
Lecture 1: Introduction and
Median Finding

Staff

Danny Sleator Elaine Shi

Professors:

TAs:

Aditya
Sundaram

Joel
Manning

Yoseph
Mak

Abby
Li

Efe
Cekirage

Jonathan
Liu

Nick
Grill

Summit
Wei

Please call me “Elaine” or “Runting”

● Prof. Shi
● Respected Madam
● Respected Sir

Grading and Course Policies

• All available here:
https://www.cs.cmu.edu/~15451-s23/policies.html

6 Written Homeworks 30% (5% each)
3 Oral Homeworks 12% (4% each)
Recitation Attendance 3%
Midterm exams (in-class times) 30% (15% each)
Final exam 25%

Homework

• Written HW: Each HW has 3-4 problems

• Programming Problems: Typically, one problem is a
programming problem – submit via Autolab (languages
accepted are Java, C, C++, Ocaml, SML)

• Oral HW: For oral HWs you can collaborate, but write the
programming problem yourself (unless otherwise noted).

Homework submission

• Submit on Gradescope/Autolab by 11:59PM on the
Wednesday following release

• Grace day policy: 2 for written and 2 for
programming (see course webpage)

• HW1 posted today.

Office hour

Two options:

• In person: Danny and TAs’ OH, sign up using OHQ,

• In person or remote: Elaine’s OH, sign up for a
15-min slot on youcanbookme

Goals of the Course

 Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing
and data structures, randomization, network flows, linear
programming, approximation algorithms

• Analysis: recurrences, probabilistic analysis, amortized analysis,
potential functions

• New Models: online algorithms, data streams

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

• Composability: if we know an algorithm runs in time at most T on any input,
don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

• Composability: if we know an algorithm runs in time at most T on any input,
don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

Example: Median Finding

How can we find the median?

Naive idea 1: check if each element is median.
 Runtime?

How can we find the median?

Naive idea 1: check if each element is median.
 Runtime?

Naive idea 2: sort the array (MergeSort or QuickSort)
Runtime?

Can we do better?

Naive idea 1: check if each element is median.
 Runtime?

Naive idea 2: sort the array (MergeSort or QuickSort)
Runtime?

QuickSelect Algorithm to Find the k-th Smallest Number

QuickSelect Algorithm to Find the k-th Smallest Number

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Bounding the Running Time

Similar Analysis Holds for Odd n

Similar Analysis Holds for Odd n

Similar Analysis Holds for Odd n

Similar Analysis Holds for Odd n

Similar Analysis Holds for Odd n

What About Deterministic Algorithms?

What About Deterministic Algorithms?

What About Deterministic Algorithms?

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition
the input into two pieces LESS and GREATER each of size at least
3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition
the input into two pieces LESS and GREATER each of size at least
3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition
the input into two pieces LESS and GREATER each of size at least
3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Running Time of DeterministicSelect

Thank you!

