Lecture 1: Introduction and Median Finding

Staff

Professors:

Danny Sleator

Elaine Shi

TAs:

Joel	Abby	Aditya	Efe	Jonathan
Manning	Li	Sundaram	Cekirage	Liu
Yoseph		Nick	Summit	
Mak		Grill	Wei	

- Prof. Shi
- Respected MadamRespected Sir

Grading and Course Policies

• All available here:

https://www.cs.cmu.edu/~15451-s23/policies.html

6 Written Homeworks	30% (5% each)
3 Oral Homeworks	12% (4% each)
Recitation Attendance	3%
Midterm exams (in-class times)	30% (15% each)
Final exam	25%

Homework

- Written HW: Each HW has 3-4 problems
- Programming Problems: Typically, one problem is a programming problem – submit via Autolab (languages accepted are Java, C, C++, Ocaml, SML)

• **Oral HW:** For oral HWs you can collaborate, but write the programming problem yourself (unless otherwise noted).

Homework submission

• Submit on Gradescope/Autolab by 11:59PM on the Wednesday following release

• Grace day policy: 2 for written and 2 for programming (see course webpage)

• HW1 posted today.

Office hour

Two options:

- In person: Danny and TAs' OH, sign up using OHQ,
- In person or remote: Elaine's OH, sign up for a 15-min slot on youcanbookme

Goals of the Course

Design and analyze algorithms!

 Algorithms: dynamic programming, divide-and-conquer, hashing and data structures, randomization, network flows, linear programming, approximation algorithms

 Analysis: recurrences, probabilistic analysis, amortized analysis, potential functions

• New Models: online algorithms, data streams

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

- Composability: if we know an algorithm runs in time at most T on any input, don't have to worry what kinds of inputs we run it on
- Scaling: how does the time grow as the input size grows?
- Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array of distinct numbers

 $a_1, a_2, ..., a_n$

and want the index i for which there are exactly $\lfloor n/2 \rfloor$ numbers larger than a_i

Example: Median Finding

• In the median-finding problem, we have an array of distinct numbers

 a_1, a_2, \dots, a_n

and want the index i for which there are exactly $\lfloor n/2 \rfloor$ numbers larger than a_i

• How can we find the median?

How can we find the median?

Naive idea 1: check if each element is median. Runtime? (h^2)

How can we find the median?

Naive idea 1: check if each element is median. Runtime? $O(n^2)$

Naive idea 2: sort the array (MergeSort or QuickSort) Runtime? $(n \mid 0 \leq n)$

Can we do better?

Naive idea 1: check if each element is median. Runtime?

Naive idea 2: sort the array (MergeSort or QuickSort) Runtime?

QuickSelect Algorithm to Find the k-th Smallest Number

- Assume $a_1, a_2, ..., a_n$ are all distinct for simplicity
- Choose a random element a_i in the list call this the "pivot"
- Compare each a_i to a_i
 - Let LESS \neq { a_i such that $a_i < a_i$ }
 - Let GREATER = $\{a_i \text{ such that } a_i > a_i\}$
- recurse on LESS • $I(k \leq |LESS|)$ find the k-th mallest element in LESS
- If k = |LESS| + 1, output the pivot a_i
- Else find the (k-|LESS|-1)-th smallest item in GREATER

PREMITSE ON GREATER

QuickSelect Algorithm to Find the k-th Smallest Number

- Assume a_1, a_2, \dots, a_n are all distinct for simplicity
- Choose a random element \boldsymbol{a}_i in the list call this the "pivot"
- Compare each a_i to a_i
 - Let LESS = $\{a_j \text{ such that } a_j < a_i\}$
 - Let $GREATER = \{a_j \text{ such that } a_j > a_i\}$
- If $k \leq |LESS|$, find the k-th smallest element in LESS
- If k = |LESS| + 1, output the pivot a_i
- Else find the (k-|LESS|-1)-th smallest item in GREATER
- Similar to Randomized QuickSort, but only recurse on one side!

Theorem: the expected number of comparisons for QuickSelect is at most 4n

Incorrect Proof:

$$n + \frac{n}{2} + \frac{n}{4} + \cdots = O(n)$$

• Theorem: the expected number of comparisons for QuickSelect is at most 4n

- Theorem: the expected number of comparisons for QuickSelect is at most 4n
- T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
 T(n,k) is the same for any array!

- Theorem: the expected number of comparisons for QuickSelect is at most 4n
- T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
 - T(n,k) is the same for any array!
 - Let $T(n) = \max_{k} T(n, k)$

- Theorem: the expected number of comparisons for QuickSelect is at most 4n
- T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n

/) —

W.P.

W.P]-

find kth smallest

- T(n,k) is the same for any array!
- Let $T(n) = \max_{k} T(n, k)$

T(n) s a non-decreasing function of n • Can show by induction

- Theorem: the expected number of comparisons for QuickSelect is at most 4n
- T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
 - T(n,k) is the same for any array!
 - Let $T(n) = \max_{k} T(n, k)$
- T(n) is a non-decreasing function of n
 - Can show by induction
- Let's show T(n) < 4n by induction
- Base case: T(1) = 0 < 4
- Inductive hypothesis: T(i) < 4i for all $1 \le i \le n 1$

• Suppose we have an array of length n. Assume n is even for the moment

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

•
$$T(n) \le n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} T(i)$$

$$\leq n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} 4i$$
 by inductive hypothesis

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

•
$$T(n) \le n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} T(i)$$

 $\le n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} 4i$

 $< n - 1 + 4\left(\frac{3n}{4}\right)$

by inductive hypothesis

since the average
$$\frac{2}{n}\sum_{i=\frac{n}{2},\dots,n-1}i$$
 is at most $\frac{\frac{n}{2}+(n-1)}{2} < \frac{3n}{4}$

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

•
$$T(n) \le n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} T(i)$$

 $< n - 1 + 4\left(\frac{3n}{4}\right)$

 $\leq n - 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...,n-1} 4i$

by inductive hypothesis

since the average
$$\frac{2}{n}\sum_{i=\frac{n}{2},...,n-1}i$$
 is at most $\frac{\frac{n}{2}+(n-1)}{2} < \frac{3n}{4}$

< 4n

completing the induction

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

•
$$T(n) \le n-1 + \frac{1}{n}\Gamma\left(\frac{n-1}{2}\right) + \frac{2}{n}\sum_{i=\frac{n+1}{2},\dots,n-1}T(i)$$

comp
with
pivot

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

•
$$T(n) \le n - 1 + \frac{1}{n} \Gamma\left(\frac{n-1}{2}\right) + \frac{2}{n} \sum_{i=\frac{n+1}{2},...,n-1} T(i)$$

 $\le n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n} \sum_{i=\frac{n+1}{2},...,n-1} 4i$ by inductive hypothesis

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

•
$$T(n) \le n - 1 + \frac{1}{n}T\left(\frac{n-1}{2}\right) + \frac{2}{n}\sum_{i=\frac{n+1}{2},...,n-1}T(i)$$

 $\le n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n}\sum_{i=\frac{n+1}{2},...,n-1}4i$
 $\le n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n-1}\sum_{i=\frac{n+1}{2},...,n-1}4i$

by inductive hypothesis

there are (n-1)/2 terms to average so we can still upper bound by the average

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

•
$$T(n) \le n - 1 + \frac{1}{n}T\left(\frac{n-1}{2}\right) + \frac{2}{n}\sum_{i=\frac{n+1}{2},...,n-1}T(i)$$

 $\le n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n}\sum_{i=\frac{n+1}{2},...,n-1}4i$
 $\le n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n-1}\sum_{i=\frac{n+1}{2},...,n-1}4i$
 $\le n - 1 + 2 - \frac{2}{n} + 4((n-1) + \frac{n+1}{2})/2$

by inductive hypothesis

there are (n-1)/2 terms to average so we can still upper bound by the average

What About **Deterministic** Algorithms?

 Can we get an algorithm which does not use randomness and always performs O(n) comparisons?

What About **Deterministic** Algorithms?

- Can we get an algorithm which does not use randomness and always performs O(n) comparisons?
- Idea: suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\left\lfloor \frac{n}{2} \right\rfloor$

What About **Deterministic** Algorithms?

- Can we get an algorithm which does not use randomness and always performs O(n) comparisons?
- Idea: suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\lfloor \frac{n}{2} \rfloor$
- How to do that?
- Find the median and then partition around that
 - Um... finding the median is the original problem we want to solve....

Deterministically Finding a Pivot

- Idea: deterministically find a pivot with O(n) comparisons to partition the input into two pieces LESS and GREATER each of size at least 3n/10-1
- DeterministicSelect: Blum et.al.

medians

- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece
- Theorem: DeterministicSelect makes O(n) comparisons to find the k-th smallest item in an array of size n

Deterministically Finding a Pivot

 Idea: deterministically find a pivot with O(n) comparisons to partition the input into two pieces LESS and GREATER each of size at least 3n/10-1

Deterministically Finding a Pivot

 Idea: deterministically find a pivot with O(n) comparisons to partition the input into two pieces LESS and GREATER each of size at least 3n/10-1

• DeterministicSelect:

- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece

• DeterministicSelect:

- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece

• DeterministicSelect:

- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece
- Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
- Step 2 takes T(n/5) time
- Step 3 takes O(n) time

Claim: $|LESS| \ge 3n/10-1$ and $|GREATER| \ge 3n/10-1$

- Claim: $|LESS| \ge 3n/10-1$ and $|GREATER| \ge 3n/10-1$
- **Example 1:** If n = 15, we have three groups of 5:
 - {1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}
 - medians: 3 6 9 median of medians p: 6
- There are g = n/5 groups, and at least $\left[\frac{g}{2}\right]$ of them have at least 3 elements at most p. The number of elements less than or equal to p is at least $3\left[\frac{g}{2}\right] \ge \frac{3n}{10}$
- Also at least 3n/10 elements greater than or equal to p

• So
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$
, for a constant c > 0

IMPORTANT: + -----Cost Running Time of DeterministicSelect • $T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$ $C \cdot \frac{n}{c} + C \cdot$ $cn + \frac{9}{10}cn + \frac{81}{100}$ 103 CM $\frac{1}{5} \left(\frac{7}{10}\right)^{2}$ <u>7n</u> 10.2 \equiv \bigcirc (n)

• $T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$

,

• $T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$

,

