Concrete Models and Tight Upper and Lower Bounds

Elaine Shi

Concrete Models and Tight Upper and Lower Bounds

Why do we care about lower bounds?

Concrete Models and Tight Upper and Lower Bounds

What is "concrete models?"

Models of Computation

Random Access Machines (RAM) Circuits/Circuitry

most software today hardware,

Metrics: time, space size, depth

cryptography

focus on the cost of a specific type of operation

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array? (recall last lecture)

● Number of probes into a graph needed to determine if the graph is connected?

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:

● we used # comparisons as the cost metric

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:

- $\bullet\;$ we used # comparisons as the cost metric
- all *asymptotic* analysis also holds for the RAM model

focus on the cost of a specific type of operation

● e.g., number of comparisons to sort an array?

Recall last lecture:

- we used # comparisons as the cost metric
- all *asymptotic* analysis also holds for the RAM model
- fun fact: possible to compute median in a linear-sized circuit, but much more challenging [Lin-Shi, SODA'22]

focus on the cost of a specific type of operation

- don't care whether the algorithm is actually implemented as a RAM program or circuit
- don't care about other costs (e.g., space, cost of moving data round, etc)

Why do we care about costs in concrete models?

- Understand the limit of a class of algorithms ○ e.g., comparison-based sorting
- Understand information theoretic limits
	- \circ e.g., number of probes into a graph to decide connectivity
- Focus on heavy-weight operations \circ e.g., in crypto, public-key ops $>$ secret-key ops

Formal Model for Capturing Cost

•An upper bound of f(n) means the algorithm takes at most f(n) operations on any input of size n

• A lower bound of $g(n)$ means for any algorithm there exists an input for which the algorithm takes at least g(n) operations on that input

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order An algorithm may compare two items (asking is $a_i > a_i$?) at a cost of 1
	- Moving the items is free

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order An algorithm may compare two items (asking is $a_i > a_i$?) at a cost of 1
	- Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.

Sorting in the Comparison Model

- . In the comparison model, we have n items in some initial order An algorithm may compare two items (asking is $a_i > a_i$?) at a cost of 1
	- Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.

• Sorting: given an array $a = [a_1, ..., a_n]$, output a permutation π so that $[a_{\pi(1)},...,a_{\pi(n)}]$ in which the elements are in increasing order

 \sim

$$
w_{ant} = 0
$$
\n

• Sorting: given an array $a = [a_1, ..., a_n]$, output a permutation π so that $[a_{\pi(1)},...,a_{\pi(n)}]$ in which the elements are in increasing order

What is π?

• Theorem: Any deterministic comparison-based sorting algorithm must perform at least $\lg_2(n!)$ comparisons to sort n elements in the worst case

$$
(g_{2}(n!)=lg(n\cdot(n-1)(n-2)\cdot\cdot\cdot)=\frac{logn+lg(n-1)\cdot\cdot\cdot+lg1}{=O(nlgn)}
$$

- Theorem: Any deterministic comparison-based sorting algorithm must perform at least $\lg_2(n!)$ comparisons to sort n elements in the worst case
- I.e., for any sorting algorithm A and $n \geq 2$, there is an input I of size n so that A makes \geq $\lg(n!) = \Omega(n \log n)$ comparisons to sort l.

- •Without loss of generality, we may assume that the input contains numbers in [1, n], and all numbers are distinct
	- How many possible inputs are there? $\sqrt{ }$

- •Without loss of generality, we may assume that the input contains numbers in [1, n], and all numbers are distinct
	- How many possible inputs are there?

•Without loss of generality, we may assume that the input contains numbers in [1, n], and all numbers are distinct

Proving the Sorting Lower Bound

Think of an algorithm as a decision tree

```
procedure InsertionSort(A: list of items)
   n = length(A)for i = 2 to n do
       j = iwhile j > 1 and A[j-1] > A[j] do
           swap(A[j], A[j-1])j = j - 1 end while
    end for
end procedure
```
Example:
$$
A = [3, 2, 1]
$$

Example:
$$
A = \begin{bmatrix} a_1 & a_2 & a_3 \ 3, 2, 1 \end{bmatrix}
$$

\n(a) = 3, a2 = 2, a3 = 1 initial
\n $\rightarrow a2 = 2$, a1 = 3, a3 = 1
\n $\rightarrow a2 = 2$, a3 = 1, a1 = 3
\n $\rightarrow a2 = 2$, a3 = 1, a1 = 3
\n $\rightarrow a2 = 2$, a3 = 1, a1 = 3
\n $\rightarrow a2 = 2$, a3 = 1, a1 = 3
\n $\rightarrow a2 = 2$, a3 = 1, a1 = 3
\n $\rightarrow a2 = 2$, a2 = 2, a1 = 3
\n $\rightarrow a3 = 1$, a2 = 2, a1 = 3
\n $\rightarrow a3 = 2$, a3 = 1
\n $\rightarrow a3 = 2$, a1 = 3
\n $\rightarrow a3 = 2$, a2 = 2
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a2 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a3 = 2$
\n $\rightarrow a4 = 2$

Example:
$$
A = [1, 2, 3]
$$

$$
a1 = 1, a2 = 2, a3 = 3
$$
 initial
cmp(a2, a1)

$$
a1 = 1, a2 = 2, a3 = 3
$$

cmp(a3, a2)

 $a1 = 1$, $a2 = 2$, $a3 = 3$

- max depth of decision tree \geq $log_{2}(n!)$
- Information-theoretic: need $\lg(n!)$ bits of information about the input before we can correctly decide on the output
- $\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) < n \lg n$

- Information-theoretic: need $\lg(n!)$ bits of information about the input before we can correctly decide on the output
- $\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) < \frac{n}{2}$
- $\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + \dots + \lg(1) > \left(\frac{n}{2}\right) \lg\left(\frac{n}{2}\right) = \Omega(n \lg n)$

- Information-theoretic: need $\lg(n!)$ bits of information about the input before we can correctly decide on the output
- $\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) < n \lg n$
- $\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) > \left(\frac{n}{2}\right) \lg\left(\frac{n}{2}\right) = \Omega(n \lg n)$

•
$$
n! \in \left[\left(\frac{n}{e}\right)^n, n^n\right]
$$
, so $n \lg n - n \lg e < \lg(n!) < n \lg n$, and $n \lg n - 1.443n < \lg(n!) < n \lg n$.

•
$$
lg(n!) = (n \lg n) (1 - o(1))
$$

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element,

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2,\dots,n} [\lg k] \le n \lceil \lg n \rceil$

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2,...,n} [\lg k] \le n \lceil \lg n \rceil$

Why don't we often use binary insertion sort in practice?

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element,

• Mergesort: merging two sorted lists of n/2 elements requires at most n-1 comparisons

$$
T(n)=2T(\frac{n}{2})+(n-1)
$$
 $\bigcirc (n log n)$

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2,...,n} [lg k] \le n \lg n$

• Mergesort: merging two sorted lists of n/2 elements requires at most n-1 comparisons

What's the cost?
Sorting Upper Bounds

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2,...,n} [lg k] \le n \lg n$

• Mergesort: merging two sorted lists of n/2 elements requires at most n-1 comparisons

Implication our the lower bound:

any comparison-based sorting algorithm must take Ω (n log n) time on a RAM

- no matter whether actual algorithm is implemented as a RAM program or circuit
- a useful guide and sanity check when we design algorithm

Implication our the lower bound:

any comparison-based sorting algorithm must take Ω (n log n) time on a RAM

Non-comparison-based algorithms can take o(n log n) time

e.g., bucket sort

ARTICLE Deterministic sorting in O(nlog log n) time and linear space y in x

Author: Yijie Han Authors Info & Claims

STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing • May 2002 • Pages 602-608 · https://doi.org/10.1145/509907.509993

Online: 19 May 2002 Publication History

any comparison-based sorting algorithm must take Ω (n log n) time on a RAM

Cool fact about comparison-based sort (0-1 principle)

- any comparison-based sorting algorithm that can sort 0s and 1s can sort arbitrary numbers!
- Proof: see Knuth's textbook

An O(n)-time comparison based sorting algorithm

Go down the list and check if each element is bigger than the previous. If not, eliminate the element.

The result must be sorted

Elimination-based sorting

• How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
- Claim: n-1 comparisons are sufficient
- Proof: scan from left to right, keep track of the largest element so far

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
- Claim: n-1 comparisons are sufficient
- Proof: scan from left to right, keep track of the largest element so far
- For lower bounds, what does our earlier information-theoretic argument give?

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
- Claim: n-1 comparisons are sufficient
- Proof: scan from left to right, keep track of the largest element so far
- For lower bounds, what does our earlier information-theoretic argument give? • Only $\mathcal{A}(\log n)$, which is too weak
- Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with $n/2$ comparisons, also not tight

• Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements

• Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements

Adversarial argument

If output produced without having made enough comparisons, can construct an adversarial input consistent with all the answers so far, that fools the algorithm to output incorrectly

$A \rightarrow B : ACB$

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose \overrightarrow{A} is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
- Construct a graph G in which we join two elements by an edge if they are compared $b\overrightarrow{A}$ $2 + M$

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose A is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
- Construct a graph G in which we join two elements by an edge if they are compared by A
- G has at least 2 connected components C_1 and C_2

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose A is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
- Construct a graph G in which we join two elements by an edge if they are compared by A
- G has at least 2 connected components C_1 and C_2
- Suppose A outputs element u as the maximum, and u) $\in C_1$

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose A is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
- Construct a graph G in which we join two elements by an edge if they are compared by A
- G has at least 2 connected components C_1 and C_2
- Suppose A outputs element u as the maximum, and $u \in C_1$
- Add a large positive number to each element in C_2
- Does not change any of the comparisons made by A, so will still output u
- But now u is not the maximum, so A is incorrect

- •Recap: upper and lower bounds match at n-1
- •Argument different from information-theoretic bound for sorting, use the adversarial argument

•How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

First and Second Largest of n Elements

•How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

• Proof: need to at least find the maximum

What about Upper Bounds?

What about Upper Bounds?

- Claim: 2n-3 comparisons are sufficient to find the first and secondlargest of n elements
- Proof: find the largest using $n-1$ comparisons, then find the largest of the remainder using $n-2$ comparisons, sq 2n-3 total

What about Upper Bounds?

- Claim: 2n-3 comparisons are sufficient to find the first and secondlargest of n elements
- Proof: find the largest using n-1 comparisons, then find the largest of the remainder using n-2 comparisons, so 2n-3 total
- Upper bound is 2n-3, and lower bound n-1, both are $\Theta(n)$ but can we get tight bounds?

Second Largest of n Elements Upper Bound

• Claim: $n + \lg n - 2$ comparisons are sufficient to find the first and second-largest of n elements

Second Largest of n -Hements Upper Bound

• Claim: $n + \lg n - 2$ comparisons are sufficient to find the first and

- second-largest of n elements
- Proof: find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

$$
Round 1
$$
\n
$$
B_{\text{Round 1}}
$$
\n
$$
B_{\text{Round 2}}
$$
\n
$$
B_{\text{Round 3}}
$$
\n
$$
B_{\text{Round 3}}
$$
\n
$$
B_{\text{Round 2}}
$$
\n
$$
B_{\text{Bound 3}}
$$
\n
$$
B_{\text{Bound 4}}
$$
\n
$$
B_{\text{Bound 5}}
$$
\n
$$
B_{\text{Bound 6}}
$$
\n
$$
B_{\text{Bound 7}}
$$
\n
$$
B_{\text{Red 6}}
$$
\n
$$
B_{\text{Red 7}}
$$
\n
$$
B_{\text{Red 8}}
$$

Second Largest of n Elements Upper Bound

- Claim: $n + \lg n 2$ comparisons are sufficient to find the first and second-largest of n elements
- Proof: find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

• How do we find the second maximum?

Second Largest of n Elements Upper Bound

- Claim: $n + \lg n 2$ comparisons are sufficient to find the first and second-largest of n elements
- Proof: find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

- How do we find the second maximum?
	- Must have been directly compared to the maximum and lost, so $\lg(n)-1$ additional comparisons suffice. Kislitsyn (1964) shows this is optimal

• Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?

- Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?
- In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step
	- •All other work is free, e.g., the items can be examined and compared

• Claim: n-1 exchanges is sufficient

- Claim: n-1 exchanges is sufficient
- \cdot Proof:
- 1st step: swap the smallest item with the item in the first location
- 2nd step: swap the second smallest item with the item in the second location
- k-th step: swap the k-th smallest item with item in the k-th location • If no swap is necessary, just skip a given step
- •No swap ever undoes our previous work
- •At the end, the last item must already be in the correct location

• Proof: create a directed graph in which the edge (i,j) means the book

• Claim: n-1 exchanges are necessary in the worst case

- Claim: n-1 exchanges are necessary in the worst case
- Proof: create a directed graph in which the edge (i,j) means the book in location i must end up in location j

- Claim: n-1 exchanges are necessary in the worst case
- Proof: create a directed graph in which the edge (i,j) means the book in location i must end up in location j

Graph is a set of cycles Indegree and Outdegree of each node is 1

Figure 1: Graph for input [f c d e b a g]

• What is the effect of exchanging any two elements in the same cycle?

• What is the effect of exchanging any two elements in the same cycle?

Swap i1 and i2

• What is the effect of exchanging any two elements in the same cycle?

Break into 2 cycles

. What is the effect of exchanging any two elements in different cycles?

Swap i1 and i2

• What is the effect of exchanging any two elements in different cycles? Merged into one cycle
sperial case: sett-lop ໄ $_{\rm 2}$ I_2

- Exchanging any two elements in the same cycle?
	- Get two disjoint cycles
- •Exchanging any two elements in different cycles?
	- Merges two cycles into one cycle
- •Corner cases also result in self loop and create two disjoint cycles

- How many cycles are in the final sorted array?
	- n cycles
- •Suppose we begin with an array [n, 1, 2, …, n-1] with one big cycle
- •Each step increases the # cycles by at most 1, so need n-1 steps

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
	- G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0
- •In 1 step, we can query any element of G. All other computation is free
- •How many queries do we need to tell if G is connected?

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
	- G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0
- In 1 step, we can query any element of G. All other computation is free
- •How many queries do we need to tell if G is connected?
- Claim: $n(n-1)/2$ queries suffice

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
	- G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0
- In 1 step, we can query any element of G. All other computation is free
- •How many queries do we need to tell if G is connected?
- Claim: $n(n-1)/2$ queries suffice
- •What about lower bounds?

Connectivity is an Evasive Graph Property

• Theorem: $n(n-1)/2$ queries are necessary to determine connectivity

Proof strategy: design an "evader" adversary

Algorithm A playing a game with an evader E

Each time, A asks about (i, j), E reveals whether there's an edge At some point, A outputs a decision

E wants to force A to query the entire graph to rule out any ambiguity

Example

Intuition: evader's goal

- Maintain ambiguity among all graphs consistent with the revealed part, some are connected and some are not
- Make sure it's not possible for A to decide without querying some unqueried edge

Revealed edges form two connected components A and B. A contains a1 and a2, B contains b1 and b2. (a1, b1), (a2, b2) not queried. Now, query (a1, b1). What should E answer?

Let T1, T2, … Tk be the current connected components among the edges revealed to exist.

Query (v, u).

Suppose $v \in T1$ and $u \in T2$. Answer YES only if every other edge between T1 and T2 have been queried. Otherwise answer NO.

Let T1, T2, … Tk be the current connected components among the edges revealed to exist.

Query (v, u).

- Suppose $v \in T1$ and $u \in T2$. Answer YES only if every other edge between T1 and T2 have been queried. Otherwise answer NO.
- what if (v, u) in same connected component?

Let T1, T2, … Tk be the current connected components among the edges revealed to exist.

Query (v, u).

- Suppose $v \in T1$ and $u \in T2$. Answer YES only if every other edge between T1 and T2 have been queried. Otherwise answer NO.
- what if (v, u) in same connected component? This will not happen.

- 1. All pairs inside a connected component have been queried
- 2. Between any two connected components T_i and T_j , some pair has not been queried.

- 1. All pairs inside a connected component have been queried
- 2. Between any two connected components T_i and T_j , some pair has not been queried.

Proof: by induction

- Base case: it's true initially
- Induction hypothesis: suppose true now, true after next query

- 1. All pairs inside a connected component have been queried
- 2. Between any two connected components T_i and T_j , some pair has not been queried.

Theorem: A must query all pairs when interacting with this evader

- 1. All pairs inside a connected component have been queried
- 2. Between any two connected components T_i and T_j , some pair has not been queried.

Theorem: A must query all pairs when interacting with this evader Proof: at the end of the algorithm, there cannot be more than 1 connected components left, since otherwise, by invariant 2, correctness is not guaranteed. The theorem follows due to invariant 1.

Happy Spring Festival!