
15-451/651 Algorithm Design & Analysis, Fall 2024

Recitation #10

Objectives

• Understanding the analysis of Polytopes and their relevance to proofs of Integrality

• Understanding Approximation Algorithms and the technique of LP rounding

Recitation Problems

1. (Integrality of flows) In lecture we proved that given a graph G , the matching polytope MPG

defined by the constraints of the maximum matching problem always has integral vertices
if G is bipartite.

Let’s prove something more general. Recall that bipartite matching is really just a special
case of maximum flow, which is a special case of minimum-cost flows.

Prove that for any given flow network G , the flow polytope FPG defined by the LP constraints
of the maximum flow /minimum-cost flow problem has integral vertices.

Variables: fu ,v for each edge (u , v )

Objective: Maximize
∑

u∈V fs ,u −
∑

v∈V fv,s

Constraints:
0≤ fu ,v ≤ c (u , v )∀(u , v ) ∈ E (capacity)
∑

u∈V

fu ,v =
∑

w∈V

fv,w∀v ∈V \ {s , t } (flow conservation)

(a) Consider a feasible solution f = { fe } that contains at least one fractional value. Here
are some cases for the structure that the fractional values might appear in.

Case 1: There exists two u-v paths for some vertices u , v , with non-integral flows on
every edge.

Case 2: There exists only one s -t path with non-integral flows on every edge.

Case 3: There exists a cycle with non-integral flows on every edge.

Prove that in each of these cases, the solution is not a vertex of FPG .

Reminder: A vertex v of a polytope FPG has the following properties.

i. v ∈ FPG

ii. For any m ∈Rd with m ̸= 0, then at least one of v +m or v −m is not in FPG .
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(b) There is a problem with this proof. In any casing proof there is the assumption or jus-
tification that the cases are exhaustive. Without that justification, a counterexample
that fits in no case is good enough to disprove the proof. The previous proof has such
a counterexample:
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Modify the cases from the previous part to fix this counterexample (there does not
have to be a one to one mapping from old cases to new cases).

(c) Provide correct proofs that the new cases do not correspond to vertex solutions.
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2. (CMU Mandated Algorithms Problem) After Daniel leaves teaching, Jason cannot fathom
continuing teaching 451 alone and becomes a telecommunications networks expert.

He decides to tackle the problem of SONET ring loading, a classical problem in telecom-
munications networks and assigns you the following problem:

We have a cycle with n vertices, numbered 0 through n −1 clockwise around the cycle. We
are also given a set of requests. Each request is a pair (i , j )where i is the source vertex and j
the target vertex. The call can be routed either clockwise or counterclockwise through the
cycle. The objective is to route the calls so as to minimize the load (total number of uses)
of the most loaded edge of the cycle.

Write a linear program relaxation for the problem, and use it to give a 2-approximation
algorithm using a rounding argument. Remember that a linear program relaxation is an
LP such that if you could force some variables to be integers, you would solve the problem
exactly.
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(a) An intuitive start is have a variable Lk representing the load of an edge ek , and to min-
imize the maximum load over all edges. However, this objective:

minimize max
k

Lk

as presented is not a linear function of the variables. Come up with a way to have an
LP solver minimize the maximum load over all edges.

Hint: This might be more involved than just coming up with a new objective.

(b) Now that we have an objective function, let’s build the rest of the LP relaxation.

What are the variables of our LP, and what do they represent in regards to the original
problem?

(c) Finally, what are the constraints on these variables?

Hint: The hard constraint is the constraint for the load on an edge. Consider for a
given edge ek and a call (i , j ) when that edge will actually have load on it from that
call.
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(d) Now, using this LP relaxation, give an algorithm for routing each call and prove why
this gives a 2-approximation on the minimized maximum load.

3. (Client Commissions) Fed up with 451 students forgetting about how cool flow networks
are as soon as they learn about LPs, Daniel decides to quit his job and become a freelance
painter. For each commission i Daniel receives, it has an order time oi , a painting time pi

and a finish time Ti . He wants to minimize
∑

i Ti .

Note: this metric retains information about order, while maxi Ti does not.

However, haunted by knowledge from his old life as an Algorithms professor, Daniel realizes
that this problem is NP-hard, and asks you for help finding a 2-approximation in poly-time
for the following relaxation:

An "unrestricted" schedule is a schedule where Daniel can stop working on one commis-
sion in the middle of painting and resume from where he left off later. We can compute the
optimal unrestricted schedule in polynomial time1.

Let T ′i be the time at which commission i is completed in the optimal unrestricted sched-
ule.

1In fact, you can do it greedily. At any time, process the job with shortest remaining processing time. This is
called the shortest remaining processing time (SRPT) rule. Try to show why this is optimal.
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(a) Scheduling with "unrestricted" schedules is a relaxation of scheduling in general. In
other words, any valid "restricted" schedule is also a valid "unrestricted" schedule.
Note that this is only in one direction. It isn’t true that a valid "unrestricted" schedule
can be turned into a "restricted" schedule. What does this imply about the relation-
ship (=, ≤, or ≥) between

∑

i T ′i and O P T ?
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(b) For the following parts we will use a new indexing scheme. Let commission j be the
j t h commission that the unrestricted schedule finishes. Prove the following:

T ′j ≥
j

max
k=1

ok

T ′j ≥
j
∑

k=1

pk
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(c) Suppose that the restricted schedule finishes commissions in the exact same order as
the unrestricted schedule. Show that Tj ≤ 2T ′j , i.e. the j t h finished commission fin-

ishes at a time no greater than two times the finish time of the j t h finished commis-
sion in the unrestricted schedule. Conclude that the restricted schedule is a 2-approx
of O P T .
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