Algorithm Design and Analysis
Victor Adamchik CS 15-451 Spring 2015

Lecture 3 Jan 21, 2015 Carnegie Mellon University

Fast Fourier Transform

Gauss Lagrange Fourier
(1777 - 1855) (1736 -1813) (1768 -1830)

High Level Idea

To compute the product A(x)B(x) of polynomials
O(n log n)
1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix
2) multiply A(x,)B(xy), o)

3) then find the polynomial using Lagrange's
interpolation via the Vandermonde matrix

O(n log n)

Computing Polynomials

Given a polynomial of degree n.
A(X)=> ax"
k0

What is the complexity of computing its value at
a single point, A(x,)?

Horner's Rule: O(n)

A(X)=a, +x(a, + x(a, +...+ x(a, ; +a,X)...)

Computing Polynomials

So we compute the single value in linear time.

Therefore, it takes O(n?) to compute a polynomial
of degree n at h points.

In the next slides we will develop a new method
that gives O(n log n) runtime complexity.




Computing Polynomials

The key idea is to use the divide-and-conquer
algorithm. We split a polynomial into two parts:
with even and odd degree fterms.

A(X) = Ag(x?) + X Ay(x?)
For example,
1+2x+3x2+4x3+5x4+6x5=(1+3x2+5x4)+x(2+4x2+6x*)
Ag(x) = 1+3x+5x2 Ai(x) = 2+4x+6x2

Observe, computing A(-x) takes O(1). Thus, our
special points are half pos and half neg.

Worst-time Complexity

Let T(n) be the complexity of computing a
degree-n polynomial at 2n points. Thus

T(n)=2T(n/2)+ O(n)
This solves to O(n log n).
The only problem is that the algorithm requires

of having half positive and half negative points on
each iteration.

Very special points
A(X) = Ag(X?) + X A(x?)

So, we need to find such a set of points that

1) half of points are negative and the second half
is positive

2) this property holds after squaring (on each
iteration)

Roots of Unity

They are defined as solutions to z" = 1.

The n-th roots of unity are points on the
complex unit circle every 2z/n radians apart

i2zk/
Z=€' Fn +i

k=0,1,..,n-1 fv\
-1 ) +1
The angle ¢=2 /n K‘/




Roots of Unity

They are defined as solutions to z" = 1.

NERY
L

Complex numbers on a unit circle are represented
by z = e=cos(¢) + i sin(¢)

Hereisn=8

Roots of Unity: n=8

Let w = /i, then roots of z8 = 1 can be written as
1, w, w2, w3, w, wo, wé, w’”
Since i = -1, and thus w* = -1, they can also be
written as
1, w,w? w3, -1, -w, -w2, -w3
Let us take a half and square them
(1, w, w2, w3)2=(1, w2, w4, wb)=(1,w?, -1, -w?)

Do it again
(1,w22=(1,whH=(1,-1)

Computing Polynomials

Given a polynomial
n-1
A(x) = ax"
k=0

Our task to compute a polynomial at n points:
A1), Aw), AW?)...., A(w?)

where wh = 1.

We can write these computations in a matrix form!
And thus compute all of then at oncel!

Computing Polynomials A(X) = "iquk
k=0

AD Y (1 1 1 1 Y
Aw) | |1 w W oW Q
A(;A','n.l) 1w W e 01

This is the Vandermonde matrix (with x,=1).

We will prove that the above matrix
multiplication can be done in O(n log n)




r e

Lagrange's Interpolation
formula can be represented
via the Vandermonde Matrix,

Polynomial evaluation is also
computed via the
Vandermonde Matrix,

Primitive Roots of Unity

Definition: A complex number w is called a

n-th primitive root of unity if
1) wn=1

2) wzl forp=1,.2,.,n-1

Roots of Unity
Claim 1: Let w be a primitive root of z" =1 then

-1
k _
w =0 since wn=1

>

x
o

Proof. Multiply it by
n-1
wY wh=w(l+w+..+w') =
k=0

n-1
=wH+w W W =Y w
k=0

Roots of Unity

Claim 2: Let w be a primitive root of z" =1 and

p=1,..,n-1then

n-1

oo ok o1 1P_1




Modular Arithmetic
Consider a set of powers of 2
1,2,4,8,16,32,64,128
modulo 17
Square and then do mod 17 again

{12,48}72={1,4,16,64}={1,4,-1,-4}

Computing Polynomials A(X) = "Z'I:kak
k=0
AD Y (11 1 1 Ya
Aw) | |1 w W e W q
Ay (1w ween e | o

Consider n = 4 (intuition)

Computing Polynomials, n = 4

swap v
Vs :

=

—_ e e

Computing Polynomials
In general case, that can be written as a block matrix
v, - [Vn OV; j{ﬂm ] _ [Vnaeven +Dn\/nﬂodd]
Vi -DViN G ViGeren ~DViGoug

where D, is a diagonal matrix

10 0]

0]
D, oI

1

10
|0
0 w

O O =




A Y (1 1 1 1 Ya
A(w) 1 w W oW q,

wa DD L g

n-1

A(Wn—l) 1 wn—l W2(n—1)
Consider j-th row

A(wj)znz—llekak = 2+ 2

kiseven kisodd

Computing Polynomials

NS ek & i (2k+1)
+
AW) =D wiay + 3w Ve,
k=0 k=0
Let w, denote a root of z"=1.

Since w,2 = w,,, (it follows from (z2)"/2 = zn

o RZZ N ‘ e
AW = 3 WG + W3 D WGy =R () + Wi (j

k=0 k=0

here F; is a n/2 size problem.

Computing Polynomials

. n/2-1 K n/2-1 K
iy _ i i i
Aw') = an/zazk W, an/202k+l
k=0 k=0

Let us compute  A(w'™?)

n/2-1 n/2-1
jn/2y _ (j+n/2)k jn/2 (j+n/2)k
Aw™) = an/z Qo + Wy an/z ok
k=0 k=0

p
Observe Wy;'" =W, and w"2=-1 forevenn
Periodic Symmetry

property

pronerty

Computing Polynomials
AW)=R()+w F(j), j=0.1,..,n/2-1
AW ) =R(§)-w K(). j=0.1,..,n/2-1
This outlines the divide and conquer algorithm.

Therefore, V.a can be computed in O(n log n)




Computing Polynomials

FFT(A, m, w) {

if (m==1) return vector (a 0)

else {
A even = (a 0, a 2, ..., a_{m-2})
A odd = (a1, a 3, ..., a {m-1})

F even = FFT(A even, m/2, w"2)
F odd = FFT(A odd, m/2, w"2)
x =1

for (3J=0; j < m/2; ++73) |

F[j] = F_even[]j] + x*F _odd[]]
Flj+m/2] = F even[j] - x*F odd[]]
X =x *w
}
return F }

High Level Idea

To compute the product A(x)B(x) of polynomials
O(n log n)
1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix

2) multiply A(x)B(xy), o(n)

3) then find the polynomial using Lagrange's
interpolation via the inverse Vandermonde
matrix

O(n log n)

Complexity of Interpolation

-1
2 -1
a, 1 X, X5 . Xg Yo
| |1 x x . x| |wn
1 2 n-1
an-l anl xn—l oo anl Yr\-l

We know that the complexity of interpolation
depends on how fast can we inverse the
Vandermonde matrix.

We will show that this step is also O(n log n)
Note, each x, is a primitive root of unity

Inverse Vandermonde

Theorem.
V)= V()
n w

where wh= 1.




Inverse Vandermonde

1 1 1 1
1 2
V(w) = W W
1 M;l{.l wa'i@.n "‘;V(nii;m.l)

Let V* be V where w -> 1/w.
Compute V*V  Each element of the product is
{w w2, wieDy {1,w,wi,. we}

=1+w WP 4w

Inverse Vandermonde

VAV =1 wh WS 060

Recall
L 1-x"
Tex+xC 4. +x =) X =
k=0 1-x
It follows, that VEV=nT

(V*.V)(i,i)=n

(V*.V)(i,j=i)=0 V(W/w)V(w)=nT

FFT History

Cooley and Tukey's paper 1965
\ . It was known to Gauss, 1805.
A
Tukey derived the basic reduction while in a meeting of
President Kennedy's Science Advisory Committee for off-
shore detection of nuclear tests in the Soviet Union.

The idea was to analyze time series obtained from
seismometers. Other possible applications to national
security included the long-range acoustic detection of
nuclear submarines.

High Level Idea

To compute the product A(x)B(x) of polynomials
O(nlog n)
1) evaluate A(x) and B(x) at roots of unity, using
the Vandermonde matrix
2) multiply A(x,)B(x), o)

3) then find the polynomial using Lagrange's
interpolation via the Vandermonde matrix

O(n log n)




Polynomial multiplication
ay,qy,..., 0,4
by.bi... 0,

A(1),A(wW),A(W?),..., A(W?"™)
B(1),B(w),B(wW?),...,B(w*"™)
Point-value multiplication
A(DB(1),A(w)B(W),..., A(W*™)B(w*™™)

Inverse FFT

FFT

2n-2

C(x)=> X"

FFT in place

o [ooo 000 ooo] ©
Letn=8

1 001 010 >< 100 4

2 |omw 100 o] 2
The right column is a 3 fon EA (el ©
bit reversall. a |0 To1] 1] 1

5 101 [eh1] >< 101 5

6 |10 101 [on] 3

7 |m 11 51 7

The recursive algorithm can simply call on the left and right
halves, rather than on the odd and even indices.

All DSP processors include a hardware bit reversal capability

Discrete Fourier Transform

DFT converts a set of sample points into another
set ordered by frequencies. It reveals periodicities
in input data.

A DFT of {ay,4,..,0,.1} is defined by

n-1
_ kj
b, = lgakw

wherewh=1. Inamatrix formV.a=b

FFT is an algorithm for computing DFT.

Convolution

The convolution of two vectors a, and b, is a third
vector ¢ = a®b which represents an overlap
between the two vectors.

n-1 ©
CJ = ;Clkbj_k CJ = kz akbj—k

The Convolution Theorem says that the DFT of
a convolution of two vectors is the point-wise
product of the DFT of the two vectors

DFT(a®b)=DFT(a) DFT(b)




Convolution

DFT(a®b)=DFT(a) DFT(b)
a®b=DFT(DFT(a)DF T(b))

It follows, using FFT we can compute convolution in
O(n log n).

Note that inverse DFT is just a regular DFT with w
replaced by wl.

Polynomial multiplication
n-1 n-1
A(X)=Y ax"  B(x)=> bx"
k=0 k=0

A(X)B(x) = chkx"

this is just a convolution of two vectors a and b

Finite Fields (mod prime p)
Consider a set of powers of 2
1,2,48,16,32,64,128

modulo p=17

How do we find such prime p?

10



