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Fourier  
(1768 –1830) 

Gauss  
(1777 – 1855) 

Lagrange  
(1736 –1813) 

High Level Idea 

To compute the product A(x)B(x) of polynomials 
 

1) evaluate A(x) and B(x) at roots of unity, using 
the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the Vandermonde matrix 

O(n log n) 

O(n) 

O(n log n) 

Computing Polynomials 

Given a polynomial of degree n.  

What is the complexity of computing its value at 

a single point, A(x0)? 

x)...)ax(a...x(ax(aaA(x) n1n210

Horner’s Rule: O(n) 

n

0k

k
kxaA(x)

Computing Polynomials 

So we compute the single value in linear time. 

Therefore, it takes O(n2) to compute a polynomial 

of degree n at n points. 

In the next slides we will develop a new method 

that gives O(n log n) runtime complexity. 
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Computing Polynomials 

The key idea is to use the divide-and-conquer 

algorithm. We split a polynomial into two parts: 

with even and odd degree terms. 

A(x) = A0(x2) + x A1(x2)  

For example, 

1+2x+3x2+4x3+5x4+6x5=(1+3x2+5x4)+x(2+4x2+6x4) 

A0(x) = 1+3x+5x2               A1(x) = 2+4x+6x2 

Observe, computing A(-x) takes O(1). Thus, our 

special points are half pos and half neg. 

Worst-time Complexity 

Let T(n) be the complexity of computing a 

degree-n polynomial at 2n points. Thus 

This solves to O(n log n). 

The only problem is that the algorithm requires 

of having half positive and half negative points on 

each iteration. 

 O(n)  T(n/2) 2  T(n)

Very special points 

So, we need to find such a set of points that  

1) half of points are negative and the second half 

is positive 

2) this property holds after squaring (on each 

iteration) 

A(x) = A0(x2) + x A1(x2)  

Roots of Unity 

The n-th roots of unity are points on the 

complex unit circle every 2/n radians apart 

+1 -1 

+i 

-i 

 

k=0,1,…,n-1 

The angle =2 π/n  

They are defined as solutions to zn = 1. 

k/n  2  ie z
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Roots of Unity 

They are defined as solutions to zn = 1. 

Here is n = 8 

+1 -1 

+i 

-i 

Complex numbers on a unit circle are represented 

by z = ei=cos() + i sin() 

π/4 ie i ii

 i  ii

 

Roots of Unity: n = 8 

Let w = i, then roots of z8 = 1 can be written as 

1, w, w2, w3, w4, w5, w6, w7 

Since i2 = -1, and thus w4 = -1,  they can also be 

written as  

1, w, w2, w3, -1, -w, -w2, -w3 

Let us take a half and square them 

(1, w, w2, w3)2 = (1, w2, w4, w6) = (1, w2, -1, -w2) 

(1, w2)2 = (1, w4) = (1, -1) 
Do it again 

Computing Polynomials 

Our task to compute a polynomial at n points: 

A(1), A(w), A(w2),…, A(wn-1) 

Given a polynomial 

where wn = 1. 

We can write these computations in a matrix form! 

And thus compute all of then at once! 

1-n

0k

k
kxaA(x)

Computing Polynomials 

This is the Vandermonde matrix (with x0=1). 

We will prove that the above matrix 

multiplication can be done in O(n log n) 

1-n

0k

k
kxaA(x)

1-n

1

0

1)-1)(n- (n2-2n1-n

n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)
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Lagrange’s Interpolation 
formula can be represented 

via the Vandermonde Matrix. 

Polynomial evaluation is also 
computed via the 

Vandermonde Matrix.   

Primitive Roots of Unity 

Definition: A complex number w is called a  

n-th primitive root of unity if 

1)  wn = 1 

2)  wp ≠ 1, for p = 1, .2, …, n-1 

Roots of Unity 

Claim 1: Let w be a primitive root of zn =1 then 

Proof. Multiply it by w 

1-n

0k

k 0w

1-n

0k

1-nk )w...ww(1ww

since wn=1 

1n

0k

kn1n2 www...ww

Roots of Unity 

Claim 2: Let w be a primitive root of zn =1 and  

p = 1, …, n-1 then 

Proof.  

1-n

0k

p k 0w

0
1w

11

1w

1w
ww p

p1-n

0k

1n

0k
p

np
kpp k
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Modular Arithmetic 

Consider a set of powers of 2 

1,2,4,8,16,32,64,128 

modulo 17 

1,2,4,8,-1,-2,-4,-8 

Square and then do mod 17 again 

{1,2,4,8}^2 = {1, 4, 16, 64} ={1,4,-1,-4}  

Computing Polynomials 

Consider n = 4 (intuition) 

1-n

0k

k
kxaA(x)

1-n

1

0

1)-1)(n-(n1)-2(n1-n

1-n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

Computing Polynomials, n = 4 

V4 

3

2

1

0

a

a

a

a

i1i1

1111

i1i1

1111

swap 

22

22

V
i0

01
V

V
i0

01
V

3

1

2

0

a

a

a

a

ii11

1111

ii11

1111
even 

odd 

V2 

Computing Polynomials 

oddnnevenn

oddnnevenn

odd

even

nnn

nnn
2n aVDaV

aVDaV

a

a

VDV

VDV
V

where Dn is a diagonal matrix 

.

w...00

0...00

0...w0

0...01

D

1n

n

In general case, that can be written as a block matrix 
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Proof 

Consider j-th row 

1-n

0k

k
kxaA(x)

1-n

0k
k

k j j aw)A(w
odd is k   even is k

1-n

1

0

1)-1)(n-(n1)-2(n1-n

1-n2

1-n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

Computing Polynomials 
1-n/2

0k
12k

1)(2k j 
1-n/2

0k
2k

2k j j awaw)A(w

Let wn denote a root of zn = 1.  

Since wn
2 = wn/2, (it follows from (z2)n/2 = zn 

(j)Fw(j)F 2
j
n1

here Fj is a n/2 size problem. 

1-n/2

0k
12k

k j
n/2

j
n

1-n/2

0k
2k

k j
n/2

j awwaw)A(w

Computing Polynomials 

1-n/2

0k
12k

k j
n/2

j
n

1-n/2

0k
2k

k j
n/2

j awwaw)A(w

Let us compute  )A(w n/2j

Observe 
j
n/2

n/2j
n/2 ww and 1-wn/2

n
for even n 

Periodic 

property 
Symmetry

property 

1-n/2

0k
12k

k n/2)(j
n/2

n/2j
n

1-n/2

0k
2k

k n/2)(j
n/2

n/2j awwaw)A(w

Computing Polynomials 

1-n/2 ..., 1, 0,  j (j),F w(j)F)A(w 2
j
n1

j

This outlines the divide and conquer algorithm. 

Therefore, V.a can be computed in O(n log n) 

1-n/2 ..., 1, 0,  j (j),F w(j)F)A(w 2
j
n1

n/2j
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Computing Polynomials 

FFT(A, m, w) {  

if (m==1) return vector (a_0)  

else {  

  A_even = (a_0, a_2, ..., a_{m-2})  

  A_odd = (a_1, a_3, ..., a_{m-1})  

  F_even = FFT(A_even, m/2, w^2)  

  F_odd = FFT(A_odd, m/2, w^2)  

  x = 1   

  for (j=0; j < m/2; ++j) {  

    F[j] = F_even[j] + x*F_odd[j]  

    F[j+m/2] = F_even[j] - x*F_odd[j]     

    x = x * w  

  }  

return F } 

High Level Idea 

To compute the product A(x)B(x) of polynomials 
 

1) evaluate A(x) and B(x) at roots of unity, using 
the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the inverse Vandermonde 
matrix 

O(n log n) 

O(n) 

O(n log n) 

Complexity of Interpolation  

We know that the complexity of interpolation 

depends on how fast can we inverse the 

Vandermonde matrix. 

We will show that this step is also O(n log n) 

Note, each xk is a primitive root of unity 

1-n

1

0

1

1-n
1-n

2
1-n1-n

1-n
1

2
11

1-n
0

2
00

1-n

1

0

y

...

y

y

x...xx1

...............

x...xx1

x...xx1

a

...

a

a

Inverse Vandermonde 

Theorem. 

where wn = 1. 

)
w

1
V(

n

1
(w)V 1
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Inverse Vandermonde 

Let V* be V where w -> 1/w. 

Compute V*.V Each element of the product is 

}w,...,w,w{1, . }w,...,w,w{1, 1)j(n2jj1)i(n2ii

i)-1)(j(ni)-2(jij w...ww1

1)-1)(n-(n1)-2(n1-n

1-n2

w...ww1

...............

w...ww1

1...111

V(w)

Inverse Vandermonde 

Recall 
1n

0k

n
k1n2

x1

x1
xx...xx1

It follows, that 

ni).V)(i,*(V

0i)j.V)(i,*(V

V*.V = n I 

V(1/w).V(w) = n I 

i)-1)(j(ni)-2(jij w...ww1j).V)(i,*(V

FFT History 

Tukey derived the basic reduction while in a meeting of  

President Kennedy's Science Advisory Committee  for off- 

shore detection of nuclear tests in the Soviet Union. 

The idea was to analyze time series obtained from  

seismometers. Other possible applications to national  
security included the long-range acoustic detection of  
nuclear submarines. 

Cooley and Tukey's paper 1965 

It was known to Gauss, 1805. 

High Level Idea 

To compute the product A(x)B(x) of polynomials 
 

1) evaluate A(x) and B(x) at roots of unity, using 
the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the Vandermonde matrix 

O(n log n) 

O(n) 

O(n log n) 
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Polynomial multiplication 

1n10

1n10

b,...,b,b

a,...,a,a

2-2n

0k

k
kxcC(x)

))B(wA(w..,A(w)B(w),.A(1)B(1), 12n1-2n

Point-value multiplication 

FFT 

Inverse FFT 

)B(w),...,B(wB(w),B(1),

)A(w),...,A(wA(w),A(1),
12n2

12n2

FFT in place 

Let n = 8  

The right column is a 

bit reversal!.   

The recursive algorithm can simply call on the left and right 

halves, rather than on the odd and even indices. 

All DSP processors include a hardware bit reversal capability 

Discrete Fourier Transform 

DFT converts a set of sample points into another 

set ordered by frequencies. It reveals periodicities 

in input data. 

A DFT of {a0,a1,…,an-1} is defined by 

where wn = 1. In a matrix form V.a = b 

FFT is an algorithm for computing DFT. 

1n

0k

j k
kj wab

Convolution 
The convolution of two vectors ak and bk is a third 

vector c = ab which represents an overlap 

between the two vectors.  

The Convolution Theorem says that the DFT of 

a convolution of two vectors is the point-wise 

product of the DFT of the two vectors 

DFT(b) DFT(a)b)DFT(a

-k
k-jkj bac

1n

0k
k-jkj bac
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Convolution 

DFT(b) DFT(a)b)DFT(a

It follows, using FFT we can compute convolution in 

O(n log n). 

Note that inverse DFT is just a regular DFT with w 

replaced by w-1. 

DFT(b)) (DFT(a)DFTba -1

Polynomial multiplication 

this is just a convolution of two vectors a and b 

1-n

0k

k
kxaA(x)

1-n

0k

k
kxbB(x)

k

0j
j-kjk bac

2-2n

0k

k
kxcA(x)B(x)

Finite Fields (mod prime p) 

Consider a set of powers of 2 

1,2,4,8,16,32,64,128 

modulo p=17 

How do we find such prime p? 


