required runtime
 - Usually (but not always) the number of subproblems multiplied by the time taken to solve a subproblem.
- 4. Select a data structure to store subproblems
 - Usually just an array. Occasionally something more complex
- 5. Choose between bottom-up or top-down implementation
- 6. Write the code!

Often all that is required for a theoretical solution

Only required if the answer is not "array" Mostly ignored in this class (unless it's a programming HW!)

The Knapsack Problem

The Knapsack Problem

Definition (Knapsack): Given a set of n items, the i^{th} of which has size s_i and value v_i . The goal is to find a subset of the items whose total size is at most S, with maximum possible value.

	Α	В	С	D	Ε	F	G
Value	7	9	5	12	15	6	12
Size	3	4	2	6	7	3	5

$$S = 15$$

10

Identifying Optimal Substructure

	Α	В	С	D	Е	F	G
Value	7	9	5	12	15	6	12
Size	3	4	2	6	7	3	5

Issue:

- How do we know whether to include a particular object X?
- We don't know in advance, so try both choices and pick best one!

Optimal substructure:

- Every object is either included or not included
- If an item X is included, the remaining S – Size(X) space is filled with some subset of the remaining items
- This is just a smaller instance of the knapsack problem!!

$$V(k,B) = value of best subset of {1...k} with$$

 $V(k,B) = total size $\in B$$

Writing a recurrence

$$V(k,B) = \begin{cases} 0 & k = 0 \\ \sqrt{(k-1, B)} & \text{if } S_k > B \\ max(\sqrt{(k-1, B)}, \sqrt{k} + \sqrt{(k-1, B-S_k)}) \end{cases}$$

Key Idea: Clever brute force

We could not know in advance whether to include the i^{th} item or not, so we tried both possibilities and took the best one.

Analyzing the Runtime

Analysis: Knapsack can be solved in O(nS) time

Max-weight independent set in a tree (Tree DP)

Independent sets on trees (Tree DP)

Definition (Independent set): Given a tree on n vertices, an *independent set* is a subset of the vertices $S \subseteq V$ such that none of them are adjacent.

Each vertex has a non-negative weight w_v , and we want to find the maximum possible weight independent set.

Optimal substructure:

- A solution either includes the root or does not include the root
- If the root is chosen, the remaining solution is an independent set of the remaining vertices, excluding the root's children
- Each child/grandchild subtree is just another smaller instance of the MWIS-in-a-tree problem!!

$$W(v) = value of MW15 of the submee rooted at v.$$

Writing a Recurrence

$$W(v) = \max \begin{cases} \sum_{u \in chill(v)} W(u) & (don't choose v) \\ u \in chill(v) & \\ Wv + \sum_{u \in Grand(v)} W(v) & (choose v) \end{cases}$$

Again: Clever brute force

We could not know in advance whether to include the root or not, so we tried both possibilities and took the best one.

Analyzing the Runtime

Analysis: MWIS on a tree can be solved in O(n)!!

= O(n)

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP)

Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight cycle that visits every vertex exactly once (called a "Hamiltonian Cycle").

Idea 1: Find the minimum weight cycle on a subgraph with one of the vertices removed, then add that vertex somewhere in the cycle.

Issue: No obvious optimal substructure. The optimal cycle for {A,B,C,D,E} looks very different to the optimal cycle for {A,B,C,D}

Refining the Subproblems

The issue: Cycles don't have any obvious optimal substructure

Can we look for another graph property that does?

Paths!

Observe: If $S \rightarrow A \rightarrow B \rightarrow C \rightarrow T$ is a minimum weight $S \rightarrow T$ path, then $S \rightarrow A \rightarrow B \rightarrow C$ must be a minimum weight $S \rightarrow C$ path.

How do we know which vertex to put second last (before T)?

Clever brute force to the rescue! Try them all and take the best one.

Defining Subproblems

• How should we define subproblems for minimum-weight paths?

$$C(\mathbf{S}, t) = Min-weight part from stort to ttouching every vertex in subset S$$

• How do we solve the original problem (TSP) using these subproblems?

$$TSP = Min \left(C(V,t') + W(t', slowt) \right)$$

Writing a recurrence

• Now we just need the recurrence for minimum weight paths

$$C(S,t) = \begin{cases} \omega(\text{start}, t) & \text{if } S = \{\text{start}, t\} \\ \\ \min_{t' \in S} C(S - \{t\}, t') + \omega(t', t) \\ \\ t' \notin \{\text{start}, t\} \\ \end{cases}$$

Analyzing Runtime

Runtime of naïve solution: $\bigcirc (h !)$

DP solution:

$$2^{n}$$
 subsets
 n final vertices $\longrightarrow O(2^{n} \cdot n^{2})$
 $O(n)$ work per subpotten

Take-home messages

- Breaking a problem into subproblems is hard. Common patterns:
 - Can I use the <u>first k elements</u> of the input?
 - Can I <u>restrict an integer parameter (e.g., knapsack size</u>) to a smaller value?
 - On trees, can I solve the problem for each subtree? (Tree DP)
 - Can I solve the problem for a subset of the input (TSP)
 - Can I keep track of more information (start and end vertex in TSP)
- Try a "*clever brute force*" approach.
 - Make one decision at a time and recurse, then take the best thing that results.
 - Can think of this as memoized backtracking
- Complexity analysis is *often* just subproblems × time per subproblem
 - But sometimes its harder and we must do some more analysis