
1

Fast Fourier Transform

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2015

Lecture 3 Jan 21, 2015 Carnegie Mellon University

Fourier
(1768 –1830)

Gauss
(1777 – 1855)

Lagrange
(1736 –1813)

High Level Idea

To compute the product A(x)B(x) of polynomials

1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix

2) multiply A(xk)B(xk),

3) then find the polynomial using Lagrange’s
interpolation via the Vandermonde matrix

O(n log n)

O(n)

O(n log n)

Computing Polynomials

Given a polynomial of degree n.

What is the complexity of computing its value at

a single point, A(x0)?

x)...)ax(a...x(ax(aaA(x) n1n210

Horner’s Rule: O(n)

n

0k

k
kxaA(x)

Computing Polynomials

So we compute the single value in linear time.

Therefore, it takes O(n2) to compute a polynomial

of degree n at n points.

In the next slides we will develop a new method

that gives O(n log n) runtime complexity.

2

Computing Polynomials

The key idea is to use the divide-and-conquer

algorithm. We split a polynomial into two parts:

with even and odd degree terms.

A(x) = A0(x2) + x A1(x2)

For example,

1+2x+3x2+4x3+5x4+6x5=(1+3x2+5x4)+x(2+4x2+6x4)

A0(x) = 1+3x+5x2 A1(x) = 2+4x+6x2

Observe, computing A(-x) takes O(1). Thus, our

special points are half pos and half neg.

Worst-time Complexity

Let T(n) be the complexity of computing a

degree-n polynomial at 2n points. Thus

This solves to O(n log n).

The only problem is that the algorithm requires

of having half positive and half negative points on

each iteration.

 O(n) T(n/2) 2 T(n)

Very special points

So, we need to find such a set of points that

1) half of points are negative and the second half

is positive

2) this property holds after squaring (on each

iteration)

A(x) = A0(x2) + x A1(x2)

Roots of Unity

The n-th roots of unity are points on the

complex unit circle every 2/n radians apart

+1 -1

+i

-i

k=0,1,…,n-1

The angle =2 π/n

They are defined as solutions to zn = 1.

k/n 2 ie z

3

Roots of Unity

They are defined as solutions to zn = 1.

Here is n = 8

+1 -1

+i

-i

Complex numbers on a unit circle are represented

by z = ei=cos() + i sin()

π/4 ie i ii

 i ii

Roots of Unity: n = 8

Let w = i, then roots of z8 = 1 can be written as

1, w, w2, w3, w4, w5, w6, w7

Since i2 = -1, and thus w4 = -1, they can also be

written as

1, w, w2, w3, -1, -w, -w2, -w3

Let us take a half and square them

(1, w, w2, w3)2 = (1, w2, w4, w6) = (1, w2, -1, -w2)

(1, w2)2 = (1, w4) = (1, -1)
Do it again

Computing Polynomials

Our task to compute a polynomial at n points:

A(1), A(w), A(w2),…, A(wn-1)

Given a polynomial

where wn = 1.

We can write these computations in a matrix form!

And thus compute all of then at once!

1-n

0k

k
kxaA(x)

Computing Polynomials

This is the Vandermonde matrix (with x0=1).

We will prove that the above matrix

multiplication can be done in O(n log n)

1-n

0k

k
kxaA(x)

1-n

1

0

1)-1)(n- (n2-2n1-n

n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

4

Lagrange’s Interpolation
formula can be represented

via the Vandermonde Matrix.

Polynomial evaluation is also
computed via the

Vandermonde Matrix.

Primitive Roots of Unity

Definition: A complex number w is called a

n-th primitive root of unity if

1) wn = 1

2) wp ≠ 1, for p = 1, .2, …, n-1

Roots of Unity

Claim 1: Let w be a primitive root of zn =1 then

Proof. Multiply it by w

1-n

0k

k 0w

1-n

0k

1-nk)w...ww(1ww

since wn=1

1n

0k

kn1n2 www...ww

Roots of Unity

Claim 2: Let w be a primitive root of zn =1 and

p = 1, …, n-1 then

Proof.

1-n

0k

p k 0w

0
1w

11

1w

1w
ww p

p1-n

0k

1n

0k
p

np
kpp k

5

Modular Arithmetic

Consider a set of powers of 2

1,2,4,8,16,32,64,128

modulo 17

1,2,4,8,-1,-2,-4,-8

Square and then do mod 17 again

{1,2,4,8}^2 = {1, 4, 16, 64} ={1,4,-1,-4}

Computing Polynomials

Consider n = 4 (intuition)

1-n

0k

k
kxaA(x)

1-n

1

0

1)-1)(n-(n1)-2(n1-n

1-n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

Computing Polynomials, n = 4

V4

3

2

1

0

a

a

a

a

i1i1

1111

i1i1

1111

swap

22

22

V
i0

01
V

V
i0

01
V

3

1

2

0

a

a

a

a

ii11

1111

ii11

1111
even

odd

V2

Computing Polynomials

oddnnevenn

oddnnevenn

odd

even

nnn

nnn
2n aVDaV

aVDaV

a

a

VDV

VDV
V

where Dn is a diagonal matrix

.

w...00

0...00

0...w0

0...01

D

1n

n

In general case, that can be written as a block matrix

6

Proof

Consider j-th row

1-n

0k

k
kxaA(x)

1-n

0k
k

k j j aw)A(w
odd is k even is k

1-n

1

0

1)-1)(n-(n1)-2(n1-n

1-n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

Computing Polynomials
1-n/2

0k
12k

1)(2k j
1-n/2

0k
2k

2k j j awaw)A(w

Let wn denote a root of zn = 1.

Since wn
2 = wn/2, (it follows from (z2)n/2 = zn

(j)Fw(j)F 2
j
n1

here Fj is a n/2 size problem.

1-n/2

0k
12k

k j
n/2

j
n

1-n/2

0k
2k

k j
n/2

j awwaw)A(w

Computing Polynomials

1-n/2

0k
12k

k j
n/2

j
n

1-n/2

0k
2k

k j
n/2

j awwaw)A(w

Let us compute)A(w n/2j

Observe
j
n/2

n/2j
n/2 ww and 1-wn/2

n
for even n

Periodic

property
Symmetry

property

1-n/2

0k
12k

k n/2)(j
n/2

n/2j
n

1-n/2

0k
2k

k n/2)(j
n/2

n/2j awwaw)A(w

Computing Polynomials

1-n/2 ..., 1, 0, j (j),F w(j)F)A(w 2
j
n1

j

This outlines the divide and conquer algorithm.

Therefore, V.a can be computed in O(n log n)

1-n/2 ..., 1, 0, j (j),F w(j)F)A(w 2
j
n1

n/2j

7

Computing Polynomials

FFT(A, m, w) {

if (m==1) return vector (a_0)

else {

 A_even = (a_0, a_2, ..., a_{m-2})

 A_odd = (a_1, a_3, ..., a_{m-1})

 F_even = FFT(A_even, m/2, w^2)

 F_odd = FFT(A_odd, m/2, w^2)

 x = 1

 for (j=0; j < m/2; ++j) {

 F[j] = F_even[j] + x*F_odd[j]

 F[j+m/2] = F_even[j] - x*F_odd[j]

 x = x * w

 }

return F }

High Level Idea

To compute the product A(x)B(x) of polynomials

1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix

2) multiply A(xk)B(xk),

3) then find the polynomial using Lagrange’s
interpolation via the inverse Vandermonde
matrix

O(n log n)

O(n)

O(n log n)

Complexity of Interpolation

We know that the complexity of interpolation

depends on how fast can we inverse the

Vandermonde matrix.

We will show that this step is also O(n log n)

Note, each xk is a primitive root of unity

1-n

1

0

1

1-n
1-n

2
1-n1-n

1-n
1

2
11

1-n
0

2
00

1-n

1

0

y

...

y

y

x...xx1

...............

x...xx1

x...xx1

a

...

a

a

Inverse Vandermonde

Theorem.

where wn = 1.

)
w

1
V(

n

1
(w)V 1

8

Inverse Vandermonde

Let V* be V where w -> 1/w.

Compute V*.V Each element of the product is

}w,...,w,w{1, . }w,...,w,w{1, 1)j(n2jj1)i(n2ii

i)-1)(j(ni)-2(jij w...ww1

1)-1)(n-(n1)-2(n1-n

1-n2

w...ww1

...............

w...ww1

1...111

V(w)

Inverse Vandermonde

Recall
1n

0k

n
k1n2

x1

x1
xx...xx1

It follows, that

ni).V)(i,*(V

0i)j.V)(i,*(V

V*.V = n I

V(1/w).V(w) = n I

i)-1)(j(ni)-2(jij w...ww1j).V)(i,*(V

FFT History

Tukey derived the basic reduction while in a meeting of

President Kennedy's Science Advisory Committee for off-

shore detection of nuclear tests in the Soviet Union.

The idea was to analyze time series obtained from

seismometers. Other possible applications to national
security included the long-range acoustic detection of
nuclear submarines.

Cooley and Tukey's paper 1965

It was known to Gauss, 1805.

High Level Idea

To compute the product A(x)B(x) of polynomials

1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix

2) multiply A(xk)B(xk),

3) then find the polynomial using Lagrange’s
interpolation via the Vandermonde matrix

O(n log n)

O(n)

O(n log n)

9

Polynomial multiplication

1n10

1n10

b,...,b,b

a,...,a,a

2-2n

0k

k
kxcC(x)

))B(wA(w..,A(w)B(w),.A(1)B(1), 12n1-2n

Point-value multiplication

FFT

Inverse FFT

)B(w),...,B(wB(w),B(1),

)A(w),...,A(wA(w),A(1),
12n2

12n2

FFT in place

Let n = 8

The right column is a

bit reversal!.

The recursive algorithm can simply call on the left and right

halves, rather than on the odd and even indices.

All DSP processors include a hardware bit reversal capability

Discrete Fourier Transform

DFT converts a set of sample points into another

set ordered by frequencies. It reveals periodicities

in input data.

A DFT of {a0,a1,…,an-1} is defined by

where wn = 1. In a matrix form V.a = b

FFT is an algorithm for computing DFT.

1n

0k

j k
kj wab

Convolution
The convolution of two vectors ak and bk is a third

vector c = ab which represents an overlap

between the two vectors.

The Convolution Theorem says that the DFT of

a convolution of two vectors is the point-wise

product of the DFT of the two vectors

DFT(b) DFT(a)b)DFT(a

-k
k-jkj bac

1n

0k
k-jkj bac

10

Convolution

DFT(b) DFT(a)b)DFT(a

It follows, using FFT we can compute convolution in

O(n log n).

Note that inverse DFT is just a regular DFT with w

replaced by w-1.

DFT(b)) (DFT(a)DFTba -1

Polynomial multiplication

this is just a convolution of two vectors a and b

1-n

0k

k
kxaA(x)

1-n

0k

k
kxbB(x)

k

0j
j-kjk bac

2-2n

0k

k
kxcA(x)B(x)

Finite Fields (mod prime p)

Consider a set of powers of 2

1,2,4,8,16,32,64,128

modulo p=17

How do we find such prime p?

