Concrete Models and Tight
Upper and Lower Bounds

Elaine Shi

Concrete Models and Tight
Upper and

Why do we care about lower bounds?

and Tight
Upper and Lower Bounds

What is “concrete models?”

Random Access Machines (RAM) Circuits/Circuitry

CPU /41 ?{u "ﬂ
I g
Memory GindmetL

Metrics: time, space size, depth

Today: Concrete models of computation

focus on the cost of a specific type of operation

focus on the cost of

® e.g., number of comparisons to sort an array?
(recall last lecture)

e Number of probes into a graph needed to
determine if the graph is connected?

Today: Concrete models of computation

focus on the cost of a specific type of operation

® e.g., number of comparisons to sort an array?

Recall last lecture:
e we used # comparisons as the cost metric

focus on the cost of

® e.g., number of comparisons to sort an array?

Recall last lecture:
e we used # comparisons as the cost metric
e all *fasymptotic* analysis also holds for the RAM model

focus on the cost of

® e.g., number of comparisons to sort an array?

Recall last lecture:

e we used # comparisons as the cost metric

e all *fasymptotic* analysis also holds for the RAM model

e fun fact: possible to compute median in a linear-sized circuit,
but much more challenging [Lin-Shi, SODA22]

focus on the cost of

e don’t care whether the algorithm is actually
implemented as a RAM program or circuit

e don’t care about other costs (e.g., space, cost of
moving data round, etc)

e Understand the limit of a class of algorithms
O e.g., comparison-based sorting

e Understand information theoretic limits
o e.g., number of probes into a graph to decide
connectivity

® Focus on heavy-weight operations
o e.g., in crypto, public-key ops > secret-key ops

* An upper bound of f(n) means the algorithm takes at most f(n)
operations on any input of size n

*A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) operations on that input

Sorting in the Comparison Model

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

Sorting in the Comparison Model

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

* No other operations allowed, such as XORing, hashing, etc.

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

* No other operations allowed, such as XORing, hashing, etc.

* Sorting: given an array a = [a4, ..., 2, |, output a permutation T so that
lar(1), --»@xm)] in which the elements are in increasing order

\/\/\/\/\

Wont Oqu) ATe) “- Uqn)
Example for sorting to ve

Array=[4,6,3,1,%1 e 4,5'5, A

<

What is r?

* Sorting: given an array a = [a4, ..., ay |, output a permutation 1 so that
[an(l), cer) an(n)] in which the elements are in increasing order

Sorting Lower Bound

* Theorem: Any deterministic comparison-based sorting algorithm must

perform at least Ig, (n!) comparisons to sort n elements in the worst case
==___

\Yl) (D (N-)(N-2) - D= 9ﬂf19LV\~\) +I%1
9 ﬂ "@Qﬂlgr\}

* Theorem: Any determinjstic comparison-based sorting algorithm must
perform at least Ig, (n!)'\comparisons to sort n elements in the worst case

* |.e., for any sorting algorithm A and n = 2, there is an input | of size n so
that A makes > lg(n!) = Q(nlogn) comparisons to sort I.

e Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

* How many possible inputs are there? N |

e Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

* How many possible inputs are there?

e Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

Proving the Sorting Lower Bound

Think of an algorithm as a
decision tree

procedure InsertionSort(A: list of items)
n = length (A)
for 1 = 2 to n do
J =1
while 7 > 1 and A[jJ-1] > A[]j] do
swap (A[J], A[J-11])
J =3 -1
end while
end for
end procedure

Example: A=13, 2, 1]

A <4 <3 <
A, <dizch,
&2 <4/} Cﬂ;
Gy CA3LA
Ay <a Lay
Q2 <k <Gy

Example: A= [3]

(a1)=3,a2 = =1 initial

cmp(a2, al) &

- = i, <a
_/732 =2,al =3, 2‘% = 1 - / CMP(&z,&.)
-«U Cmp(aB, a1) ey CCJ |-
a2=2,a3=1,a1=3 27'25:;
\ZA n cmp(a3, a2) 2, <GdG,
Q
a3=1,a2=2,a1=3 By / Cmpl6ra)

-

—

UrcayeQ
i} 2/ Y R4/ 1

4 4

al<a2<a3
al<a3<a?
a2<al<a3
a2<a3<al
a3<al<a?
a3<a2<al
YES 5 17 NO
<
a2<al<a3 a al:
a2<a3<kal
a3<a2<al
YES NO
a3 <al?
a2<a3<al
a3<a2<al

YES 33 <g2?2 NO
a3<a2<al

al=1,a2=2,a3 =3 initial
cmp(az, al)

al=1,a2=2,a3=3
cmp(a3, a2)

al=1,a2=2,a3=3

YES
a2<al<a3
a2<a3<al
a3<a2<al

YES NO
a3 <al?
a2<a3<al
a3<a2<al
ves a3 <a2? MO

a3<a2<al

al<a2<a3
al<a3<a2
a2<al<a3
a2<a3<a
a3<al<a
a3<a2<al

a2 <al?

al<a2<a3

<a3

’aﬁa?-,(a3
(1!;<262,<1411.

\—fii<16125416tl’

al<a2<a3
al<a3<a2
a2<al<a3
a2<a3<al
a3<al<a2
a3<a2<al

a2<al<a3
a2<a3<kal
a3<a2<al

:

YES NO
a3 <al?
<aos<
2§<2;<:1 a2<al<a3

YES a3 <g2?2 N
a3<a2<al

YES

H leaves = # inpris 21|
whew 11’5 balonced |
L(QFH’\ :/92(nl)

*
al<a2<a3
al<a3<a?
| a3<al<a?
YES NO
a3 < a2?
al<a3<a? 1<a7<a3
ac<al<a2 CRREPaS:

N

Sorting Lower Bound 2 log,(n!)

* Information-theoretic: need lg(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!)) =lgn) +1glh—1) +1g(n —2) + ..+1g(1) < nlgn

Sorting Lower Bound

* Information-theoretic: need lg(n!) bits of information about the input
before we can correctly decide on the output

* lIg(n!) =1g(n) +1gln — 1) +Ig(n —2) + ... +1g(1) <nlgn
e lg(n) =1gln) +1gln—1) +1gln — 2) + ...+ 1g(1) > (2) Ig (g) = Q(nlgn)

_——,

* Information-theoretic: need Ig(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!)) =lgln) +1glh—1) +1g(n —2) + ..+1g(1) < nlgn
e lg(n!)) =lg(n) +1gln —1) +1gn —2) + ...+ 1g(1) > (g) Ig (2) = Q(nlgn)

n

n
. n!E[(g) ,n"], sonlgn —nlge <lg(n!) <nlgn
nlgn —1.443n < Ig(n!) <nlgn

* Ig(n!) = (nlgn) (1 —o(1))

Sorting Upper Bounds

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,

Sorting Upper Bounds

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is ¥, .[lgkl <n|lgn|

—

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is ¥, .[lgkl <n|lgn|

Why don’t we often use binary insertion sort in practice?

Sorting Upper Bounds

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1

R Ty) <) Ofly)
—

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is },._, ,[lgk] < nlgn

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons

What's the cost?

e —

= Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is },._, ,[lgk] < nlgn

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons

any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

® no matter whether actual algorithm is implemented as a
RAM program or circuit
e a useful guide and sanity check when we design algorithm

any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

Non-comparison-based algorithms can take o(n log

n) time
e.g., bucket sort

ARTICLE

Deterministic sorting in O(nlog log n) time and linear
space

¥ ingw f &=

Author: Yijie Han Authors Info & Claims

STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing « May 2002 « Pages 602—
608 « https://doi.org/10.1145/509907.509993

Online: 19 May 2002 Publication History

any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

Cool fact about comparison-based sort (0-1

principle)

® any comparison-based sorting algorithm that can
sort Os and 1s can sort arbitrary numbers!

® Proof: see Knuth’s textbook

Go down the list and check if each element is bigger
than the previous. If not, eliminate the element.

The result must be sorted

Elimination-based sorting <

Selection in the Comparison Model

* How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Selection in the Comparison Model

* How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

* Claim: n-1 comparisons are sufficient
* Proof: scan from left to right, keep track of the largest element so far

Selection in the Comparison Model

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?
* Only 4 hich is too weak

Also, we have to look at all e ants, otherwise we may have not looked at the largest,
but that can be done wit gmparisons, also not tight

Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

ﬁ Adversarial argument

If output produced without having made enough
comparisons, can construct an adversarial input
consistent with all the answers so far, that fools the
algorithm to output incorrectly

A=2B AcB
Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppos@is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

-—W

* Construct a graph G_in which we join two elements by an edge if they are
compared b 2 +M

M5 5/ 4>‘5

Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

. Suppostputs elemen@s the maximum, an@ € Cy

s —

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

* Suppose A outputs element u as the maximum, andu € Cy

* Add a large positive number to each element in G,

* Does not change any of the comparisons made by A, so will still output u
e But now u is not the maximum, so A is incorrect

*Recap: upper and lower bounds match at n-1

&

* Argument different from information-theoretic bound for sorting,
use the adversarial argument

—

* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

* Claim: omparisons are needed in the worst-case
— - - e e —m

* Proof: need to at least find the maximum

What about Upper Bounds?

What about Upper Bounds?

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest sing@ompariso then find the largest of
the remainder usin@comparisons, saI
_~

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest using n-1 comparisons, then find the largest of
the remainder using n-2 comparisons, so 2n-3 total

* Upper bound is 2n-3, and lower bound n-1, both are ®(n) but can we
get tight bounds?

Second Largest of n Elements Upper Bound

. Claimparisons are sufficient to find the first and
second-largest of n elements

Second Larges ofments Upper Bound

* Claim: n + lgn/—-z pa are sufficient to find the first and

second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6

4 2 1 8 @ 3)
Round 1 \6 / \2/ \8 m
Round 2 \
/ 8
8

Round 3

#G‘w,f nodes = |SY) He second N mnSt
be Gnon b +e 6]’&\7 ke

Second Largest of n Elements Upper Bound

* Claim: n + lgn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6 4 2 1 8 7 3)
Round 1 \6 / \2/ \8/ N 5/

Round 2 \ 6/ \8/
Round 3 \ 8/

* How do we find the second maximum?

* Claim: n + 1gn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6 4 2 1 8 7 3)
Round 1 \G/ \‘)/ \8/ \r_/

4 >)
Round 2 \b/ \8/
Round 3 \ 8/

* How do we find the second maximum?
* Must have been directly compared to the maximum and lost, so Ig(n)-1
additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Sorting in the Exchange Model

* Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

| E k. .
= s =
z z EIN
2 5
> = = 1
N - ;o :
i i : O NS E
: ;3 il 2 : I
AR FE 3 ‘B
: E |-
i - c EIE B
= 1 i e b)
- ~ <
2 = & 5 3
4 [E - '
'k "M
i B i
EGRRD! g ;7}
Ll A [b B
.

e Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

*In the_exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

* All other work is free, e.g., the items can be examined and
compared

Sorting in the Exchange Model

* Claim: n-1 exchanges is sufficient

 Claim: n-1 exchanges is sufficient
* Proof:
* 1st step: swap the smallest item with the item in the first location

» 2nd step: swap the second smallest item with the item in the second
location

* k-th step: swap the k-th smallest item with item in the k-th location
* If no swap is necessary, just skip a given step

* No swap ever undoes our previous work

* At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

—

Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j m-h‘a'

C\(\‘ ‘ OLPL\ Consists 0’" 8’
m? %r oy cles d l
\ ()
M Q Q ()/ Q Figure 1: Graph for input 9 cdeb a

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location |

Graph is a set of cycles
Indegree and Outdegree of each node is 1

Figure 1: Graph for input [f ¢ d e b a g]

Lower Bound for Sorting in Exchange Model

Case |

* What is the effect of exchanging any two elements in the same cycle?

j i
o <" Swap il andi2

VY

Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in the same cycle?

j1
iy i Swap i1 and i2

J2

Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in the same cycle?

Break into 2 cycles

Lower Bound for Sorting in Exchange Model

(o -
* What is the effect of exchanging any two elements in differem Excles?

: Swap i1 and i2
\

2

)2

Lower Bound for Sorting in Exchange Model

. What is the effect of exchanging any two elements in different cycles?

W\erﬂeA 0 one ;Z;‘@

| case : W‘f'/’f

(2

J2

* Exchanging any two elements;in the same cycle?
* Get two disjoint cycles \/

*Exchanging any two elements in different cycles?
* Merges two cycles into one cycle

e Corner cases also result in self loop and create two
disjoint cycles

*How many cycles are in the final sorted array?
*n cycles

*Suppose we begin with an array [n, 1, 2, ..., n-1]
with one big cycle

*Each step increases the # cycles by at most 1, so
need n-1 steps

* Let G be the adjacency matrix of an n-node graph
* G[i,j] = 1if there is an edge between i and j, else GJ[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?

* Let G be the adjacency matrix of an n-node graph
* G[i,j] = 1if there is an edge between i and j, else GJ[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?
* Claim: n(n-1)/2 queries suffice

* Let G be the adjacency matrix of an n-node graph
* G[i,j] = 1if there is an edge between i and j, else GJ[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?
* Claim: n(n-1)/2 queries suffice

e What about lower bounds?

Connectivity is an Evasive Graph Property

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

Algorithm A playing a game with an evader E

Each time, A asks about (i, j), E reveals whether there’s an edge
At some point, A outputs a decision

E wants to force A to query the entire graph to rule out any
ambiguity

Example

e Maintain ambiguity
among all graphs consistent with the revealed part, some are
connected and some are not

e Make sure it’s not possible for A to decide without querying
some unqueried edge

Revealed edges form two connected components A and B.
A contains al and a2, B contains b1l and b2.

(al, bl), (a2, b2) not queried.

Now, query (al, bl).

v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.

v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.
e what if (v, u) in same connected component?

v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.
e what if (v, u) in same connected component? This will not happen.

Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Proof: by induction
® Base case: it’s true initially
e Induction hypothesis: suppose true now, true after next query

Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Theorem: A must query all pairs when interacting with this evader

Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Theorem: A must query all pairs when interacting with this evader
Proof: at the end of the algorithm, there cannot be more than 1

connected components left, since otherwise, by invariant 2, correctness
is not guaranteed. The theorem follows due to invariant 1.

Happy Sprifg Festivall: &

.
L]

