
1 

Intro to Algorithms 

Algorithm Design and Analysis 

Victor Adamchik CS 15-451       Spring 2015 

Lecture 1 Jan 12, 2015 Carnegie Mellon University 
Outline 

1. Administria 
 

2. The Master Theorem 
 

3. Karatsuba’s Algorithm 
 

Course Staff 

Victor Adamchik 

Danny Sleator 

TAs:  TBA 
 

Web Sites 

 
www.cs.cmu.edu/afs/cs/academic/class/15451-s15 

Calendar, Slides, Notes, Homeworks,  
 Course Policy, Grades, … 

http://piazza.com/ 
 

Questions, Comments, Announcements, … 

Textbook 

There is no textbook. 
 

Slides will be posted on the website. 
 

Some supplementary notes will also be posted. 

Grading 

30% Homework (weekly, written and oral) 

10%  Quizzes         (weekly) 

30% Tests  (2 midterms) 

30% Final 
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Homework 

Homeworks roughly every week  
 

Approx: 8 written and 3 oral 
 

4 late days for written Hwks 
2 late days at most per Hwk 

 
We will drop the lowest written Hwk 

 

Collaboration 

You may work in a group of ≤ 3 people.    
 

You must report who you worked with. 
 

You must think about each of the problems by 
yourself for ≥ 30 minutes before discussing them 

with others. 
 

You must write up all solutions by yourself. 
 

Cheating 

You MAY NOT  
 
Share written work.   
 
Get help from anyone besides your 
collaborators, staff. 
 
Refer to solutions/materials from earlier 
versions of 451 or the web 

Quizzes 

Every week, online 
 

Tested on material from the previous 2-3 
lectures. 

 
These are designed to be easy, assuming  
     you are keeping up with the lectures. 

Midterm Tests 

There will be TWO tests given in class. 
 

Designed to be doable... 
 

“Semi-cumulative.” 
 

 (((     ))) 

Feel free to ask questions 
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Course Goals 

1. Understand 

a) Algorithms 

b) Design techniques 

2. Analyze algorithm efficiency 

3. Analyze algorithm correctness 

4. Communicate about code 

5. Design your own algorithm 

Divide and Conquer 
(review of 15-210) 

 

A divide-and-conquer algorithm consists of 

•  dividing a problem into smaller subproblems 

•  solving (recursively) each subproblem 

•  then combining solutions to subproblems to get 
solution to original problem 

Runtime 

Suppose T(n) is the number of steps in the worst 
case needed to solve the problem of size n.  

Let us split a problem into a>1 subproblems, each 
of which is of the input size n/b where b>1. 

 1  T(n/2)  T(n)

Binary search Merge sort 

The recurrences have some initial conditions 

 n  2T(n/2)  T(n)

Runtime 

The total complexity T(n) is obtained by all steps 
needed to solve smaller subproblems T(n/b) plus 
the work needed f(n) to combine solutions into a 
final one.  

 f(n)  T(n/b)a  T(n)

 

How do we solve  

this recurrence? 

 

Tree of Recursive Calls ! 

 f(n)  T(n/b)a  T(n) Tree method: 

Draw a tree of recursive calls: 

 T(n/b) 

T(n/b2) 

   T(n)         

 T(n/b) 

a calls 

… 

T(n/b2) T(n/b2) T(n/b2) … … 

a calls 
a calls 

height 

log b n 

Leaves 

…            …        … 

 f(n)  T(n/b)a  T(n)
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Tree method: 

This tree represents the total work: 

 f(n/b) 

f(n/b2) 

   f(n)         

 f(n/b) 

a calls 

… 

f(n/b2) f(n/b2) f(n/b2) … … 

a calls 
a calls 

height 
log b n 

Leaves, O(1) 

 f(n)  T(n/b)a  T(n)
 f(n)  T(n/b)a  T(n)

 f(n/b) 

f(n/b2) 

   f(n)         

 f(n/b) 

a calls 

… 

f(n/b2) f(n/b2) f(n/b2) … … 

a calls 
a calls 

f(n) 

  a f(n/b) 

  a2 f(n/b2) 

leaves 

Constant work at leaves!! 

  aheight=n log
b
 a 

 O(1)  T(1)

The Master Theorem 

Θ(f(n))

n)log Θ(n

)Θ(n

  T(n) palog

alog

b

b Leaves dominate 

Internal nodes 
dominate 

Both 

where h = log b n 

It (all) depend on the function f(x) – a combining step 

 )
b

n
f(a  n T(1)  T(n)

1-h

0  k
k

kalogb

The Master Theorem 

for some constant >0 and 0  

and constant p = 1, 2, … 

)Ω(nf(n) ifΘ(f(n)),

n) log Θ(nf(n) ifn),log Θ(n

)O(nf(n) if ),Θ(n

  T(n)
 alog

1-palogpalog

 - alogalog

b

bb

bb

Proof. The solution to the recurrence is 

 )
b

n
f(a  )n θ(  T(n)

1-h

0  k
k

kalogb

k δ
1-h

0  k

k

alog

δ-alog
1-h

0  k

δ-alog

k
k

1-h

0  k
k

k b
b

a
n c

b

n
a c)

b

n
f(a 

b

b

b

δ-alog
1-h

0  k
1

0k

k δδ-alogk δδ-alog bbb n cbn cb n c  

since b < 1. It follows that 
QED 

We simplify the sum in the rhs 

 )n θ(  T(n) alogb

Case I 

)Θ(n  T(n) then ),O(nf(n) if alogδ - alog bb

1-h

0  k

alog
1-h

0  k

alog

k
k

1-h

0  k
k

k 1n
b

n
a )

b

n
f(a b

b

nlog nn h  b
alogalog bb

It follows that 

QED 

We simplify the sum in the rhs 

Proof. We prove this for p=1. The solution to the 
recurrence is 

 )
b

n
f(a  )n θ(  T(n)

1-h

0  k
k

kalogb

n) log θ(nn)log θ(n  )n θ(  T(n) alog
b

alogalog bbb

Case II 

n)log Θ(n then n), log Θ(nf(n) if palog1-palog bb
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 n  T(n/2) 4  T(n)

Work at leaves is  n log
b

 a = n log
2

 4 = n2 

f(n) = n 

It follows, T(n)  (n2) 

Example - 1 

f(n) = O(n2) 

Θ(f(n))

n)log Θ(n

)Θ(n

  T(n) palog

alog

b

b

Example - 2 

Work at leaves is  n log
b
 a = n log

2
 4 = n2 

f(n) = n2 

It follows, T(n)  (n2 log n) 

2 

Θ(f(n))

n)log Θ(n

)Θ(n

  T(n) palog

alog

b

b

f(n)  (n2) 

 n  T(n/2) 4  T(n)

Example - 3 

Work at leaves is  n log
b
 a = n log

2
 4 = n2 

f(n) = n3 

It follows, T(n)  (n3) 

3 

Θ(f(n))

n)log Θ(n

)Θ(n

  T(n) palog

alog

b

b

f(n)  (n2) 

 n  T(n/2) 4  T(n)

Example: 

Draw a tree of recursive calls: 

 T(n/3) 

T(n/9) 

   T(n)         

 T(n/3) 

T(n/9) T(n/9) T(n/9) 

height 
log 3 n 

… … 

1T(1)

 1  2T(n/3)  T(n)

Example: 

 1 

1 

   1 

 1 

1 1 1 

Constant work at leaves!! 

1 

  2 

  4 

  n log
3

 2 

… … … 

1T(1)

 1  2T(n/3)  T(n)
Example: 

1h

0k

k2log 2n  T(n) 3

12n  T(n) h2log3

2log3n*2  1-  T(n)

height 
h=log 3 n 

1T(1)

 1  2T(n/3)  T(n)
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Karatsuba’s Algorithm   (1962) 

 

Fast integer multiplication 

Integer Multiplication 

Given two n-digit integers. 

Using a grammar school approach,  

we can multiply them in (n2) time. 

Observe, any integer can be split into two parts 

  

154517766 = 15451 * 104 + 7766 

Integer Multiplication: 
divide-and-conquer 

num1 = x1*10p  + x0 

 

num2 = y1*10p  + y0 

num1 * num2 = x1*y1*102p + (x1*y0+x0*y1)*10p + x0*y0  

The worst-case complexity: 

by the master  theorem 

      T(n) = (n2) 

x0 x1 

y0 y1 

p=n/2 

 O(n)  4T(n/2)  T(n)

Karatsuba’s Algorithm 

num1 * num2 = x1*y1*102p + (x1*y0+x0*y1) *10p + x0*y0  

The worst-case complexity: 

by the master theorem 

T(n) = (nlog3) = (n1.58) 

num1 * num2 = x1*y1* 102p +  

       ( (x1+x0)* (y1+y0)-x1*y1 - x0*y0 )*10p + x0*y0 

 O(n)  3T(n/2)  T(n)

3-way splitting 

The worst-case: 
  (x is unknown) 

by the master  theorem   T(n) = (nlog
3

 x) = (n1.58) 

The key idea is to divide a large integer into 3 
parts (rather than 2) of size approximately n/3  
and then multiply those parts. 

This is similar to 3-way merging. 

log 3 x < 1.58 x = 5 Thus we need to 
reduce 9 mults to 5 

 O(n)  T(n/3)x  T(n)

 

Is it possible to reduce a number 
of multiplications from 9 to 5?  

 O(n)  5T(n/3)  T(n)
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3-way split 
T. Cook (1966) 

 

 

Z0 = x0 y0 
Z1 = (x0+x1+x2) (y0+y1+y2) 
Z2 = (x0+2 x1+4 x2) (y0+2 y1+4 y2) 
Z3 = (x0-x1+x2) (y0-y1+y2) 
Z4 = (x0-2 x1+4 x2) (y0-2 y1+4 y2) 

x2 x1 x0 y2 y1 y0 

Further Generalization: 
k-way split 

splits 
Number of 

multiplications 

2 3 

3 5 

4 7 

 n  T(n) 1)(2klog k

 

 n1.58,  n1.46,  n1.40,  n1.36, 
n1.33,  n1.31,  n1.30,  n1.28... 

 n  1)T(n/k)-(2k  T(n)

Is it possible to multiply two 
integers in linear time? 

 

 n1.58,  n1.46,  n1.40,  n1.36,  n1.33,   

n1.31,  n1.30,  n1.28... 

 n  T(n) 1)(2klog k

ε1
k ln

1/k)-ln(2
1

k ln

1)ln(2k
1)(2klogk

 n  T(n) 1)(2klog k

Is it always possible to reduce k2 
multiplications to 2k-1? 

 

Is it always possible to reduce k2 
multiplications to 2k-1? 

Consider k-way split 

polyn1 = ak-1 xk-1+ak-2*xk-2+...+a1*x+a0 

polyn2= bk-1 xk-1+bk-2*xk-2+...+b1*x+b0 

polyn1*polyn2 = ak-1 bk-1*x2k-2 + ... + 
                            (a1 b0+b1 a0)*x + a0 b0 

It has 2k-1 coefficients, which uniquely define a 
polynomial. Therefore, it requires 2k-1 new 
variables, thus we should have at least 2k-1 
multiplications. But that is not simple to find them… 

Multiplication of large 
integers of n digits can be 
done in time  

O(n log n log log n)  

thanks to the Fast Fourier 
Transform.  


