Lecture 1: Introduction and
Median Finding

Staff

Professors:

Danny Sleator

TAs:
Joel Abby Aditya Efe Jonathan
Manning Li Sundaram Cekirage Liu

Yoseph Nick Summit
Mak Grill Wei

Please call me “Elaine” or "Runting”

/lﬂ%

e Prof. Shi
e Respected Madam g &'

e Respected Sir i

e All available here:

6 Written Homeworks

3 Oral Homeworks

Recitation Attendance

Midterm exams (in-class times)
Final exam

30% (5% each)
12% (4% each)
3%

30% (15% each)
25%

* Written HW: Each HW has 3-4 problems

* Programming Problems: Typically, one problem is a
programming problem — submit via Autolab (languages
accepted are Java, C, C++, Ocaml, SML)

* Oral HW: For oral HWs you can collaborate, but write the
programming problem yourself (unless otherwise noted).

* Submit on Gradescope/Autolab by 11:59PM on the
Wednesday following release

* Grace day policy: 2 for written and 2 for
programming (see course webpage)

* HW1 posted today.

Two options:
* In person: Danny and TAs’ OH, sign up using OHQ,

* In person or remote: Elaine’s OH, sign up for a
15-min slot on youcanbookme

Design and analyze algorithms!

* Algorithms: dynamic programming, divide-and-conquer, hashing
and data structures, randomization, network flows, linear
programming, approximation algorithms

* Analysis: recurrences, probabilistic analysis, amortized analysis,
potential functions

* New Models: online algorithms, data streams

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

Want provable guarantees on the running time of algorithms
Why?

* Composability: if we know an algorithm runs in time at most T on any input,
don’t have to worry what kinds of inputs we run it on

* Scaling: how does the time grow as the input size grows?

* Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

* In the median-finding problem, we have an array of distinct numbers

dq,d9, ..., dp

and want the index i for which there are exactly |n/2] numbers larger than a;

Example: Median Finding

* In the median-finding problem, we have an array of distinct numbers

dq,dp, ..., dp
and want the index i for which there are exactly |[n/2] numbers larger than a;

* How can we find the median?

How can we find the median?

Naive idea 1: check if each element is median.

Runtime? OQ,,")

Naive idea 1: check if each element is median.
Runtime?

Naive idea 2: sort the array (MergeSort or QuickSort)
Runtime?

Can we do better?

Naive idea 1: check if each element is median.
Runtime?

Naive idea 2: sort the array (MergeSort or QuickSort)
Runtime?

QuickSelect Algorithm to Find the k-th Smallest Number

* Assume a4, a,, ..., ay are all distinct for simplicity

Choose a random elemen the list — call this the “pivot”

Compare each a;j to a;
* Le {a; such that a; < a;
. Le:ldf GREAT§= {aj such that a; > a;}
’ N (e Ul ONn L £ N
Ifk < |LESS)) find thek-th smallest element in LESS

If k = |[LESS| + 1, output the pivot a;
Else find the (k-|LESS|-1)-th smallest item in GREATER ™~
teeurse on GREATER

QuickSelect Algorithm to Find the k-th Smallest Number

Assume aq, a,, ..., a, are all distinct for simplicity

Choose a random element a; in the list — call this the “pivot”

Compare each a;j to a;
* Let LESS = {a; such that a; < a;}
* Let GREATER = {a; such that a; > a;}

If k < |LESS], find the k-th smallest element in LESS
If k = |[LESS| + 1, output the pivot a;
Else find the (k-|LESS|-1)-th smallest item in GREATER

Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

* Theorem: the expected number of comparisons for QuickSelect is at most 4n
N T T

Inwrmd Q7rao1':
V)

Yl*!’% gt = 00m)

Bounding the Running Time

* Theorem: the expected number of comparisons for QuickSelect is at most 4n

Bounding the Running Time

* Theorem: the expected number of comparisons for QuickSelect is at most 4n

* T(n,k) is the expected number of comparisons to find k-th smallestitem in an array of length n
* T(n,k) is the same for any array! _

Bounding the Running Time

* Theorem: the expected number of comparisons for QuickSelect is at most 4n

* T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
* T(n,k) is the same for any array!
e Let T(n) = max T(n, k)

MRS AAANAAS

Bounding the Running Time

* Theorem: the expected number of comparisons for QuickSelect is at most 4n

* T(n,k) is the expected number of comparisons to firtd k-th smallest itk in an array of length n
* T(n,k) is the same for any array!

e Let T(n) = max T(n, k)

's a non-decreasing function of n
an show by induction

Bounding the Running Time

Theorem: the expected number of comparisons for QuickSelect is at most 4n

T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
* T(n,k) is the same for any array!
e Let T(n) = max T(n, k)

T(n) is a non-decreasing function of n
* Can show by induction

Let’s showy induction

Basecase:T(1)=0<4

Inductive hypothesis: T(i) < 4diforalll1 <i<n-—-1

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment
—

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}

 Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}

 Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

onb r‘;é [argcr haH‘

* T(n) < ;;3 + Zi=g,...,n—1 T@) LESS GREATER
Homp |

g 4
! 3
2

V
W Q) 5

5
1| &

N e Ny

0

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}
* Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

2 .
e Tn)<n-—-1+ - Zi=§,...,n—1 T(i)

<n—-1+ Ezi 4i by inductive hypothesis

n
=E,...,n—1

Bounding the Running Time

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}
* Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

2 .
e Tn)<n-—-1+ - Zi=§,...,n—1 T(i)

<n—1+ %Zi 4i by inductive hypothesis

n
=E,...,n—1,

n
S+t(=1) 3

3n : 2 . >
<n—1+4 (”) since the average nzi=§,...,n—1l is at most - "

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* |LESS]| is uniformin the set {0, 1, 2, 3, ..., n-1}
 Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

2 .
* Tn)<n-1+ - Zizg,...,n—l T(i)

<n—1+ %Zi: 4i by inductive hypothesis

n
E,...,I’l—l

n
S+t(=1) 3

3 . 2 .
<n—1+4 (—n) since the average=).. n i isatmost 2
4 n “i=2,..n-1 2 4

< 4n completing the induction

Similar Analysis Holds for Odd n

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

* The probability the Iarger of |LESS| and |GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER| is in {(n+1)/2, ..., n-1}is 2/n

h=%
prob | Fss GREA
3‘: D 4
. | 3
; > 2 2
C3
{ 4_ 0

TER

r

24

Similar Analysis Holds for Odd n

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* The probability the larger of |LESS| and |GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER| is in {(n+1)/2, ..., n-1}is 2/n

T 0= 11 (5F) + 5 D, TO

(om
#W%F

@‘uﬂ'

Similar Analysis Holds for Odd n

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* The probability the larger of |LESS| and |GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER| is in {(n+1)/2, ..., n-1}is 2/n

1 n—1 2

1 4(n-1)
2

R

<n—1+

+ %Zi;l_ﬂ 4i by inductive hypothesis

-N=1 ———

Similar Analysis Holds for Odd n

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
* The probability the larger of |LESS| and |GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER| is in {(n+1)/2, ..., n-1}is 2/n
1 n—1 2 .
T =147 () + ST, TO)

2
1 4m-1) /Z<
<n—1+ - = ‘@h%ﬂ,...,n—l D by inductive hypothesis

4(n—-1)
2

41 there are (n-1)/2 terms to average so

<n—1+--
n
we can still upper bound by the average

2
+ n—1 Zi=nT+1,...,n—1

Similar Analysis Holds for Odd n

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

* The probability the larger of |LESS| and |GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER| is in {(n+1)/2, ..., n-1}is 2/n

e Tn)<n-—-1+- T()+ Z n+1"’n_1T(i)

2

—1+- . 4(n Dy Z _ne1 A by inductive hypothesis
e
<n-1+- 4(n2 D nilzhn_ﬂ oA there are (n-1)/2 terms to average so
’ we can still upper bound by the average
n+1

<n—1+2——+4((n—1)+—)/2 <4w

What About Deterministic Algorithms?

e Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

What About Deterministic Algorithms?

* Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

* |dea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size [2]

* Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

* |dea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size [gj

e How to do that?

* Find the median and then partition around that
* Um... finding the median is the original problem we want to solve....

*|dea: deterministically find a pivot witomparisons to partition

the input into two pieces LESS and GREATER each of size at least
3n/10-1

" .
* DeterministicSelect: 6‘“"" ef. a‘- & Med. aus

1. Group the array into n/5 groups of size 5 and find the median of each group

U
2. Recursively, find the\rlnedian of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER

4. Recurse on the appropriate piece

* Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of sizen —

* |dea: deterministically find a pivot with O(n) comparisons to partition
’éh%rapijt into two pieces LESS and GREATER each of size at least
n -

S—

«|dea: deterministically find a pivot with O(n) comparisons to partitio
the input into two pieces LESS and GREATER each of size at least

3n/10-1

—

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER

4. Recurse on the appropriate piece

Running Time of DeterministicSelect

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
Step 2 takes T(n/5) time
Step 3 takes O(n) time

Claim: |LESS| = 3n/10-1 and |GREATER| > 3n/10-1

Running Time of DeterministicSelect

| The pivot i
 Claim: |LESS| = 3n/10-1 and |GREATER| = 3n/10-1 ‘
— _ reaSona bl e

* Example 1: Ifn = 15, we have three groups of 5:
1,2,3) 10, 11}, {4, 5, Q 12, 13}, {7,8,9,14,15;}
medians: 3 6 9 .
median of medians p: 6 median orf W‘“"&“f

Running Time of DeterministicSelect

(Claim: ILESS| = 3n/10-1 and |GREATER| > 3n/10-1

 Example 1: If n = 15, we have three groups of 5:
{1, 2, 3,10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}
medians: 3 6 9
median of medians p: 6

* There are g = n/5 groups, and at least [%] of them have at least 3 elements at

most p. The number of elements less tnan or equal to p is at least

325

* Also at least 3n/10 elements greater than or equal to p

Running Time of DeterministicSelect

* DeterministicSelect: Om)._
@Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p T Lﬁ)

se p as a pivot to split into subarrays LESS and GREATER n)
4. Recurse on the appropriate plece — J.
T() wn = SCA
Steps 1-3 take O(n) + T(n/5) time S)

Since |LESS| = 3n/10-1 and |GREATER| = 3n/10-1, Step 4 takes at most T(7n/10) time

SoT(n)<cn+T()+T() for a constantc>0

TMARTANT : z+ 1<)

|0

.
* T(n) S@T(E)+T) n
10 @ y. TZ‘C"‘

on+ Lo o z

\J |90 > ® ® 10 _C.?C 0

"‘"0..0 /\)D

=0) YA ke e
o S (’i—oj*"

Running Time of DeterministicSelect

. T(n) Scn+T(§)+T(Z—2)

Running Time of DeterministicSelect

. T(n) Scn+T(§)+T(Z—2)

Thank you!

S
| ESS /Qm‘kef ¢ CB S
\\9 a\ \ Sr
—.2 ms2e)+ TGH

