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What is “concrete models?”



Models of Computation

CPU

Memory

Random Access Machines (RAM) Circuits/Circuitry

most software today hardware, 
cryptography

Metrics:   time, space                                      size, depth



Today: Concrete models of computation

focus on the cost of a specific type of operation
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● e.g., number of comparisons to sort an array?
(recall last lecture)

● Number of probes into a graph needed to 
determine if the graph is connected?
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Today: Concrete models of computation

focus on the cost of a specific type of operation 

● e.g., number of comparisons to sort an array?

Recall last lecture:
● we used # comparisons as the cost metric
● all *asymptotic* analysis also holds for the RAM model
● fun fact: possible to compute median in a linear-sized circuit, 

but much more challenging [Lin-Shi, SODA’22]



Today: Concrete models of computation

focus on the cost of a specific type of operation 

● don’t care whether the algorithm is actually 
implemented as a RAM program or circuit

● don’t care about other costs (e.g., space, cost of 
moving data round, etc)



Why do we care about costs in concrete models?

● Understand the limit of a class of algorithms
○ e.g., comparison-based sorting

● Understand information theoretic limits
○ e.g., number of probes into a graph to decide 

connectivity

● Focus on heavy-weight operations
○ e.g., in crypto, public-key ops > secret-key ops



Formal Model for Capturing Cost

•An upper bound of f(n) means the algorithm takes at most f(n) 
operations on any input of size n

•A lower bound of g(n) means for any algorithm there exists an input 
for which the algorithm takes at least g(n) operations on that input



Sorting in the Comparison Model
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Sorting in the Comparison ModelExample for sorting 

Array = [4, 6, 3, 1, 2]

What is π?
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•Without loss of generality, we may assume that the input contains 
numbers in [1, n], and all numbers are distinct
• How many possible inputs are there?



Sorting Lower Bound

•Without loss of generality, we may assume that the input contains 
numbers in [1, n], and all numbers are distinct
• How many possible inputs are there?



Sorting Lower Bound

•Without loss of generality, we may assume that the input contains 
numbers in [1, n], and all numbers are distinct

• There are M = n! possible inputs

•A sorting algorithm determines a permutation π on the input

•Since the result is sorted, there is a one-to-one correspondence 
between the permutation π and the input

• In other words, the algorithm must find out exactly which input it is 
among the M possible inputs



Proving the Sorting Lower Bound

Think of an algorithm as a 
decision tree



procedure InsertionSort(A: list of items)
   n = length(A)
   for i = 2 to n do
       j = i
       while j > 1 and A[j-1] > A[j] do
           swap(A[j], A[j-1])
           j = j - 1
       end while
   end for
end procedure

Example:  A = [3, 2, 1]
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 a1 = 3, a2 = 2, a3 = 1 initial

 a2 = 2, a1 = 3, a3 = 1   

 a2 = 2, a3 = 1, a1 = 3

 a3 = 1, a2 = 2, a1 = 3

cmp(a2, a1)
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cmp(a3, a2)
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a2 < a1?
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Example:  A = [1, 2, 3]

 a1 = 1, a2 = 2, a3 = 3   initial

 a1 = 1, a2 = 2, a3 = 3

 a1 = 1, a2 = 2, a3 = 3

cmp(a2, a1)

cmp(a3, a2)
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YES NO NOYES
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a3 < a2?
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a3<a2<a1
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Why don’t we often use binary insertion sort in practice?
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Sorting Upper Bounds

What’s the cost?



Sorting Upper Bounds

•  



Implication our the lower bound:

any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

● no matter whether actual algorithm is implemented as a 
RAM program or circuit

● a useful guide and sanity check when we design algorithm



Implication our the lower bound:

any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

Non-comparison-based algorithms can take o(n log 
n) time

 e.g., bucket sort





any comparison-based sorting algorithm must take Ω
(n log n) time on a RAM

Cool fact about comparison-based sort (0-1 
principle)
● any comparison-based sorting algorithm that can 

sort 0s and 1s can sort arbitrary numbers!
● Proof: see Knuth’s textbook



An O(n)-time comparison based sorting 
algorithm

Go down the list and check if each element is bigger 
than the previous. If not, eliminate the element. 

The result must be sorted 

Elimination-based sorting
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Adversarial argument
If output produced without having made enough 
comparisons, can construct an adversarial input 
consistent with all the answers so far, that fools the 
algorithm to output incorrectly



Lower Bound for Finding the Maximum
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Lower Bound for Finding the Maximum

•Recap: upper and lower bounds match at n-1

•Argument different from information-theoretic bound for sorting, 
use the adversarial argument



First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient 
(upper bound) to find the first and second largest of n distinct 
elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum



First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient 
(upper bound) to find the first and second largest of n distinct 
elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum



What about Upper Bounds?
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Second Largest of n Elements Upper Bound

 

• What can we say about the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1 
     additional comparisons suffice. Kislitsyn (1964) shows this is optimal



Second Largest of n Elements Upper Bound

 

• What can we say about the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1 
     additional comparisons suffice. Kislitsyn (1964) shows this is optimal



Second Largest of n Elements Upper Bound

 

• How do we find the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1 
     additional comparisons suffice. Kislitsyn (1964) shows this is optimal



Second Largest of n Elements Upper Bound
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Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged 
alphabetically. How many swaps do we need to order them?



Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged 
alphabetically. How many swaps do we need to order them?

• In the exchange model, you have n items and the only operation 
allowed on the items is to swap a pair of them at a cost of 1 step

• All other work is free, e.g., the items can be examined and 
compared 

• How many exchanges are necessary and sufficient? 



Sorting in the Exchange Model

• Claim: n-1 exchanges is sufficient

• Proof: here’s an algorithm:

• In first step, swap the smallest item with the item in the first location

• In second step, swap the second smallest item with the item in the 
second location

• In k-th step, swap the k-th smallest item with the item in the k-th 
location

• If no swap is necessary, just skip a given step

• No swap ever undoes our previous work

• At the end, the last item must already be in the correct location



Sorting in the Exchange Model

• Claim: n-1 exchanges is sufficient

• Proof: here’s an algorithm:

• 1st step: swap the smallest item with the item in the first location

• 2nd step: swap the second smallest item with the item in the second 
location

• k-th step: swap the k-th smallest item with item in the k-th location
• If no swap is necessary, just skip a given step

• No swap ever undoes our previous work

• At the end, the last item must already be in the correct location



Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case

• Proof: create a directed graph in which the edge (i,j) means the book 
in location i must end up in location j 

• Graph is a set of cycles
• Indegree and Outdegree of each node is 1
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Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case

• Proof: create a directed graph in which the edge (i,j) means the book 
in location i must end up in location j 

Graph is a set of cycles
Indegree and Outdegree of each node is 1



Lower Bound for Sorting in Exchange Model
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Lower Bound for Sorting in Exchange Model

•Exchanging any two elements in the same cycle?
• Get two disjoint cycles

•Exchanging any two elements in different cycles?
• Merges two cycles into one cycle

•Corner cases also result in self loop and create two 
disjoint cycles

•How many cycles are in the final sorted array?
• n cycles

• Suppose we begin with an array [n, 1, 2, …, n-1] with one big cycle

• Each step increases the # cycles by at most 1, so need n-1 steps



Lower Bound for Sorting in Exchange Model

•How many cycles are in the final sorted array?
• n cycles

•Suppose we begin with an array [n, 1, 2, …, n-1] 
with one big cycle

•Each step increases the # cycles by at most 1, so 
need n-1 steps



Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free

• How many queries do we need to tell if G is connected?

• Claim: n(n-1)/2 queries suffice

• Proof: Just query every pair {i,j} to learn G, then check if G is connected

•What about lower bounds?
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Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free

• How many queries do we need to tell if G is connected?

• Claim: n(n-1)/2 queries suffice

•What about lower bounds?



Connectivity is an Evasive Graph Property

• Theorem: n(n-1)/2 queries are necessary to determine connectivity



Proof strategy: design an “evader” adversary

Algorithm A playing a game with an evader E

Each time,  A asks about (i, j), E reveals whether there’s an edge
At some point, A outputs a decision

E wants to force A to query the entire graph to rule out any 
ambiguity



Example







Intuition: evader’s goal

● Maintain ambiguity 
among all graphs consistent with the revealed part, some are 
connected and some are not

● Make sure it’s not possible for A to decide without querying 
some unqueried edge



Example

Revealed edges form two connected components A and B.  
A contains a1 and a2, B contains b1 and b2.  
(a1, b1), (a2, b2) not queried. 
Now, query (a1, b1).   What should E answer?



Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges 
revealed to exist.
Query (v, u).  

● Suppose v ∈ T1 and u ∈ T2.  Answer YES only if every other edge 
between T1 and T2 have been queried. Otherwise answer NO.



Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges 
revealed to exist.
Query (v, u).  

● Suppose v ∈ T1 and u ∈ T2.  Answer YES only if every other edge 
between T1 and T2 have been queried. Otherwise answer NO.

● what if (v, u) in same connected component?  



Evader’s algorithm

Let T1, T2, … Tk be the current connected components among the edges 
revealed to exist.
Query (v, u).  

● Suppose v ∈ T1 and u ∈ T2.  Answer YES only if every other edge 
between T1 and T2 have been queried. Otherwise answer NO.

● what if (v, u) in same connected component?  This will not happen.



Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
,  some pair has 

not been queried.



Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
,  some pair has 

not been queried.

Proof: by induction
● Base case: it’s true initially
● Induction hypothesis: suppose true now, true after next query
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not been queried.

Theorem:  A must query all pairs when interacting with this evader



Claim: The evader algorithm maintains the following invariants:

1. All pairs inside a connected component have been queried

2. Between any two connected components T
i
 and T

j
,  some pair has 

not been queried.

Theorem:  A must query all pairs when interacting with this evader
Proof: at the end of the algorithm, there cannot be more than 1 
connected components left, since otherwise, by invariant 2, correctness 
is not guaranteed. The theorem follows due to invariant 1.



Happy Spring Festival!


