
1

Epilogue

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2015

Lecture 27 Apr 29, 2015 Carnegie Mellon University

We Had Some Lectures

1. Solving Recurrences
2. Karatsuba/Strassen
3. FFT
4. DP I
5. DP II
6. Amortized Analysis
7. Splay Trees
8. Biconnected Graphs
9. Tarjan's SCC
10. Arborescences
11. Blossom Algorithm
12. Max Flow
13. Min Cost Max Flow

14. Fibonacci Heaps
15. Computational Geometry I
16. Computational Geometry II
17. Voronoi Diagrams
18. Linear Programming I
19. Linear Programming II
20. NP-Completeness
21. Approximation Algorithms
22. Online Algorithms
23. Randomized Online Algorithms
24. String Matching
25. Suffix Trees
26. Lowest Common Ancestor
27. Epilogue

#1. Solving Recurrences

Tree method:
 f(n) T(n/b)a T(n) 

 f(n/b)

f(n/b2)

 f(n)

 f(n/b)

a calls

…

f(n/b2) f(n/b2) f(n/b2) … …

a calls
a calls

height
log b n

Leaves, Q(1)

 (1) T(1) Q

#1. Solving Recurrences

The Akra-Bazzi generalization:
(did not cover)

 (1) T(1) Q

 f(x) x) T(ba T(x)
n

1k
kk 



#2. Karatsuba’s Algorithm

Fast Integer multiplication: Q(n1.58)

3-way splitting: Q(n1.46)

k-way splitting:) (n 1)(2klog k 
Q

ε1
k ln

1/k)-ln(2
1

k ln

1)ln(2k
1)(2klogk 




#2. Strassen’s Algorithm

For 2 x 2 matrices

s1 = (a12-a22) (b21+b22)
s2 = (a11+a22) (b11+b22)
s3 = (a11-a21) (b11+b12)
s4 = (a11+a12) b22

s5 = a11 (b12-b22)
s6 = a22 (b21-b11)
s7 = (a21+a22) b11

Θ(nlog 7) = Θ(n2.807).































753276

546421

2221

1211

2221

1211

ssssss

ssssss

bb

bb

aa

aa

2

#3. FFT

O(n log n)

O(n)

O(n log n)

To compute the product A(x)B(x) of polynomials
(of order n)

1) evaluate A(x) and B(x) at (2n+1) roots of unity,

using the Vandermonde matrix

2) multiply A(xk)B(xk),

3) then find the polynomial using Lagrange’s
interpolation via the Vandermonde matrix

#4-5. Dynamic Programming

Basic Steps of DP

1. Define subproblems.
2. Write the recurrence relation.
3. Prove that an algorithm is correct.
4. Compute its runtime complexity.

Examples:
The Longest Common Subsequence
The Knapsack Problem
The Matrix product
The Optimal BST
The Bellman-Ford algorithm
The Floyd-Warshall algorithm

#6. Amortized Analysis

Potential function Φ: sk R

Define the amortized cost aci of operation σi by

aci = ci + Φ(si) – Φ(si-1)

Consider a sequence of n operations σ1, σ2, . . . on
the data structure. Let the sequence of states
through which the data structure passes be s0, s1, ... ,
and let the cost of operation σi be ci.

#7. Splay Trees

Potential function

BST with the splaying rules (zig, zig-zig and zig-zag)

  log(s(x)) r(x) Φ(T)
TxTx





where s(x) = # nodes in subtree rooted at x.

Access lemma: AC(splaying x to root t) ≤ 3(r(t)-r(x))+1

Cor.: AC(splaying x to root t) ≤ 3 log n +1

If T is a linked list:
  logn) Θ(n k log Φ(T)

n

1k





If T is balanced, of height H

  Θ(n))Θ(2 1)-log(2 2 Φ(T)
H

0k

Hk1-Hk 




#8. Application of DFS

Tree edges - are edges in the DFS

Classification of Edges:

Forward edges – edges (u,v) connecting u to a
descendant v in a depth-first tree

Back edges – edges (u,v) connecting u to an
ancestor v in a depth-first tree

 Cross edges – all other edges

#8. Biconnected Graphs

A vertex is an articulation point if its removal
(with edges) disconnect a graph.

A connected graph is biconnected if it has no
articulation points.

For each vertex we store two indexes. One is the
counter of nodes we have visited so far dfs[v].
Second - the back index low[v].

low[v] is the DFS number of the lowest numbered
vertex x (i.e. highest in the tree) such that there
is a back edge from some descendent of v to x.

3

#9. Strongly Connected Components

Def. A vertex is called a base if it has the
lowest dfs number in the SCC.

Def. low[v] is the smallest dfs-number of a
vertex reachable by a back edge from the
subtree of v.

Trace the differences between SCC and
biconnected algorithms.

#9. APSP: Johnson’s algorithm

Algorithm:
- Reweight the graph, so all weights are
nonnegative (by running Bellman-Ford’s from a
newly created vertex)
- Run Dijkstra’s on all vertices

Complexity: O(V E + V E log V)

It improves the runtime only when a graph has
negative weights.

#10. Arborescences

The Minimum Spanning Tree for Directed Graphs

Def. Given a digraph G = (V, E) and a vertex r∈V,
an arborescence (rooted at r) is a tree T s.t.
・T is a spanning tree of G if we ignore the

direction of edges.
・There is a directed unique path in T from r to

each other node v ∈ V.

Given a digraph G with a root node r and with a
cost on each edge, compute an arborescence
rooted at r of minimum cost.

The Algorithm
For each v≠r compute δ(v) – the mincost of edges entering v.

For each v≠r compute w*(u, v) = w(u, v) – δ(v).

For each v≠r choose 0-cost edge entering v.

Let us call this subset of edges T.

If T forms an arborescence, we are done.

else

Contract every cycle C to a supernode

Repeat the algorithm

Extend an arborescence by adding all but one edge of C.

Return

#11. Blossom Algorithm

A maximum matching in an undirected graph

The approach is to search for an augmenting path.
If one exists, we increase the size of current
matching, o.w. ???

The algorithm finds either such a path or a
blossom (cycle). Runtime O(n2 m).

If we find a blossom, we contract the graph and
continue.

The algorithm constructs a series of BFS layers:
the edges from an even layer are unmatched, and
the edges from an odd layer are all matched.

#12. Max Flow

Given a directed graph with edge capacities
c(u,v) ≥ 0 if (u,v)  E
c(u,v) = 0 if (u,v) E

s is the source and t is a sink

Goal: push a max flow f(u,v) from s to t such that
 1) f(u, v) ≤ c(u, v)
 2) f(u, v) = - f(v, u)
 3) at a vertex V-{s, t}: flow-in = flow-out

4

Network: G = (V, E) and flow f.

Residual capacity: cf(u,v) = c(u,v) – f(u,v).

Residual graph: Gf(V, Ef), where

 Ef = {(u,v)V2 | cf(u,v) > 0}

Residual Network

u

Flow 6
Cap 10

v u

Cap 4

v

Cap 6

G Gf

cf(u,v)=10-6=4

cf(v,u)=0-f(v,u)=f(u,v)=6

The Ford-Fulkerson Algorithm

Given (G, s, t, c)
1) Start with |f|=0, so f(e)=0
2) Find an s-t path in Gf

3) Augment the flow along this path
4) Repeat until you stuck

Runtime: O(|f|(E+V))

#13. Min Cost Max Flow

a c

20 10

10 20

30





Ee

c(e) f(e)|f|

$ $

$
$

$

b

d
Each edge has a capacity w(e)≥0

Each edge has a cost c(e)≥0 per unit flow.

The cost of flow is given by

 The goal is to find the minimum cost flow

Residual Network:
wf(u,v) = w(u,v) – f(u,v)
If (v, u) ∈ E and (u, v) ∈ Ef then c(u, v) = −c(v, u) .

Algorithm 1 (cycle canceling)

Given (G, s, t, w, c)
1) Find a max-flow ignoring cost (Ford-Fulkerson)
2) Construct Gf

3) Search Gf for a negative cost cycle (Bellman-Ford)
4) If  neg. cost cycle ⇒ done!
5) If  neg. cost cycle ⇒ push a flow around.
6) Go to 2).

Runtime: O(V E2 capmax costmax)

#14. Fibonacci Heaps

A binomial heap is a
collection of binomial
trees in increasing
order of size where
each tree has a heap
property.

15

9 3

6 12 12 10

8

23

14 17 11 20

Binomial Heaps

In order to store n objects, a binomial heap
requires at most log n binomial trees.
1110 = 10112 , thus we use B3, B1 and B0

#14. Fibonacci Heaps - merging

5

#14. Fibonacci Heaps - merging #14. Fibonacci Heaps - decreaseKey

We want it in O(1) time and deleteMin in O(log n).

Simple but wrong: take the node you want to
decrease, and change its key, and disconnect it and
its entire subtree from where it is, and attach it to
the tree root list. This may result in O(n) for
deleteMin.

Fredman-Tarjan marking algorithm, by implementing
cut(k) function.

Theorem: Fibonacci heaps use O(1) amortized time
for makeheap, insert, meld, and decreasekey. They
use O(log n) amortized time for deletemin..

#15. Computing the Convex Hull

Given a set S = {p1, p2, …, pN} of points in the plane,
the convex hull CH(S) is the smallest convex polygon
in the plane that contains all of the points of S.

Convex Hull cannot be
computed faster than

O(n log n)

in the worst-case

Graham's Scan

This was the first algorithm that showed

convex hull computation in O(n log n) time.

Interesting, the algorithm has no obvious extension

to three dimensions…

Graham’s Scan

Take starting point p0 to be bottom-most point

Connect it to all points and sort by angle wrt p0.

Iterate over points in order

• If the next point forms a “left turn” with
the previous two, add it to the list and
continue

• If “right turn”, remove the previous points
until the angle becomes a left turn

It selects the point P1 with
the least angle.
Then connect P1 to P2 &
from P2 to P3

Graham’s Scan

At this step, it realizes
that it takes a right turn,
so it backtracks and
selects P1 P3

6

#16. Closest Pair

Given n points in the plane,
find the pair of points that
is the closest together.

Divide and Conquer
Algorithm:

the closest pair is either
within the left half, within
the right half, or it has
one endpoint in the left
half and one in the right
half.

#16. Closest Pair

Randomized Algorithm:

Randomly permute the points.

Call the new ordering p1, p2, . . . , pn.

G = Makegrid(p1, p2)

for i = 3 to n do

 r = Insert(G, pi)

done

return r

A grid of size r=|p1-p2|

Inserts pi into the grid
returns a new grid size by
checking 9 x 4 =36 points
at most

#17. Voronoi Diagrams

Given a set of (points in
the plane, s1, s2, . . . sn

The Voronoi diagram
partitions the plane into
regions where the region
associated with si is the
set of points in the plane
that are closer to si than
any other.

#17. Delaunay Triangulations
A triangulation is a way of
partitioning the convex
hull of the points into
triangles, where the
vertices of the triangles
are those points.

There are several ways by which to triangulate any
given set of points:
AB is an edge of the Delaunay triangulation iff
there is a circle passing through A and B so that all
other points lie outside the circle.

Assuming no four sites are co-circular, then the
Deleunay triangulation is unique.

#17. Voronoi and Delaunay

The Delaunay triangulation is the “dual” of the
Voronoi diagram.

Given a Delaunay triangulation for a set of points
we can compute the Voronoi diagram in O(n) time.
And conversely.

We discussed two algorithms to compute the
Delaunay triangulation:
- 3D convex hull
- divide and conquer

#18-19. Linear Programming

Given:

n variables x1, x2, …, xn

m linear constraints, 3x1 + 4x2 ≤ 6, 0 ≤ x3 ≤ 3 etc.

linear objective function, 3x1+x2+5x3

Goal:

Find values for x1, x2, …, xn that satisfy constraints
(feasible) and maximize the objective function.

Standard Form: max cTx
 Ax ≤ b

 x ≥ 0

If there is no max,
it’s unbounded.

7

#18-19. Linear Programming

Modeling Max Flow:

variables: one for each edge Xuv (a flow on that edge)

constraints: 0 ≤ Xuv ≤ c(u,v) and flow conservation

objective: max XX
u

tu
u

ut  

Modeling Min Cost Max Flow:

Solve the max flow ignoring the cost.

Add a new constraint flow=max and minimize the cost
function.

The best algorithm : O(n3.5 L) in L input bits
which is not strongly polynomial

#18-19. Linear Programming

Modeling Dijkstra’s algorithm:

variables: one for each vertex dsv (a distance from
the source s to vertex v)

constraints: dsk ≤ dsi + wik , dss=0

objective: max dst (max the dist. to the target)

The dual is min-cost max-flow:

variables: the flow on each edge fuv

capacities are all 1s

costs are duv

#18-19. Integer Programming

Modeling MST:

variables: one for each edge Xe{0,1}

constraints: it must be a tree

1) with V-1 edges

2) (no cycles) for any subset S of edges

objective: min

1|V|X
Ee

e 


1|S| X
Se

e 



Ee

ee X w

This is an exponential size IP.

#18-19. 2D-LP

We solve LP with 2 variables and m constraints in O(m)

Each constraint is a line (half-space), we are to find a
point which is farthest in the given direction.

We make the following simplifications

- no constraint lines are normal to c

- we know a bounding box of the feasible region

Read the details of Seidel’s algorithm…

The algorithm works in any fixed dimension.

#20. P vs. NP
P : a set of all languages L s.t.  a polynomial time

algorithm that decides on L

NP : a set of all languages L s.t.  a polynomial time

algorithm that verify xL.

Mapping reduction A ≤p B :

1. f is a polynomial time computable

2. x∈A if and only if f(x)∈B.

NP-hard = { L  {0, 1}*  X  NP and X ≤p L}

NP-complete iff
1) L  NP
2) L  NP-hard

Cook-Levin Theorem:
SAT is NP-complete

#20. P vs. NP

NP

P

NP-complete

NP-hard

8

#20. P vs. NP

A recipe for proving any L  NP-complete:

1) Prove L  NP

2) Choose A  NPC and reduce it to L

2.1) Describe mapping f:A -> L

2.2) Prove x  A iff f(x)  L

2.3) Prove f is polynomial

#21. Approximation Algorithms

Suppose we are given an NP-complete problem to solve.
Can we develop polynomial-time algorithms that always
produce a “good enough" solution?

Let P be a minimization problem, and I be an instance of P.
Let ALG(I) be a solution returned by an algorithm, and let
OPT(I) be an optimal solution. Then ALG(I) is said to be a
c-approximation algorithm, if for I, ALG(I) ≤ c ∙ OPT(I).

Examples: Vertex Cover, Metric TSP.

Problems can be categorized to the best accuracy achieved
by an approximation algorithm.

For some optimization problems, the approximation
algorithms are unlikely to be possible. It is NP-hard to
approximate them.

#22. Online Algorithms

The input can even be generated
by an adversary that creates new
input portions based on the system’s
reactions to previous ones. We seek
algorithms that have a provably good
performance.

Algorithms which have to make their
decisions gradually as data arrives
are called online algorithms.

Online Algorithms
Formally, an online algorithm receives a sequence
of requests σ1, σ2, . . . , σm.

Serving requests incurs cost and the goal is to
minimize the total cost paid on the entire request
sequence.

When serving request σk, an online algorithm
does not know requests σj with j > k.

An ALG is c-competitive, if δ, that I

CALG (I) ≤ c∙ COPT (I) + δ

Let COPT be the optimum cost of offline algorithm,
and CALG – the cost of online algorithm, then

#23. Randomized Online Algorithms

Intuition: we do better by going random!

Paging problem:
 n pages in slow memory
 k<n pages in fast memory

The algorithm must ensure that each requested
page is in fast memory. Each time a page is
moved into fast memory a cost of 1 is incurred.
When a request is processed if the requested
page is already in fast memory, cost = 0. OW, it
must be moved into fast memory, and a page that
is in fast memory must be "evicted" to make
room for it.

#23. Randomized Online Algorithms

Paging Algorithms:
LRU (Least Recently Used)
LFG (Longest Forward Distance)

Cat and Mouse Game…

Claim: Randomized competitive ratio for Marking
is O(log N)

9

#24. String Matching

The KMP Algorithm:

pattern to the text in left-to-right, but shifts
the pattern more intelligently than the brute-
force algorithm.

When a mismatch occurs, what is the most we
can shift the pattern so as to avoid redundant
comparisons?

Theorem: At most 2N comparisons in total

KMP

How much can a string overlap with itself
at each position?

Compute the length of the longest prefix
of P that is a proper suffix of P.

a b a b b

0 0 1 2 0

It determines where to go whenever
there is a mismatch in the next letter.

Failure Function

Consider all prefixes w[] of a pattern, define

 [k] = max(j<k | w[j] is a suffix w[k])

[k] is called a failure function, since it represents
only backward transitions, in other words, it
determines where to go whenever there is a
mismatch in the next letter.

“aabaaab”,

“aabaab”,

“aaabaabaaa”,

 = {0, 1, 0, 1, 2, 3}

 = {0, 1, 0, 1, 2, 2, 3}

 = {0,1,2,0,1,2,0,1,2,3}

#24. String Matching:

The Rabin-Karp Algorithm

We do not match a string against a given
pattern, but rather compare their hash codes.

Theorem.

There's a pattern of length M and a text of

length N. Pick a random prime  [2,…, M N2].

The probability of getting a false match

anywhere in the string is at most 2.53/N.

Rabin-Karp formalized

Let P[1 ... m] be a pattern and T[1 ... n] be a
text. We define a pattern

P = 10m-1 P[1] + 10 P[m-1] + … + P[m]

and a shift in the text:

ts = 10m-1T[s+1] + 10 T[s+m-1] + … + T[s+m]

The value ts+1 can be obtained from ts by

ts+1 = (ts - 10m-1T[s+1]) 10 + T[s+m+1]

#25. Suffix Trees

A trie is a data structure for storing a set of strings.

Each edge of the tree is labeled with a character.

Each node then implicitly represents a certain
string of characters.

So to determine if a pattern occurs in our set we
simply traverse down from the root of the tree one
character at a time until we either (1) walk off the
bottom of the tree, or (2) we stop at some node.

10

sells sea shells by the sea shore

b

y

s t

 e

a l

l$

s

h

e$

l

l$

s

o

r

e

h

e

sentinel

#25. Suffix Trees

A suffix tree is a trie that stores all suffixes
terminated by a special character.

The space to store this data structure could be
as large as O(n2).

Note, no string occurs as a prefix of any other

but we can get it down to O(n) by setting pointers
to each substring.

Building suffix tree: can be done in linear time,
Ukkonen’s algorithm, though it was not discussed
in lecture.

#26. Suffix Trees
Longest Common Substring:
Given two strings a and b, what is the longest
substring that occurs in both of them?

Construct a new string s = a%b.
Now construct the suffix tree for s.
Every leaf of the suffix tree represents a suffix
that begins in a or in b.

Mark every internal node with two bits: where each
bit indicates where a suffix starts.

Now take the deepest node in the suffix tree that
has both marks. This tells you the longest common
substring.

#26. Lowest Common Ancestor

Given a rooted tree T and two nodes u and v,
find the furthest node from the root that is
an ancestor for both u and v.

It has been shown how to use RMQ (Range Min
Query) for computing LCA.

LCA can be reduced to RMQ in linear time, so
every algorithm that solves the RMQ problem
will solve the LCA problem too.

#26. Range Min Query

Given an array, find the position of the item
with the min value between two given indices.

Brute Force: for each {i,j} store its RMQ value.

Brute Force: O(n3) to build that new table

DP: O(n2) to build that table

#26. Range Min Query

Sparse Table Algorithm: O(n log n) to build the table

We will keep an array M[0, n-1][0,log n] where M[i][j]
is the index of the minimum value in the sub array
starting at i having length 2j.

We do this preprocessing using DP.

To calculate RMQA(i, j) we take two blocks: one
starting at i to the right, another, from j to the left,
and find the min.

1)ilog(jk where
1][k]2M[j

M[i][k]
minj)(i,RMQ kA 








