
15-451/651: Design & Analysis of Algorithms September 1, 2022
Lecture #2: Concrete models and tight upper/lower bounds last changed: January 18, 2023

In this lecture, we will examine some simple, concrete models of computation, each with a precise definition
of what counts as a step, and try to get tight upper and lower bounds for a number of problems. Specific
models and problems examined in this lecture include:

- The number of comparisons needed to sort an array.

- The number of exchanges needed to sort an array.

- The number of comparisons needed to find the largest and second-largest elements in an array.

Objectives of this lecture

In this lecture, we want to:

- Understand the concept of a model of computation, with several examples (the comparison model,
the exchange model)

- Understand the definition of a lower bound in a specific model

- See some examples of how to prove lower bounds in specific models, specifically for sorting and
selection problems

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 8.1, Lower bounds for sorting

- DPV, Algorithms, Chapter 2.3, Mergesort (Page 59)

1 Terminology: Upper Bounds and Lower Bounds

In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems in several
different concrete models. Each model will specify exactly what operations may be performed on the input,
and how much they cost. Each model will have some operations that cost a certain amount (like performing
a comparison, or swapping a pair of elements), some that are free, and some that are not allowed at all.

Definition: Upper bound

By an upper bound of Un for some problem and some length n, we mean that there exists an algorithm
A that for every input x of length n costs at most Un.

A lower bound for some problem and some length n, is obtained by the negation of an upper bound for that
n. It says that some upper bound is not possible (for that value of n). If we take the above statement (in
italics) and negate it, we get the following. for every algorithm A there exists an input x of length n such
that A costs more than Un on input x. Rephrasing slightly:

Definition: Lower bound

By a lower bound of Ln for some problem and some length n, we mean that for any algorithm A
there exists an input x of length n on which A costs at least Ln steps.

1



These were definitions for a single value of n. Now a function f : N → R is an upper bound for a problem
if f(n) is an upper bound for this problem for every n ∈ N. And a function g(·) is an lower bound for a
problem if g(n) is a lower bound for this problem for every n.

The reason for this terminology is that if we think of our goal as being to understand the “true complexity”
of each problem, measured in terms of the best possible worst-case guarantee achievable by any algorithm,
then an upper bound of f(n) and lower bound of g(n) means that the true complexity is somewhere between
g(n) and f(n).

Finally, what is the cost of an algorithm? As we said before, that depends on the particular model of
computation we’re using. We will consider different models below, and show each has their own upper
and lower bounds. When you’re writing programs, you typically use rules-of-thumb to calculate the cost of
opetations (adding two integers costs 1, copying strings of length ` should cost ≈ `, etc) — we make this
precise using certain cost models.

2 Sorting in the comparison model

One natural model for examining problems like sorting is what is known as the comparison model.

Definition: Comparison Model

In the comparison model, we have an input consisting of n items (typically in some initial order). An
algorithm may compare two items (asking is ai < aj?) at a cost of 1. Moving the items around is
free. No other operations on the items are allowed (using them as indices, adding them, etc).

For the problem of sorting in the comparison model, the input is an array a = [a1, a2, . . . , an], and the output
is a permutation of the input π(a) = [aπ(1), aπ(2), . . . , aπ(n)] in which the elements are in increasing order.
We begin this lecture by showing the following lower bound for comparison-based sorting.

Theorem 1: Lower bound for sorting in the comparison model

Any deterministic comparison-based sorting algorithm must perform at least lg(n!) comparisons to
sort n elements in the worst case.a Specifically, for any deterministic comparison-based sorting
algorithm A, for all n ≥ 2 there exists an input I of size n such that A makes at least lg(n!) =
Ω(n log n) comparisons to sort I.

aAs is common in CS, we will use “lg” to mean “log2”.

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose a pivot as
in Quicksort, or split the input as in Mergesort — we need to somehow analyze any possible (comparison-
based) algorithm that might exist. We now present the proof, which uses a very nice information-theoretic
argument. (This proof is deceptively short: it’s worth thinking through each line and each assertion.)

Proof of Theorem 1. Let us begin with a simple general claim. Suppose you have some problem where there
are M possible different outputs the algorithm could require: e.g., for sorting by comparisons where the
output can be viewed as a specific permutation of the input, each possible permutation of the input is
possible, and hence M = n!. Suppose furthermore that for each of these outputs, there exists some input
under which it is the only correct answer. This is true for sorting. Then, we have a worst-case lower bound of
lgM . The reason is that the algorithm needs to find out which of these M outputs is the right one, and each
YES/NO question could be answered in away that removes at most half of the possibilities remaining from
consideration. (Why half? Because each comparison has a binary output, so it breaks the set of possibilities

2



into two parts. At least one of these parts contain at least half the possibilities.) So, in the worst case, it
takes at least lgM = lg n! steps to find the right answer.

The above is often called an “information theoretic” argument because we are in essence saying that we need
at least lg(M) = lg(n!) bits of information about the input before we can correctly decide what output we
need to produce.

What does lg(n!) look like? We have: lg(n!) = lg(n)+lg(n−1)+lg(n−2)+ ...+lg(1) < n lg(n) = O(n log n)
and lg(n!) = lg(n) + lg(n− 1) + lg(n− 2) + ...+ lg(1) > (n/2) lg(n/2) = Ω(n log n). So, lg(n!) = Θ(n log n).

However, since today’s theme is tight bounds, let’s be a little more precise. We can in particular use the fact
that n! ∈ [(n/e)n, nn] to get:

n lg n− n lg e < lg(n!) < n lg n
n lg n− 1.443n < lg(n!) < n lg n.

Since 1.433n is a low-order term, sometimes people will write this fact this as: lg(n!) = (n lg n)(1 − o(1)),
meaning that the ratio between lg(n!) and n lg n goes to 1 as n goes to infinity.

How Tight is this Bound? Assume n is a power of 2 — in fact, let’s assume this for the entire rest of
today’s lecture. Can you think of an algorithm that makes at most n lg n comparisons, and so is tight in the
leading term? In fact, there are several algorithms, including:

Binary insertion sort If we perform insertion-sort, using binary search to insert each new element, then
the number of comparisons made is at most

∑n
k=2dlg ke ≤ n lg n. Note that insertion-sort spends a lot

in moving items in the array to make room for each new element, and so is not especially efficient if
we count movement cost as well, but it does well in terms of comparisons.

Mergesort Merging two lists of n/2 elements each requires at most n − 1 comparisons. So, unrolling the
recurrence, we get (n− 1) + 2(n/2− 1) + 4(n/4− 1) + . . .+ n/2(2− 1) = n lg n− (n− 1) < n lg n.

3 A tree-based view: Decision trees

A handy way to visualize and analyze algorithms in the comparison model is to consider the decision tree
of the algorithm. A decision tree is a binary tree that is defined as follows.

Definition: Decision Tree

The decision tree is a way of representing an algorithm in the comparison model. It is a binary tree
such that:

- At the root node, it contains a list of all the possible valid outputs for the problem. For example,
for sorting, the root node contains all n! permutations

- Each internal node corresponds to a particular comparison operation, e.g., a5 < a6. The left child
of the node corresponds to the result of the comparison being true, and the right node corresponds
to it being false

- Each internal node consists of a list of possible valid outputs given the results of all of the comparison
operations of its ancestors

- Leaf nodes correspond to a single valid output

Note that very importantly, a decision tree corresponds to a specific algorithm, but does not depend on
the input to the algorithm (except that it may depend on the size of the input n). The decision tree encodes
the exact behavior of the algorithm, so given a decision tree, you could simulate the algorithm on any given

3



input by starting at the root, performing comparisons, and traveling down a path in the tree until you reach
a leaf, which is the output of the algorithm. You can think of it like a flowchart that represents the behavior
of the algorithm. Here is an example decision tree for some hypothetical sorting algorithm for n = 3.

𝒂𝟏 ≤ 𝒂𝟐 ≤ 𝒂𝟑
𝒂𝟏 ≤ 𝒂𝟑 ≤ 𝒂𝟐
𝒂𝟐 ≤ 𝒂𝟏 ≤ 𝒂𝟑
𝒂𝟐 ≤ 𝒂𝟑 ≤ 𝒂𝟏
𝒂𝟑 ≤ 𝒂𝟏 ≤ 𝒂𝟐
𝒂𝟑 ≤ 𝒂𝟐 ≤ 𝒂𝟏

𝒂𝟐 ≤ 𝒂𝟏 ≤ 𝒂𝟑
𝒂𝟐 ≤ 𝒂𝟑 ≤ 𝒂𝟏
𝒂𝟑 ≤ 𝒂𝟐 ≤ 𝒂𝟏

𝒂𝟏 ≤ 𝒂𝟐 ≤ 𝒂𝟑
𝒂𝟏 ≤ 𝒂𝟑 ≤ 𝒂𝟐
𝒂𝟑 ≤ 𝒂𝟏 ≤ 𝒂𝟐

𝑎2 ≤ 𝑎1

𝒂𝟐 ≤ 𝒂𝟏 ≤ 𝒂𝟑
𝒂𝟐 ≤ 𝒂𝟑 ≤ 𝒂𝟏

𝒂𝟑 ≤ 𝒂𝟐 ≤ 𝒂𝟏
𝒂𝟏 ≤ 𝒂𝟐 ≤ 𝒂𝟑
𝒂𝟏 ≤ 𝒂𝟑 ≤ 𝒂𝟐

𝒂𝟑 ≤ 𝒂𝟏 ≤ 𝒂𝟐

𝒂𝟐 ≤ 𝒂𝟏 ≤ 𝒂𝟑 𝒂𝟐 ≤ 𝒂𝟑 ≤ 𝒂𝟏 𝒂𝟏 ≤ 𝒂𝟐 ≤ 𝒂𝟑 𝒂𝟏 ≤ 𝒂𝟑 ≤ 𝒂𝟐

𝑎2 ≤ 𝑎3 𝑎1 ≤ 𝑎3

𝑎1 ≤ 𝑎3 𝑎2 ≤ 𝑎3
T

T

T
T

T

F

F

F

F

F

It turns out that decision trees can be a useful tool for analyzing lower bounds. We must keep in mind that
a decision tree always represents a particular algorithm, so to prove a lower bound, we must argue about the
structure of any possible decision tree for the problem. Observe that the worst-case number of comparisons
for the algorithm corresponds exactly to the longest root-to-leaf path, i.e., the height of the tree. Therefore,
if we can argue about the height of any possible decision tree, we have an argument for a lower bound! Let’s
see the sorting lower bound theorem from before proved using decision trees.

Proof of Theorem 1 using Decision Trees. There are n! possible sorted orders, each of which must appear as
a leaf in the tree. Let the height of the tree be denoted by h, and then note that a binary tree of height h
can not have more than 2h leaves. Therefore n! ≤ 2h and so taking the log of both sides gives us h ≥ lg n!
which implies that lg n! is a lower bound for the problem.

4 Selection in the comparison model

4.1 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in the comparison
model of computation?

Claim: Upper bound on select-max in the comparison model

n− 1 comparisons are sufficient to find the maximum of n elements.

Proof. Just scan left to right, keeping track of the largest element so far. This makes at most n − 1
comparisons.

4



Now, let’s try for a lower bound. One simple lower bound is that since there are n possible answers for the
location of the maximum element, our previous argument gives a lower bound of lg n. But clearly this is not
at all tight. Also, we have to look at all the elements (else the one not looked at may be larger than all the
ones we look at). But looking at all n elements could be done using n/2 comparisons; not tight either. In
fact, we can give a better lower bound of n− 1.

Claim: Lower bound on select-max in the comparison model

n− 1 comparisons are needed in the worst-case to find the maximum of n elements.

Proof. Suppose some algorithmA claims to find the maximum of n elements using less than n−1 comparisons.
Consider an arbitrary input of n distinct elements, and construct a graph in which we join two elements by
an edge if they are compared by A. If fewer than n− 1 comparisons are made, then this graph must have at
least two components. Suppose now that algorithm A outputs some element u as the maximum, where u is
in some component C1. In that case, pick a different component C2 and add a large positive number (e.g.,
the value of u) to every element in C2. This process does not change the result of any comparison made by
A, so on this new set of elements, algorithm A would still output u. Yet this now ensures that u is not the
maximum, so A must be incorrect.

Since the upper and lower bounds are equal, the bound of n − 1 is tight. Note that this argument was
different from the “information theoretic” bound we used for sorting. Here we showed that if the algorithm
makes “too few” comparisons on some input In and outputs out, we can give another input In′ where the
algorithms would do the same comparisons and receive the same answers to them, and hence also output
out, but out is the incorrect output for input In′.

4.2 An Adversary Argument

A slightly different lower bound argument comes from showing that if an algorithm makes “too few” com-
parisons, then an adversary can fool it into giving the incorrect answer. Here is a little example. We want
to show that any deterministic sorting algorithm on 3 elements must perform at least 3 comparisons in the
worst case. (This result follows from the information theoretic lower bound of dlg 3!e = 3, but let’s give a
different proof.)

If the algorithm does fewer than two comparisons, some element has not been looked at, and the algorithm
must be incorrect. So after the first comparison, the three elements are w the winner of the first query, l
the loser, and z the other guy. If the second query is between w and z, the adversary replies w > z; if it is
between l and z, the adversary replies l < z. Note that in either case, the algorithm must perform a third
query to be able to sort correctly.

In this kind of argument the goal is to construct an adversary Ada who will answer the algorithm’s compar-
isons in such a way that (a) all Ada’s answers are consistent with some input In, and (b) her answers make
the algorithm perform “many” comparisons.

4.3 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the second largest
of n elements? Again, let us assume that all elements are distinct.

Claim: Lower bound on select-second-max in the comparison model

n− 1 comparisons are needed in the worst-case to find the second-largest of n elements.

5



Proof. The same argument used in the lower bound for finding the maximum still holds.

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim: Upper bound #1 on select-second-max in the comparison model

2n− 3 comparisons are sufficient to find the second-largest of n elements.

Proof. Just find the largest using n − 1 comparisons, and then the largest of the remainder using n − 2
comparisons, for a total of 2n− 3 comparisons.

We now have a gap: n− 1 versus 2n− 3. It is not a huge gap: both are Θ(n), but remember today’s theme
is tight bounds. So, which do you think is closer to the truth? It turns out, we can reduce the upper bound
quite a bit:

Claim: Upper bound #2 on select-second-max in the comparison model

n+ lg n− 2 comparisons are sufficient to find the second-largest of n elements.

Proof. As a first step, let’s find the maximum element using n− 1 comparisons, but in a tennis-tournament
or playoff structure. That is, we group elements into pairs, finding the maximum in each pair, and recurse
on the maxima. E.g.,

6 4 2 1 8 7 3 5

6 2 8 5

6 8

8

Round 1

Round 2

Round 3

Now, given just what we know from comparisons so far, what can we say about possible locations for the
second-highest number (i.e., the second-best player)? The answer is that the second-best must have been
directly compared to the best, and lost.1 This means there are only lg n possibilities for the second-highest
number, and we can find the maximum of them making only lg(n)− 1 more comparisons.

At this point, we have a lower bound of n− 1 and an upper bound of n+ lg(n)− 2, so they are nearly tight.
It turns out that, in fact, the lower bound can be improved to exactly meet the upper bound.2

5 Sorting in the exchange model

Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we can swap any
pair of books we like. How many swaps do we need to sort all the books? Formally, we are considering the
problem of sorting in the exchange model.

1Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!), writing about
the proper way to award prizes in lawn tennis tournaments.

2First shown by Kislitsyn (1964).

6



Definition: The Exchange Model

In the exchange model, an input consists of an array of n items, and the only operation allowed on
the items is to swap a pair of them at a cost of 1 step. All other (planning) work is free: in particular,
the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in the exchange
model to sort an array of n items in the worst case?

Claim: Upper bound on sorting in the exchange model

n− 1 exchanges is sufficient.

Proof. For this we just need to give an algorithm. For instance, consider the algorithm that in step 1 puts
the smallest item in location 1, swapping it with whatever was originally there. Then in step 2 it swaps the
second-smallest item with whatever is currently in location 2, and so on (if in step k, the kth-smallest item
is already in the correct position then we just do a no-op). No step ever undoes any of the previous work,
so after n − 1 steps, the first n − 1 items are in the correct position. This means the nth item must be in
the correct position too.

But are n−1 exchanges necessary in the worst-case? If n is even, and no book is in its correct location, then
n/2 exchanges are clearly necessary to “touch” all books. But can we show a better lower bound than that?

Claim: Lower bound on sorting in the exchange model

In fact, n− 1 exchanges are necessary, in the worst case.

Proof. Here is how we can see it. Create a graph in which a directed edge (i, j) means that that the book
in location i must end up at location j. An example is given in Figure 1.

7

1

6

2

3

4

5

Figure 1: Graph for input [f c d e b a g]

This is a special kind of directed graph: it is a permutation — a set of cycles. In particular, every book
points to some location, perhaps its own location, and every location is pointed to by exactly one book. Now
consider the following points:

1. What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i1, j1) and (i2, j2) and we swap the elements in locations i1 and
i2. Then this causes those two edges to be replaced by edges (i2, j1) and (i1, j2) because now it is the
element in location i2 that needs to go to j1 and the element in i1 that needs to go to j2. This means
that if i1 and i2 were in the same cycle, that cycle now becomes two disjoint cycles.

7



2. What is the effect of exchanging any two elements that are in different cycles?

Answer: If we swap elements i1 and i2 that are in different cycles, then the same argument as above shows
that this merges those two cycles into one cycle.

3. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle, such as
[n, 1, 2, 3, 4, . . . , n − 1]. Each operation at best increases the number of cycles by 1 and in the end we need
to have n cycles. So, this input requires n− 1 operations.

8



6 Query models, and the evasiveness of connectivity

Optional content — Will not appear on the homeworks or the exams

To finish with something totally different, let’s look at the query complexity of determining if a graph is
connected. Assume we are given the adjacency matrix G for some n-node graph. That is, G[i, j] = 1 if
there is an edge between i and j, and G[i, j] = 0 otherwise. We consider a model in which we can query any
element of the matrix G in 1 step. All other computation is free. That is, imagine the graph matrix has
values written on little slips of paper, face down. In one step we can turn over any slip of paper. How many
slips of paper do we need to turn over to tell if G is connected?

Claim: Easy upper bound

n(n− 1)/2 queries are sufficient to determine if G is connected.

Proof. This just corresponds to querying every pair (i, j). Once we have done that, we know the entire graph
and can just compute for free to see if it is connected.

Interestingly, it turns out the simple upper-bound of querying every edge is a lower bound too. Because of
this, connectivity is called an “evasive” property of graphs.

Claim: Lower bound

n(n− 1)/2 =
(
n
2

)
queries are necessary to determine connectivity in the worst case.

Here are two proofs of this theorem.

Proof 1. We think of this as a game between two players: the evader and the querier. The querier asks a
sequence of questions of the form “Is there an edge between vertices x and y?”. For each question the evader
must answer the question. The goal of the evader is to force the querier to ask as many questions as possible.
We’ll give a strategy for the evader which forces the querier to ask

(
n
2

)
questions to determine if the graph

is connected.

The evader’s strategy will be to maintain the following invariant.

At any point in time the edges that have been declared to exist form a forest of trees involving
all the vertices of the graph. For each tree T all queries among the vertices of the T have already
been asked. And for every pair of trees T and T ′ in the forest there exists a pair (x, y) with
x ∈ T and y ∈ T ′ that has not been queried.

Note that until there is just one tree, the querier does not know if the graph is connected or not.

Initially each tree is just one vertex, and the invariant trivially holds. The evader maintains the invariant as
follows. If the query is for two vertices in the same tree, then the evader just gives the answer it gave before
to this query. Nothing changes and the invariant still holds.

Say the query is for vertices x and y in two different trees Tx and Ty. Then the evader determines if all
the other possible edges between Tx and Ty have already been queried. If that is the case, then the evader
answers 1 for “yes”, otherwise it answers 0 for “no”. Note that if it answers yes, (and joins the two trees)
then, by induction, all the edges within the set Tx

⋃
Ty have already been queried, and the invariant holds.

(If it answers “no” the invariant trivially still holds.)

9



At any point in time before there is just one tree it is not known if the graph is connected or not. Finally
when there is just one tree the graph is connected, but by that point all of the

(
n
2

)
the edges have been

queried.

Proof 2. Here is the strategy for the adversary: when the algorithm asks us to flip over a slip of paper, we
return the answer 0 unless that would force the graph to be disconnected, in which case we answer 1. (It
is not important to the argument, but we can figure this out by imagining that all un-turned slips of paper
are 1 and seeing if that graph is connected.) Now, here is the key claim:

Claim: we maintain the invariant that for any un-asked pair (u, v), the graph revealed so far has
no path from u to v.

Proof of claim: If there was, consider the last edge (u′, v′) revealed on that path. We could have
answered 0 for that and kept the same connectivity in the graph by having an edge (u, v). So,
that contradicts the definition of our adversary strategy.

Now, to finish the proof: Suppose an algorithm halts without examining every pair. Consider some unasked
pair (u, v). If the algorithm says “connected,” we reveal all-zeros for the remaining unasked edges and
then there is no path from u to v (by the key claim) so the algorithm is wrong. If the algorithm says
“disconnected,” we reveal all-ones for the remaining edges, and the algorithm is wrong by definition of our
adversary strategy. So, the algorithm must ask for all edges.

Ending Notes: Regarding Models of Computation

Most of real-world software programs are ran on Von Neumann architectures, which reflect the computers
we use today. Using complexity theoretic terms, this is called the Random Access Machine (RAM) model.
This is also the default model of computation that we use for analyzing algorithms. In the RAM model,
the primary metric we often care about is the running time of the algorithm. We also care about the space
consumption.

There are also other models of computation. For example, hardware circuitry use the “circuit” model of
computation. Interestingly, modern cryptographic techniques such as “computation on encrypted data” also
uses circuit to model the underlying computation. In the circuit model of computation, we care about the
circuit’s size and depth.

So why do we care about bounding the cost in the concrete models seen in class today, such as number
of comparisons and number of queries? Isn’t the RAM model the primary model of computation we care
about? There are many reasons why we care:

- Proving a lower bound in the concrete model often tells us the limit of a class of algorithms, e.g.,
comparison-based algorithms cannot sort an array in o(nlogn) cost, so if we want o(nlogn), we have
to use a non-comparison-based algorithm. This is very useful in algorithm design as a general guide as
well as sanity check.

- Lower bounds in a concrete model often tells us information-theoretic limits. For example, the query-
model lower bound for graphs tells us if the graph is stored on a server, and we want to determine
whether it’s connected, in the worst case we have to download all pairs of the adjacency matrix.

- Often times, not all operations are of the same cost. In these cases, we often care about optimizing the
cost of the most heavy-weight operation or building block. This approach is used a lot in analyzing and
improving the performance of practical systems and architectures. In cryptography, we often adopt
this approach too, e.g., public-key operations are more expensive than secret-key operations, so we
often focus on optimizing public-key operations.

10


	Terminology: Upper Bounds and Lower Bounds
	Sorting in the comparison model
	A tree-based view: Decision trees
	Selection in the comparison model
	Finding the maximum of n elements
	An Adversary Argument
	Finding the second-largest of n elements

	Sorting in the exchange model
	Query models, and the evasiveness of connectivity

