

Textbook

There is no textbook.

Slides will be posted on the website.

Some supplementary notes will also be posted.

Grading

30% Homework (weekly, written and oral)
10% Quizzes (weekly)
30% Tests (2 midterms)
30% Final

Homework

Homeworks roughly every week

Approx: 8 written and 3 oral

4 late days for written Hwks 2 late days at most per Hwk

We will drop the lowest written Hwk

Collaboration

You may work in a group of \leq 3 people.

You must report who you worked with.

You must think about each of the problems by yourself for \geq 30 minutes before discussing them with others.

You must write up *all* solutions by yourself.

Cheating

You MAY NOT

Share written work.

Get help from anyone besides your collaborators, staff.

Refer to solutions/materials from earlier versions of 451 or the web

Quizzes

Every week, online

Tested on material from the previous 2-3 lectures.

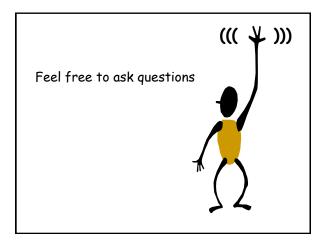
These are designed to be easy, assuming you are keeping up with the lectures.

Midterm Tests

There will be TWO tests given in class.

Designed to be doable...

"Semi-cumulative."



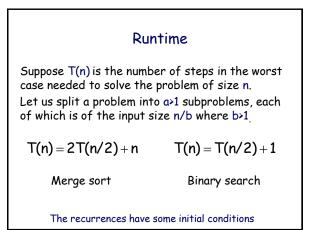
Course Goals

Algorithms

- 1. Understand
 - a) Algorithms
 - b) Design techniques
- 2. Analyze algorithm efficiency
- 3. Analyze algorithm correctness
- 4. Communicate about code
- 5. Design your own algorithm

Divide and Conquer (review of 15-210)

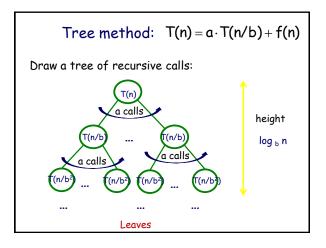
- A divide-and-conquer algorithm consists of
- dividing a problem into smaller subproblems
- solving (recursively) each subproblem
- then combining solutions to subproblems to get solution to original problem

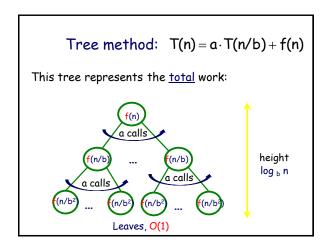


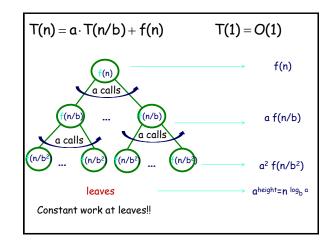
Runtime

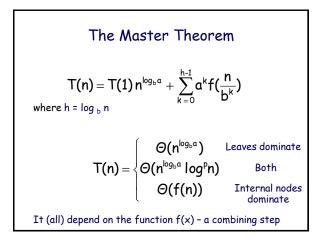
The total complexity T(n) is obtained by all steps needed to solve smaller subproblems T(n/b) plus the work needed f(n) to combine solutions into a final one.

$$T(n) = a \cdot T(n/b) + f(n)$$









The Master Theorem

$$T(n) = \begin{cases}
\Theta(n^{\log_{b}a}), \text{ if } f(n) \in O(n^{\log_{b}a} \cdot \delta) \\
\Theta(n^{\log_{b}a} \log^{p}n), \text{ if } f(n) \in \Theta(n^{\log_{b}a} \log^{p-1} n) \\
\Theta(f(n)), \text{ if } f(n) \in \Omega(n^{\log_{b}a} + \delta)
\end{cases}$$
for some constant $\delta > 0$ and $\delta \to 0$
and constant $p = 1, 2, ...$

Case I
if
$$f(n) \in O(n^{\log_b a - \delta})$$
, then $T(n) = \Theta(n^{\log_b a})$
Proof. The solution to the recurrence is
 $T(n) = \Theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})$
We simplify the sum in the rhs

$$\sum_{k=0}^{h-1} a^k f(\frac{n}{b^k}) \le c \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a - \delta} = c n^{\log_b a - \delta} \sum_{k=0}^{h-1} \left(\frac{a}{b^{\log_b a}}\right)^k b^{\delta k} = c n^{\log_b a - \delta} \sum_{k=0}^{h-1} b^{\delta k} \le c n^{\log_b a - \delta} \sum_{k=0}^{\infty} b^{\delta k} \le c_1 n^{\log_b a - \delta}$$
since $b^{\delta} < 1$. It follows that
 $T(n) = \Theta(n^{\log_b a})$ QED

Case II
if
$$f(n) \in \Theta(n^{\log_b a} \log^{p-1} n)$$
, then $\Theta(n^{\log_b a} \log^p n)$
Proof. We prove this for p=1. The solution to the
recurrence is
 $T(n) = \Theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})$
We simplify the sum in the rhs
 $\sum_{k=0}^{h-1} a^k f(\frac{n}{b^k}) = \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a} = n^{\log_b a} \sum_{k=0}^{h-1} 1 =$
 $= h n^{\log_b a} = n^{\log_b a} \log_b n$
It follows that
 $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log_b n) = \Theta(n^{\log_b a} \log n)$ QED

Example - 1

$$T(n) = \begin{cases} \Theta(n^{\log_{b}a}) \\ \Theta(n^{\log_{b}a} \log^{p}n) \\ \Theta(f(n)) \end{cases}$$

$$T(n) = 4 T(n/2) + n$$
Work at leaves is $n^{\log_{b}a} = n^{\log_{2}4} = n^{2}$

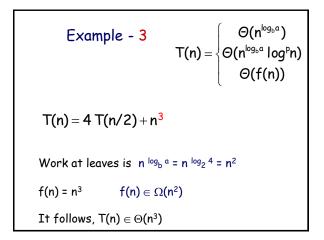
$$f(n) = n \qquad f(n) = O(n^{2})$$
It follows, $T(n) \in \Theta(n^{2})$

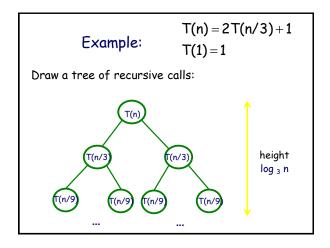
Example - 2

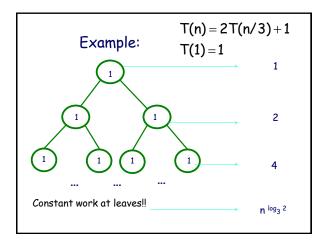
$$T(n) = \begin{cases} \Theta(n^{\log_{b} a}) \\ \Theta(n^{\log_{b} a} \log^{p} n) \\ \Theta(f(n)) \end{cases}$$

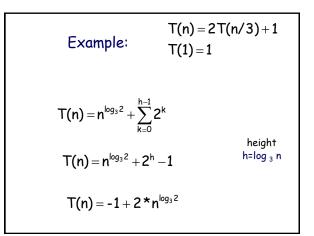
$$T(n) = 4 T(n/2) + n^{2}$$
Work at leaves is $n^{\log_{b} a} = n^{\log_{2} 4} = n^{2}$

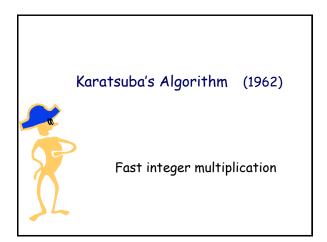
$$f(n) = n^{2} \qquad f(n) \in \Theta(n^{2})$$
It follows, $T(n) \in \Theta(n^{2} \log n)$









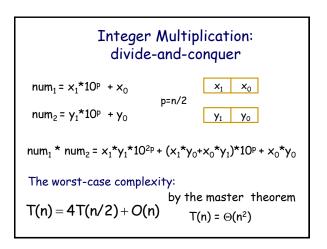


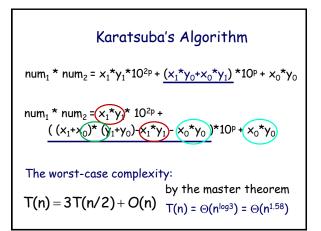
Integer Multiplication

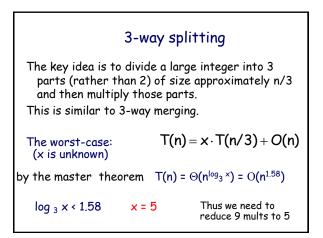
Given two n-digit integers. Using a grammar school approach, we can multiply them in Θ (n²) time.

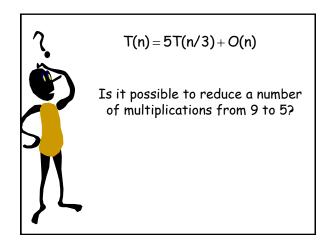
Observe, any integer can be split into two parts

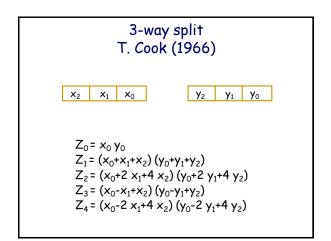
154517766 = 15451 * 10⁴ + 7766



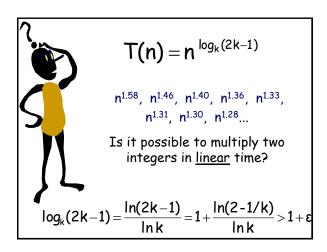


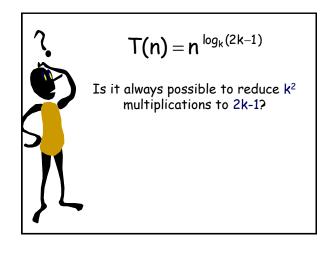






splits Number of multiplications 2 3 3 5 $T(n) = (2k-1)T(n/k) + n$ $T(n) = n^{\log_k(2k-1)}$	Further Generalization: k-way split				
$\begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} T(n) = n^{\log_{k}(2k-1)}$	splits				
	2	3	T(n) = (2k-1)T(n/k) + n		
m158 m146 m140 m136	3	5	$T(n) = n^{\log_k(2k-1)}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	7	$n^{1.58}$, $n^{1.46}$, $n^{1.40}$, $n^{1.36}$, $n^{1.33}$, $n^{1.31}$, $n^{1.30}$, $n^{1.28}$		





Is it always possible to reduce k² multiplications to 2k-1?

Consider k-way split

$$\begin{array}{l} \text{polyn}_1 = a_{k-1} \; x^{k-1} + a_{k-2} * x^{k-2} + \dots + a_1 * x + a_0 \\ \text{polyn}_2 = b_{k-1} \; x^{k-1} + b_{k-2} * x^{k-2} + \dots + b_1 * x + b_0 \end{array}$$

polyn₁*polyn₂ = a_{k-1} b_{k-1}*x^{2k-2} + ... + (a₁ b₀+b₁ a₀)*x + a₀ b₀

It has 2k-1 coefficients, which uniquely define a polynomial. Therefore, it requires 2k-1 new variables, thus we should have at least 2k-1 multiplications. But that is not simple to find them...

