
1

Intro to Algorithms

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2015

Lecture 1 Jan 12, 2015 Carnegie Mellon University
Outline

1. Administria

2. The Master Theorem

3. Karatsuba’s Algorithm

Course Staff

Victor Adamchik

Danny Sleator

TAs: TBA

Web Sites

www.cs.cmu.edu/afs/cs/academic/class/15451-s15

Calendar, Slides, Notes, Homeworks,
 Course Policy, Grades, …

http://piazza.com/

Questions, Comments, Announcements, …

Textbook

There is no textbook.

Slides will be posted on the website.

Some supplementary notes will also be posted.

Grading

30% Homework (weekly, written and oral)

10% Quizzes (weekly)

30% Tests (2 midterms)

30% Final

2

Homework

Homeworks roughly every week

Approx: 8 written and 3 oral

4 late days for written Hwks
2 late days at most per Hwk

We will drop the lowest written Hwk

Collaboration

You may work in a group of ≤ 3 people.

You must report who you worked with.

You must think about each of the problems by
yourself for ≥ 30 minutes before discussing them

with others.

You must write up all solutions by yourself.

Cheating

You MAY NOT

Share written work.

Get help from anyone besides your
collaborators, staff.

Refer to solutions/materials from earlier
versions of 451 or the web

Quizzes

Every week, online

Tested on material from the previous 2-3
lectures.

These are designed to be easy, assuming
 you are keeping up with the lectures.

Midterm Tests

There will be TWO tests given in class.

Designed to be doable...

“Semi-cumulative.”

 ((()))

Feel free to ask questions

3

Course Goals

1. Understand

a) Algorithms

b) Design techniques

2. Analyze algorithm efficiency

3. Analyze algorithm correctness

4. Communicate about code

5. Design your own algorithm

Divide and Conquer
(review of 15-210)

A divide-and-conquer algorithm consists of

• dividing a problem into smaller subproblems

• solving (recursively) each subproblem

• then combining solutions to subproblems to get
solution to original problem

Runtime

Suppose T(n) is the number of steps in the worst
case needed to solve the problem of size n.

Let us split a problem into a>1 subproblems, each
of which is of the input size n/b where b>1.

 1 T(n/2) T(n)

Binary search Merge sort

The recurrences have some initial conditions

 n 2T(n/2) T(n)

Runtime

The total complexity T(n) is obtained by all steps
needed to solve smaller subproblems T(n/b) plus
the work needed f(n) to combine solutions into a
final one.

 f(n) T(n/b)a T(n)

How do we solve

this recurrence?

Tree of Recursive Calls !

 f(n) T(n/b)a T(n) Tree method:

Draw a tree of recursive calls:

 T(n/b)

T(n/b2)

 T(n)

 T(n/b)

a calls

…

T(n/b2) T(n/b2) T(n/b2) … …

a calls
a calls

height

log b n

Leaves

… … …

 f(n) T(n/b)a T(n)

4

Tree method:

This tree represents the total work:

 f(n/b)

f(n/b2)

 f(n)

 f(n/b)

a calls

…

f(n/b2) f(n/b2) f(n/b2) … …

a calls
a calls

height
log b n

Leaves, O(1)

 f(n) T(n/b)a T(n)
 f(n) T(n/b)a T(n)

 f(n/b)

f(n/b2)

 f(n)

 f(n/b)

a calls

…

f(n/b2) f(n/b2) f(n/b2) … …

a calls
a calls

f(n)

 a f(n/b)

 a2 f(n/b2)

leaves

Constant work at leaves!!

 aheight=n log
b
 a

 O(1) T(1)

The Master Theorem

Θ(f(n))

n)log Θ(n

)Θ(n

 T(n) palog

alog

b

b Leaves dominate

Internal nodes
dominate

Both

where h = log b n

It (all) depend on the function f(x) – a combining step

)
b

n
f(a n T(1) T(n)

1-h

0 k
k

kalogb

The Master Theorem

for some constant >0 and 0

and constant p = 1, 2, …

)Ω(nf(n) ifΘ(f(n)),

n) log Θ(nf(n) ifn),log Θ(n

)O(nf(n) if),Θ(n

 T(n)
 alog

1-palogpalog

 - alogalog

b

bb

bb

Proof. The solution to the recurrence is

)
b

n
f(a)n θ(T(n)

1-h

0 k
k

kalogb

k δ
1-h

0 k

k

alog

δ-alog
1-h

0 k

δ-alog

k
k

1-h

0 k
k

k b
b

a
n c

b

n
a c)

b

n
f(a

b

b

b

δ-alog
1-h

0 k
1

0k

k δδ-alogk δδ-alog bbb n cbn cb n c

since b < 1. It follows that
QED

We simplify the sum in the rhs

)n θ(T(n) alogb

Case I

)Θ(n T(n) then),O(nf(n) if alogδ - alog bb

1-h

0 k

alog
1-h

0 k

alog

k
k

1-h

0 k
k

k 1n
b

n
a)

b

n
f(a b

b

nlog nn h b
alogalog bb

It follows that

QED

We simplify the sum in the rhs

Proof. We prove this for p=1. The solution to the
recurrence is

)
b

n
f(a)n θ(T(n)

1-h

0 k
k

kalogb

n) log θ(nn)log θ(n)n θ(T(n) alog
b

alogalog bbb

Case II

n)log Θ(n then n), log Θ(nf(n) if palog1-palog bb

5

 n T(n/2) 4 T(n)

Work at leaves is n log
b

 a = n log
2

 4 = n2

f(n) = n

It follows, T(n) (n2)

Example - 1

f(n) = O(n2)

Θ(f(n))

n)log Θ(n

)Θ(n

 T(n) palog

alog

b

b

Example - 2

Work at leaves is n log
b
 a = n log

2
 4 = n2

f(n) = n2

It follows, T(n) (n2 log n)

2

Θ(f(n))

n)log Θ(n

)Θ(n

 T(n) palog

alog

b

b

f(n) (n2)

 n T(n/2) 4 T(n)

Example - 3

Work at leaves is n log
b
 a = n log

2
 4 = n2

f(n) = n3

It follows, T(n) (n3)

3

Θ(f(n))

n)log Θ(n

)Θ(n

 T(n) palog

alog

b

b

f(n) (n2)

 n T(n/2) 4 T(n)

Example:

Draw a tree of recursive calls:

 T(n/3)

T(n/9)

 T(n)

 T(n/3)

T(n/9) T(n/9) T(n/9)

height
log 3 n

… …

1T(1)

 1 2T(n/3) T(n)

Example:

 1

1

 1

 1

1 1 1

Constant work at leaves!!

1

 2

 4

 n log
3

 2

… … …

1T(1)

 1 2T(n/3) T(n)
Example:

1h

0k

k2log 2n T(n) 3

12n T(n) h2log3

2log3n*2 1- T(n)

height
h=log 3 n

1T(1)

 1 2T(n/3) T(n)

6

Karatsuba’s Algorithm (1962)

Fast integer multiplication

Integer Multiplication

Given two n-digit integers.

Using a grammar school approach,

we can multiply them in (n2) time.

Observe, any integer can be split into two parts

154517766 = 15451 * 104 + 7766

Integer Multiplication:
divide-and-conquer

num1 = x1*10p + x0

num2 = y1*10p + y0

num1 * num2 = x1*y1*102p + (x1*y0+x0*y1)*10p + x0*y0

The worst-case complexity:

by the master theorem

 T(n) = (n2)

x0 x1

y0 y1

p=n/2

 O(n) 4T(n/2) T(n)

Karatsuba’s Algorithm

num1 * num2 = x1*y1*102p + (x1*y0+x0*y1) *10p + x0*y0

The worst-case complexity:

by the master theorem

T(n) = (nlog3) = (n1.58)

num1 * num2 = x1*y1* 102p +

 ((x1+x0)* (y1+y0)-x1*y1 - x0*y0)*10p + x0*y0

 O(n) 3T(n/2) T(n)

3-way splitting

The worst-case:
 (x is unknown)

by the master theorem T(n) = (nlog
3

 x) = (n1.58)

The key idea is to divide a large integer into 3
parts (rather than 2) of size approximately n/3
and then multiply those parts.

This is similar to 3-way merging.

log 3 x < 1.58 x = 5 Thus we need to
reduce 9 mults to 5

 O(n) T(n/3)x T(n)

Is it possible to reduce a number
of multiplications from 9 to 5?

 O(n) 5T(n/3) T(n)

7

3-way split
T. Cook (1966)

Z0 = x0 y0
Z1 = (x0+x1+x2) (y0+y1+y2)
Z2 = (x0+2 x1+4 x2) (y0+2 y1+4 y2)
Z3 = (x0-x1+x2) (y0-y1+y2)
Z4 = (x0-2 x1+4 x2) (y0-2 y1+4 y2)

x2 x1 x0 y2 y1 y0

Further Generalization:
k-way split

splits
Number of

multiplications

2 3

3 5

4 7

 n T(n) 1)(2klog k

 n1.58, n1.46, n1.40, n1.36,
n1.33, n1.31, n1.30, n1.28...

 n 1)T(n/k)-(2k T(n)

Is it possible to multiply two
integers in linear time?

 n1.58, n1.46, n1.40, n1.36, n1.33,

n1.31, n1.30, n1.28...

 n T(n) 1)(2klog k

ε1
k ln

1/k)-ln(2
1

k ln

1)ln(2k
1)(2klogk

 n T(n) 1)(2klog k

Is it always possible to reduce k2
multiplications to 2k-1?

Is it always possible to reduce k2
multiplications to 2k-1?

Consider k-way split

polyn1 = ak-1 xk-1+ak-2*xk-2+...+a1*x+a0

polyn2= bk-1 xk-1+bk-2*xk-2+...+b1*x+b0

polyn1*polyn2 = ak-1 bk-1*x2k-2 + ... +
 (a1 b0+b1 a0)*x + a0 b0

It has 2k-1 coefficients, which uniquely define a
polynomial. Therefore, it requires 2k-1 new
variables, thus we should have at least 2k-1
multiplications. But that is not simple to find them…

Multiplication of large
integers of n digits can be
done in time

O(n log n log log n)

thanks to the Fast Fourier
Transform.

