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Please call me “Elaine” or “Runting”

● Prof. Shi
● Respected Madam
● Respected Sir



Grading and Course Policies

• All available here: 
https://www.cs.cmu.edu/~15451-s23/policies.html

6 Written Homeworks 30% (5% each) 
3 Oral Homeworks 12% (4% each) 
Recitation Attendance 3% 
Midterm exams (in-class times) 30% (15% each) 
Final exam 25%



Homework

• Written HW: Each HW has 3-4 problems

• Programming Problems: Typically, one problem is a 
programming problem – submit via Autolab (languages 
accepted are Java, C, C++, Ocaml, SML)

• Oral HW: For oral HWs you can collaborate, but write the 
programming problem yourself (unless otherwise noted). 



Homework submission

• Submit on Gradescope/Autolab by 11:59PM on the 
Wednesday following release

• Grace day policy: 2 for written and 2 for 
programming (see course webpage)

• HW1 posted today. 



Office hour

Two options: 

• In person: Danny and TAs’ OH, sign up using OHQ,

• In person or remote: Elaine’s OH, sign up for a 
15-min slot on youcanbookme



Goals of the Course

 Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing 
and data structures, randomization, network flows, linear 
programming, approximation algorithms

• Analysis: recurrences, probabilistic analysis, amortized analysis, 
potential functions

• New Models: online algorithms, data streams



Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

• Composability: if we know an algorithm runs in time at most T on any input, 
don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?
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How can we find the median?

Naive idea 1:  check if each element is median.  
 Runtime?
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Can we do better?

Naive idea 1:  check if each element is median.  
 Runtime?

Naive idea 2:  sort the array (MergeSort or QuickSort)
Runtime? 



QuickSelect Algorithm to Find the k-th Smallest Number

 



QuickSelect Algorithm to Find the k-th Smallest Number

 



Bounding the Running Time
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Similar Analysis Holds for Odd n
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What About Deterministic Algorithms?

 



What About Deterministic Algorithms?

 



What About Deterministic Algorithms?

 



Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition 
the input into two pieces LESS and GREATER each of size at least 
3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group

2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th 
smallest item in an array of size n
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Running Time of DeterministicSelect
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Thank you!


