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4. DP I 
5. DP II 
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8. Biconnected Graphs 
9. Tarjan's SCC 
10. Arborescences 
11. Blossom Algorithm 
12. Max Flow 
13. Min Cost Max Flow 

14. Fibonacci Heaps 
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17. Voronoi Diagrams  
18. Linear Programming I 
19. Linear Programming II 
20. NP-Completeness 
21. Approximation Algorithms 
22. Online Algorithms 
23. Randomized Online Algorithms 
24. String Matching 
25. Suffix Trees  
26. Lowest Common Ancestor 
27. Epilogue 

 
 
 
 

#1. Solving Recurrences 

Tree method: 
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#1. Solving Recurrences 

The Akra-Bazzi generalization: 
(did not cover) 

 (1)  T(1) Q
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#2. Karatsuba’s Algorithm 

Fast Integer multiplication: Q(n1.58) 

3-way splitting: Q(n1.46) 

k-way splitting: ) (n 1)(2klog k 
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#2. Strassen’s Algorithm 

For 2 x 2 matrices 

s1 = (a12-a22) (b21+b22) 
s2 = (a11+a22) (b11+b22) 
s3 = (a11-a21) (b11+b12) 
s4 = (a11+a12) b22 

s5 = a11 (b12-b22) 
s6 = a22 (b21-b11) 
s7 = (a21+a22) b11 

Θ(nlog 7) = Θ(n2.807). 
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#3. FFT 

O(n log n) 

O(n) 

O(n log n) 

To compute the product A(x)B(x) of polynomials 
(of order n) 

 
1) evaluate A(x) and B(x) at (2n+1) roots of unity, 

using the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the Vandermonde matrix 

#4-5. Dynamic Programming 

Basic Steps of DP 

1. Define subproblems. 
2. Write the recurrence relation. 
3. Prove that an algorithm is correct. 
4. Compute its runtime complexity. 

Examples: 
The Longest Common Subsequence 
The Knapsack Problem  
The Matrix product 
The Optimal BST 
The Bellman-Ford algorithm 
The Floyd-Warshall algorithm 

#6. Amortized Analysis 

Potential function Φ: sk R 

Define the amortized cost aci of operation σi by  
 

aci = ci + Φ(si) – Φ(si-1) 

Consider a sequence of n operations σ1, σ2, . . .  on  
the data structure. Let the sequence of states  
through which the data structure passes be s0, s1, ... , 
and let the cost of operation σi be ci.  

#7. Splay Trees 

Potential function 

BST with the splaying rules (zig, zig-zig and zig-zag) 

   log(s(x)) r(x)  Φ(T)
TxTx





where s(x) = # nodes in subtree rooted at x. 

Access lemma: AC(splaying x to root t) ≤ 3(r(t)-r(x))+1 

Cor.: AC(splaying x to root t) ≤ 3 log n +1 

If T is a linked list:  
     logn) Θ(n  k log  Φ(T)

n

1k





If T is balanced, of height H 

    Θ(n))Θ(2 1)-log(2 2  Φ(T)
H

0k

Hk1-Hk 




#8. Application of DFS 

Tree edges -  are edges in the DFS 

 

Classification of Edges: 

Forward edges – edges (u,v) connecting u to a 
descendant v in a depth-first tree 

Back edges – edges (u,v) connecting u to an 
ancestor v in a depth-first tree 

 Cross edges – all other edges 

#8. Biconnected Graphs 

A vertex is an articulation point if its removal  
(with edges) disconnect a graph. 

A connected graph is biconnected if it has no 
articulation points. 

For each vertex we store two indexes. One is the 
counter of nodes we have visited so far dfs[v]. 
Second - the back index low[v]. 

low[v] is the DFS number of the lowest numbered 
vertex x (i.e. highest in the tree) such that there 
is a back edge from some descendent of v to x. 
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#9. Strongly Connected Components 

Def.  A vertex is called a base if it has the 
lowest dfs number in the SCC. 

Def.  low[v] is the smallest dfs-number of a 
vertex reachable by a back edge from the 
subtree of v. 

Trace the differences between  SCC and 
biconnected algorithms. 

#9. APSP: Johnson’s algorithm 

 

Algorithm: 
- Reweight the graph, so all weights are 
nonnegative (by running Bellman-Ford’s from a 
newly created vertex)  
- Run Dijkstra’s on all vertices 

 

Complexity: O(V E + V E log V) 

It improves the runtime only when a graph has 
negative weights. 

#10. Arborescences 

The Minimum Spanning Tree for Directed Graphs 

Def.  Given a digraph G = (V, E) and a vertex r∈V, 
an arborescence (rooted at r) is a tree T s.t. 
・T is a spanning tree of G if we ignore the 

direction of edges. 
・There is a directed unique path in T from r to 

each other node v ∈ V. 

Given a digraph G with a root node r and with a 
cost on each edge, compute an arborescence 
rooted at r of minimum cost. 

The Algorithm 
For each v≠r compute δ(v) – the mincost of edges entering v.  

For each v≠r compute w*(u, v) = w(u, v) – δ(v).  

For each v≠r choose 0-cost edge entering v. 

Let us call this subset of edges T. 

If T forms an arborescence, we are done. 

else 

Contract every cycle C to a supernode  

Repeat the algorithm  

Extend  an arborescence by adding all but one edge of C. 

Return 

#11. Blossom Algorithm 

A maximum matching in an undirected graph 

The approach is to search for an augmenting path. 
If one exists, we increase the size of current 
matching, o.w. ??? 

The algorithm finds either such a path or a 
blossom (cycle). Runtime O(n2 m). 

If we find a blossom, we contract the graph and 
continue. 

The algorithm constructs a series of BFS layers: 
the edges from an even layer are unmatched, and 
the edges from an odd layer are all matched. 

#12. Max Flow 

Given a directed graph with edge capacities  
c(u,v) ≥ 0 if (u,v)  E 
c(u,v) = 0 if (u,v) E 

s is the source and t is a sink 

Goal: push a max flow f(u,v) from s to t such that 
 1) f(u, v) ≤ c(u, v) 
 2) f(u, v) = - f(v, u) 
 3) at a vertex V-{s, t}: flow-in = flow-out 
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Network: G = (V, E) and flow f. 

Residual capacity: cf(u,v) = c(u,v) – f(u,v). 

Residual graph: Gf(V, Ef), where  

      Ef = {(u,v)V2 | cf(u,v) > 0} 

Residual Network 

u 

Flow 6 
Cap 10 

v u 

Cap 4 

v 

Cap 6 

G Gf 

cf(u,v)=10-6=4 

cf(v,u)=0-f(v,u)=f(u,v)=6 

The Ford-Fulkerson Algorithm 

Given (G, s, t, c) 
1) Start with |f|=0, so f(e)=0 
2) Find an s-t path in Gf 

3) Augment the flow along this path 
4) Repeat until you stuck 

  

Runtime: O(|f|(E+V))  

#13. Min Cost Max Flow 
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Each edge has a capacity w(e)≥0 

Each edge has a cost c(e)≥0 per unit flow. 

The cost of flow is given by 

 The goal is to find the minimum cost flow 

Residual Network: 
wf(u,v) = w(u,v) – f(u,v) 
If (v, u) ∈ E and (u, v) ∈ Ef then c(u, v) = −c(v, u) . 

Algorithm 1 (cycle canceling) 

Given (G, s, t, w, c) 
1) Find a max-flow ignoring cost (Ford-Fulkerson) 
2) Construct Gf 

3) Search Gf for a negative cost cycle (Bellman-Ford) 
4) If  neg. cost cycle ⇒ done! 
5) If  neg. cost cycle ⇒ push a flow around. 
6) Go to 2). 

  

Runtime: O(V E2 capmax costmax) 

#14. Fibonacci Heaps 

A binomial heap is a 
collection of binomial 
trees in increasing 
order of size where 
each tree has a heap 
property. 

15 

9 3 

6 12 12 10 

8 

23 

14 17 11 20 

Binomial Heaps 
 

In order to store n objects, a binomial heap 
requires at most log n binomial trees. 
1110 = 10112  , thus we  use B3, B1 and B0 

#14. Fibonacci Heaps - merging 
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#14. Fibonacci Heaps - merging #14. Fibonacci Heaps - decreaseKey 

We want it in O(1) time and deleteMin in O(log n). 

Simple but wrong: take the node you want to 
decrease, and change its key, and disconnect it and 
its entire subtree from where it is, and attach it to 
the tree root list. This may result in O(n) for 
deleteMin. 

Fredman-Tarjan marking algorithm, by implementing 
cut(k) function. 

Theorem: Fibonacci heaps use O(1) amortized time 
for makeheap, insert, meld, and decreasekey. They 
use O(log n) amortized time for deletemin.. 

#15. Computing the Convex Hull 

Given a set S = {p1, p2, …, pN} of points in the plane, 
the convex hull CH(S) is the smallest convex polygon 
in the plane that contains all of the points of S. 

Convex Hull cannot be 
computed faster than 

O(n log n)  

in the worst-case 

Graham's Scan 

This was the first algorithm that showed  

convex hull computation in O(n log n) time. 

 

Interesting, the algorithm has no obvious extension  

to three dimensions… 

Graham’s Scan 

Take starting point p0 to be bottom-most point 

Connect it to all points and sort by angle wrt p0. 

Iterate over points in order 

• If the next point forms a “left turn” with 
the previous two, add it to the list and 
continue 

• If “right turn”, remove the previous points 
until the angle becomes a left turn 

It selects the point P1 with  
the least angle. 
Then  connect P1 to P2 &  
from P2 to P3  

Graham’s Scan 

 

At this step, it realizes  
that it takes a right turn,  
so it backtracks and  
selects  P1 P3  
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#16. Closest Pair 

Given n points in the plane, 
find the pair of points that 
is the closest together. 

Divide and Conquer 
Algorithm: 

the closest pair is either 
within the left half, within 
the right half, or it has 
one endpoint in the left 
half and one in the right 
half.  

#16. Closest Pair 

Randomized Algorithm: 

Randomly permute the points.  

Call the new ordering p1, p2, . . . , pn.  

G = Makegrid(p1, p2)  

for i = 3 to n do  

     r = Insert(G, pi)  

done  

return r 

A grid of size r=|p1-p2| 

Inserts pi into the grid 
returns a new grid size by 
checking 9 x 4 =36 points 
at most 

#17. Voronoi Diagrams  

Given a set of (points in 
the plane, s1, s2, . . . sn  

 

The Voronoi diagram 
partitions the plane into 
regions where the region 
associated with si is the 
set of points in the plane 
that are closer to si than 
any other.  

#17. Delaunay Triangulations  
A triangulation is a way of 
partitioning the convex 
hull of the points into 
triangles, where the 
vertices of the triangles 
are those points. 

There are several ways by which to triangulate any 
given set of points: 
AB is an edge of the Delaunay triangulation iff 
there is a circle passing through A and B so that all 
other points lie outside the circle. 

Assuming no four sites are co-circular, then the 
Deleunay triangulation is unique. 

#17. Voronoi and Delaunay   

The Delaunay triangulation is the “dual” of the 
Voronoi diagram. 

Given a Delaunay triangulation for a set of points 
we can compute the Voronoi diagram in O(n) time. 
And conversely. 

We discussed two algorithms to compute the 
Delaunay triangulation: 
- 3D convex hull 
- divide and conquer 

#18-19. Linear Programming  

Given: 

n variables x1, x2, …, xn 

m linear constraints, 3x1 + 4x2 ≤ 6, 0 ≤ x3 ≤ 3 etc. 

linear objective function, 3x1+x2+5x3  

Goal: 

Find values for x1, x2, …, xn that satisfy constraints 
(feasible) and maximize the objective function.  

Standard Form:     max cTx 
                    Ax ≤ b 

                  x ≥ 0 

If there is no max, 
it’s unbounded. 
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#18-19. Linear Programming  

Modeling Max Flow: 

variables: one for each edge Xuv (a flow on that edge) 

constraints: 0 ≤ Xuv ≤ c(u,v) and flow conservation 

objective: max  XX
u

tu
u

ut  

Modeling Min Cost Max Flow: 

Solve the max flow ignoring the cost. 

Add a new constraint flow=max and minimize the cost 
function. 

The best algorithm : O(n3.5 L) in L input bits 
which is not strongly polynomial 

#18-19. Linear Programming  

Modeling Dijkstra’s algorithm: 

variables: one for each vertex dsv (a distance from 
the source s to vertex v) 

constraints: dsk ≤  dsi + wik , dss=0 

objective: max dst (max the dist. to the target) 

The dual is min-cost max-flow: 

variables: the flow on each edge fuv 

capacities are all 1s 

costs are duv 

#18-19. Integer Programming  

Modeling MST: 

variables: one for each edge Xe{0,1} 

constraints: it must be a tree 

 

1) with V-1 edges 

 

2) (no cycles) for any subset S of edges 

 

objective: min  

1|V|X
Ee

e 


1|S| X
Se

e 



Ee

ee X w

This is an exponential size IP. 

#18-19.  2D-LP  

We solve LP with 2 variables and m constraints in O(m) 

Each constraint is a line (half-space), we are to find a 
point which is farthest in the given direction. 

We make the following simplifications 

- no constraint lines are normal to c 

- we know a bounding box of the feasible region 

Read the details of Seidel’s algorithm… 

The algorithm works in any fixed dimension.  

#20. P vs. NP 
P : a set of all languages L s.t.  a polynomial time  

algorithm that decides on L 

NP : a set of all languages L s.t.  a polynomial time  

algorithm that verify xL. 

Mapping reduction A ≤p B :  

1. f is a polynomial time computable  

2. x∈A if and only if f(x)∈B. 

NP-hard = { L  {0, 1}*  X  NP and X ≤p L} 

NP-complete iff 
1)  L  NP 
2) L  NP-hard 

Cook-Levin Theorem:   
SAT is NP-complete 

#20. P vs. NP 

NP 

P 

NP-complete 

NP-hard 
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#20. P vs. NP 

A recipe for proving any L  NP-complete: 

1) Prove L  NP 

2) Choose A  NPC and reduce it to L 

2.1) Describe mapping f:A -> L 

2.2) Prove x  A iff f(x)  L  

2.3) Prove f is polynomial 

#21. Approximation Algorithms 

Suppose we are given an NP-complete problem to solve. 
Can we develop polynomial-time algorithms that always 
produce a “good enough" solution? 

Let P be a minimization problem, and I be an instance of P. 
Let ALG(I) be a solution returned by an algorithm, and let 
OPT(I) be an optimal solution. Then ALG(I) is said to be a  
c-approximation algorithm, if for I, ALG(I) ≤ c ∙ OPT(I). 

Examples: Vertex Cover, Metric TSP. 

Problems can be categorized to the best accuracy achieved 
by an approximation algorithm. 

For some optimization problems, the approximation 
algorithms are unlikely to be possible. It is NP-hard to 
approximate them. 

#22.  Online Algorithms   

The input can even be generated  
by an adversary  that creates new  
input portions based on the system’s 
reactions to previous ones. We seek  
algorithms that have a provably good 
performance. 

Algorithms which have to make their  
decisions gradually as data arrives  
are called  online algorithms. 

Online Algorithms 
Formally, an online algorithm receives a sequence 
of requests  σ1, σ2, . . . , σm. 

Serving requests incurs cost and the goal is to  
minimize the total cost paid on the entire request 
sequence.  

When serving request σk, an online algorithm  
does not know requests σj with j > k.  

An ALG is c-competitive, if δ, that I   

CALG (I) ≤ c∙ COPT (I) + δ  

Let COPT be the optimum cost of offline algorithm,  
and CALG – the cost of online algorithm, then 

#23.  Randomized Online Algorithms   

Intuition: we do better by going random! 

Paging problem: 
   n pages in slow memory 
   k<n pages in fast memory 

The algorithm must ensure that each requested 
page is in fast memory. Each time a page is 
moved into fast memory a cost of 1 is incurred. 
When a request is processed if the requested 
page is already in fast memory, cost = 0. OW, it 
must be moved into fast memory, and a page that 
is in fast memory must be "evicted" to make 
room for it. 

#23.  Randomized Online Algorithms   

Paging Algorithms: 
LRU (Least Recently Used) 
LFG (Longest Forward Distance) 

Cat and Mouse Game… 

Claim: Randomized competitive ratio for Marking 
is O(log N) 
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#24.   String Matching  

The KMP Algorithm:  
 
pattern to the text in left-to-right, but shifts 
the pattern more intelligently than the brute-
force algorithm.  
 
When a mismatch occurs, what is the most we 
can shift the pattern so as to avoid redundant 
comparisons? 
 

Theorem: At most 2N comparisons  in total 

KMP 

How much can a string overlap with itself 
at each position? 
 
 
 
 
 
Compute the length of the longest prefix 
of P that is a proper suffix of P. 
 

a b a b b 

0 0 1 2 0 

It determines where to go whenever 
there is a mismatch in the next letter. 

Failure Function 

Consider all prefixes w[] of a pattern, define 

 [k] = max(j<k | w[j] is a suffix w[k]) 

[k]  is called a failure function, since it represents 
only backward transitions, in other words, it 
determines where to go whenever there is a 
mismatch in the next letter. 

“aabaaab”,              

“aabaab”,               

“aaabaabaaa”,         

 = {0, 1, 0, 1, 2, 3} 

 = {0, 1, 0, 1, 2, 2, 3} 

 = {0,1,2,0,1,2,0,1,2,3} 

#24.   String Matching: 

The Rabin-Karp Algorithm 

We do not match a string against a given 
pattern, but rather compare their hash codes. 

Theorem.  

There's a pattern of length M and a text of  

length N. Pick a random prime  [2,…, M N2].  

The probability of getting a false match  

anywhere in the string is at most 2.53/N. 

 

Rabin-Karp formalized 

Let P[1 ... m] be a pattern and T[1 ... n] be a 
text. We define a pattern 

P = 10m-1 P[1] + 10 P[m-1] + … + P[m]  

 

and a shift in the text: 

ts = 10m-1T[s+1] + 10 T[s+m-1] + … + T[s+m]  

 

The value ts+1 can be obtained from ts by 

 

ts+1 = (ts - 10m-1T[s+1]) 10 + T[s+m+1]  

 

#25.   Suffix Trees  

A trie is a data structure for storing a set of strings.  

Each edge of the tree is labeled with a character.  

Each node then implicitly represents a certain 
string of characters.  

So to determine if a pattern occurs in our set we 
simply traverse down from the root of the tree one 
character at a time until we either (1) walk off the 
bottom of the tree, or (2) we stop at some node.  
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#25.   Suffix Trees  

A suffix tree is a trie that stores all suffixes 
terminated by a special character. 

The space to store this data structure could be 
as large as O(n2).  

Note, no string occurs as a prefix of any other 

but we can get it down to O(n) by setting pointers 
to each substring.  

Building suffix tree: can be done in linear time, 
Ukkonen’s algorithm, though it was not discussed 
in lecture. 

#26.   Suffix Trees  
Longest Common Substring: 
Given two strings a and b, what is the longest  
substring that occurs in both of them?  

Construct a new string s = a%b.  
Now construct the suffix tree for s. 
Every leaf of the suffix tree represents a suffix 
that begins in a or in b.  

Mark every internal node with two bits: where each 
bit indicates where a suffix starts. 

Now take the deepest node in the suffix tree that 
has both marks. This tells you the longest common 
substring.  

#26.   Lowest Common Ancestor  

Given a rooted tree T and two nodes u and v,  
find the furthest node from the root that is  
an ancestor for both u and v. 

It has been shown how to use RMQ (Range Min 
Query) for computing LCA. 
 
LCA can be reduced to RMQ in linear time, so 
every algorithm that solves the RMQ problem 
will solve the LCA problem too. 

#26. Range Min Query   

Given an array, find the position of the item 
with the min value between two given indices. 

Brute Force: for each {i,j} store its RMQ value. 

Brute Force: O(n3) to build that new table 

DP: O(n2) to build that table 

#26. Range Min Query   

Sparse Table Algorithm: O(n log n) to build the table 

We will keep an array M[0, n-1][0,log n] where M[i][j]  
is the index of the minimum value in the sub array 
starting at i having length 2j.  

We do this preprocessing using DP. 

To calculate RMQA(i, j) we take two blocks: one 
starting at i to the right, another, from j to the left, 
and find the min. 

1)ilog(jk  where  
1][k]2M[j

M[i][k]
minj)(i,RMQ kA 









