
Concrete Models and Tight
Upper and Lower Bounds

Elaine Shi

Concrete Models and Tight
Upper and Lower Bounds

Why do we care about lower bounds?

Concrete Models and Tight
Upper and Lower Bounds

What is “concrete models?”

Models of Computation

CPU

Memory

Random Access Machines (RAM) Circuits/Circuitry

most software today hardware,
cryptography

Metrics: time, space size, depth

Today: Concrete models of computation

focus on the cost of a specific type of operation

Today: Concrete models of computation

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?
(recall last lecture)

● Number of probes into a graph needed to
determine if the graph is connected?

Today: Concrete models of computation

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:
● we used # comparisons as the cost metric

Today: Concrete models of computation

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:
● we used # comparisons as the cost metric
● all *asymptotic* analysis also holds for the RAM model

Today: Concrete models of computation

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:
● we used # comparisons as the cost metric
● all *asymptotic* analysis also holds for the RAM model
● fun fact: possible to compute median in a linear-sized circuit,

but much more challenging [Lin-Shi, SODA’22]

Today: Concrete models of computation

focus on the cost of a specific type of operation

● don’t care whether the algorithm is actually
implemented as a RAM program or circuit

● don’t care about other costs (e.g., space, cost of
moving data round, etc)

Why do we care about costs in concrete models?

● Understand the limit of a class of algorithms
○ e.g., comparison-based sorting

● Understand information theoretic limits
○ e.g., number of probes into a graph to decide

connectivity

● Focus on heavy-weight operations
○ e.g., in crypto, public-key ops > secret-key ops

Formal Model for Capturing Cost

•An upper bound of f(n) means the algorithm takes at most f(n)
operations on any input of size n

•A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) operations on that input

Sorting in the Comparison Model

Sorting in the Comparison Model

Sorting in the Comparison Model

Sorting in the Comparison ModelExample for sorting

Array = [4, 6, 3, 1, 2]

What is π?

Sorting Lower Bound

Sorting Lower Bound

Sorting Lower Bound

•Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct
• How many possible inputs are there?

Sorting Lower Bound

•Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct
• How many possible inputs are there?

Sorting Lower Bound

•Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

• There are M = n! possible inputs

•A sorting algorithm determines a permutation π on the input

•Since the result is sorted, there is a one-to-one correspondence
between the permutation π and the input

• In other words, the algorithm must find out exactly which input it is
among the M possible inputs

Proving the Sorting Lower Bound

Think of an algorithm as a
decision tree

procedure InsertionSort(A: list of items)
 n = length(A)
 for i = 2 to n do
 j = i
 while j > 1 and A[j-1] > A[j] do
 swap(A[j], A[j-1])
 j = j - 1
 end while
 end for
end procedure

Example: A = [3, 2, 1]

Example: A = [3, 2, 1]

 a1 = 3, a2 = 2, a3 = 1 initial

 a2 = 2, a1 = 3, a3 = 1

 a2 = 2, a3 = 1, a1 = 3

 a3 = 1, a2 = 2, a1 = 3

cmp(a2, a1)

cmp(a3, a1)

cmp(a3, a2)

a1<a2<a3
a1<a3<a2
a2<a1<a3
a2<a3<a1
a3<a1<a2
a3<a2<a1

a2<a1<a3
a2<a3<a1
a3<a2<a1

a2<a3<a1
a3<a2<a1

YES NO

YES NO

YES NO

a3<a2<a1

a2 < a1?

a3 < a1?

a3 < a2?

Example: A = [1, 2, 3]

 a1 = 1, a2 = 2, a3 = 3 initial

 a1 = 1, a2 = 2, a3 = 3

 a1 = 1, a2 = 2, a3 = 3

cmp(a2, a1)

cmp(a3, a2)

123
132
213
231
312
321

213
312
321

a1<a2<a3
a1<a3<a2
a3<a1<a2

312
321 a1<a2<a3

YES NO

YES NO NO

YES NO

321

a2 < a1?

a3 < a1?

a3 < a2?

a1<a2<a3
a1<a3<a2
a2<a1<a3
a2<a3<a1
a3<a1<a2
a3<a2<a1

a2<a1<a3
a2<a3<a1
a3<a2<a1

a2<a3<a1
a3<a2<a1

a3<a2<a1

a3 < a2?

123
132
213
231
312
321

213
312
321

123
132
231

312
321

a2<a1<a3 a1<a3<a2
ac<a1<a2 123

YES NO

YES NO NOYES

YESYES NO NO

321

a2 < a1?

a3 < a1?

a3 < a2?

a3 < a2?

a1<a2<a3
a1<a3<a2
a3<a1<a2

a1<a2<a3

a1<a2<a3
a1<a3<a2
a2<a1<a3
a2<a3<a1
a3<a1<a2
a3<a2<a1

a2<a1<a3
a2<a3<a1
a3<a2<a1

a2<a3<a1
a3<a2<a1

a3<a2<a1

Sorting Lower Bound

Sorting Lower Bound

Sorting Lower Bound

Sorting Upper Bounds

Why don’t we often use binary insertion sort in practice?

Sorting Upper Bounds

Why don’t we often use binary insertion sort in practice?

Sorting Upper Bounds

Why don’t we often use binary insertion sort in practice?Why don’t we often use binary insertion sort in practice?

Sorting Upper Bounds

Sorting Upper Bounds

What’s the cost?

Sorting Upper Bounds

•

Implication our the lower bound:

any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

● no matter whether actual algorithm is implemented as a
RAM program or circuit

● a useful guide and sanity check when we design algorithm

Implication our the lower bound:

any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

Non-comparison-based algorithms can take o(n log
n) time

 e.g., bucket sort

any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

Cool fact about comparison-based sort (0-1
principle)
● any comparison-based sorting algorithm that can

sort 0s and 1s can sort arbitrary numbers!
● Proof: see Knuth’s textbook

An O(n)-time comparison based sorting
algorithm

Go down the list and check if each element is bigger
than the previous. If not, eliminate the element.

The result must be sorted

Elimination-based sorting

Selection in the Comparison Model

Selection in the Comparison Model

Selection in the Comparison Model

Selection in the Comparison Model

Lower Bound for Finding the Maximum

Lower Bound for Finding the Maximum

Adversarial argument
If output produced without having made enough
comparisons, can construct an adversarial input
consistent with all the answers so far, that fools the
algorithm to output incorrectly

Lower Bound for Finding the Maximum

Lower Bound for Finding the Maximum

Lower Bound for Finding the Maximum

Lower Bound for Finding the Maximum

Lower Bound for Finding the Maximum

•Recap: upper and lower bounds match at n-1

•Argument different from information-theoretic bound for sorting,
use the adversarial argument

First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum

First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum

What about Upper Bounds?

What about Upper Bounds?

What about Upper Bounds?

Second Largest of n Elements Upper Bound

• What can we say about the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1
 additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Second Largest of n Elements Upper Bound

• What can we say about the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1
 additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Second Largest of n Elements Upper Bound

• How do we find the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1
 additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Second Largest of n Elements Upper Bound

• How do we find the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1
 additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

• In the exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

• All other work is free, e.g., the items can be examined and
compared

• How many exchanges are necessary and sufficient?

Sorting in the Exchange Model

• Claim: n-1 exchanges is sufficient

• Proof: here’s an algorithm:

• In first step, swap the smallest item with the item in the first location

• In second step, swap the second smallest item with the item in the
second location

• In k-th step, swap the k-th smallest item with the item in the k-th
location

• If no swap is necessary, just skip a given step

• No swap ever undoes our previous work

• At the end, the last item must already be in the correct location

Sorting in the Exchange Model

• Claim: n-1 exchanges is sufficient

• Proof: here’s an algorithm:

• 1st step: swap the smallest item with the item in the first location

• 2nd step: swap the second smallest item with the item in the second
location

• k-th step: swap the k-th smallest item with item in the k-th location
• If no swap is necessary, just skip a given step

• No swap ever undoes our previous work

• At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case

• Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j

• Graph is a set of cycles
• Indegree and Outdegree of each node is 1

Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case

• Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j

Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case

• Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j

Graph is a set of cycles
Indegree and Outdegree of each node is 1

Lower Bound for Sorting in Exchange Model

Swap i1 and i2

Lower Bound for Sorting in Exchange Model

Swap i1 and i2

Lower Bound for Sorting in Exchange Model

Break into 2 cycles

Lower Bound for Sorting in Exchange Model

Swap i1 and i2

Lower Bound for Sorting in Exchange Model

Lower Bound for Sorting in Exchange Model

•Exchanging any two elements in the same cycle?
• Get two disjoint cycles

•Exchanging any two elements in different cycles?
• Merges two cycles into one cycle

•Corner cases also result in self loop and create two
disjoint cycles

•How many cycles are in the final sorted array?
• n cycles

• Suppose we begin with an array [n, 1, 2, …, n-1] with one big cycle

• Each step increases the # cycles by at most 1, so need n-1 steps

Lower Bound for Sorting in Exchange Model

•How many cycles are in the final sorted array?
• n cycles

•Suppose we begin with an array [n, 1, 2, …, n-1]
with one big cycle

•Each step increases the # cycles by at most 1, so
need n-1 steps

Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free

• How many queries do we need to tell if G is connected?

• Claim: n(n-1)/2 queries suffice

• Proof: Just query every pair {i,j} to learn G, then check if G is connected

•What about lower bounds?

Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free

• How many queries do we need to tell if G is connected?

• Claim: n(n-1)/2 queries suffice

• Proof: Just query every pair {i,j} to learn G, then check if G is connected

•What about lower bounds?

Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free

• How many queries do we need to tell if G is connected?

• Claim: n(n-1)/2 queries suffice

•What about lower bounds?

Connectivity is an Evasive Graph Property

• Theorem: n(n-1)/2 queries are necessary to determine connectivity

Proof strategy: design an “evader” adversary

Algorithm A playing a game with an evader E

Each time, A asks about (i, j), E reveals whether there’s an edge
At some point, A outputs a decision

E wants to force A to query the entire graph to rule out any
ambiguity

Example

Intuition: evader’s goal

● Maintain ambiguity
among all graphs consistent with the revealed part, some are
connected and some are not

● Make sure it’s not possible for A to decide without querying
some unqueried edge

Example

Revealed edges form two connected components A and B.
A contains a1 and a2, B contains b1 and b2.
(a1, b1), (a2, b2) not queried.
Now, query (a1, b1). What should E answer?

Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges
revealed to exist.
Query (v, u).

● Suppose v ∈ T1 and u ∈ T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.

Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges
revealed to exist.
Query (v, u).

● Suppose v ∈ T1 and u ∈ T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.

● what if (v, u) in same connected component?

Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges
revealed to exist.
Query (v, u).

● Suppose v ∈ T1 and u ∈ T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.

● what if (v, u) in same connected component? This will not happen.

Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
, some pair has

not been queried.

Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
, some pair has

not been queried.

Proof: by induction
● Base case: it’s true initially
● Induction hypothesis: suppose true now, true after next query

Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
, some pair has

not been queried.

Theorem: A must query all pairs when interacting with this evader

Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
, some pair has

not been queried.

Theorem: A must query all pairs when interacting with this evader
Proof: at the end of the algorithm, there cannot be more than 1
connected components left, since otherwise, by invariant 2, correctness
is not guaranteed. The theorem follows due to invariant 1.

Happy Spring Festival!

