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What is “concrete models?”



Random Access Machines (RAM) Circuits/Circuitry
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Metrics: time, space size, depth



Today: Concrete models of computation

focus on the cost of a specific type of operation



focus on the cost of

® e.g., number of comparisons to sort an array?
(recall last lecture)

e Number of probes into a graph needed to
determine if the graph is connected?
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focus on the cost of

® e.g., number of comparisons to sort an array?

Recall last lecture:

e we used # comparisons as the cost metric

e all *fasymptotic* analysis also holds for the RAM model

e fun fact: possible to compute median in a linear-sized circuit,
but much more challenging [Lin-Shi, SODA22]



focus on the cost of

e don’t care whether the algorithm is actually
implemented as a RAM program or circuit

e don’t care about other costs (e.g., space, cost of
moving data round, etc)



e Understand the limit of a class of algorithms
O e.g., comparison-based sorting

e Understand information theoretic limits
o e.g., number of probes into a graph to decide
connectivity

® Focus on heavy-weight operations
o e.g., in crypto, public-key ops > secret-key ops



* An upper bound of f(n) means the algorithm takes at most f(n)
operations on any input of size n

*A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) operations on that input



Sorting in the Comparison Model

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free
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* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

* No other operations allowed, such as XORing, hashing, etc.

* Sorting: given an array a = [a4, ..., 2, |, output a permutation T so that
lar(1), --»@xm)] in which the elements are in increasing order
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Example for sorting to ve

Array=[4,6,3,1,%1 e 4,5'5, A

<

What is r?

* Sorting: given an array a = [a4, ..., ay |, output a permutation 1 so that
[an(l), cer) an(n)] in which the elements are in increasing order



Sorting Lower Bound

* Theorem: Any deterministic comparison-based sorting algorithm must

perform at least Ig, (n!) comparisons to sort n elements in the worst case
==___
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* Theorem: Any determinjstic comparison-based sorting algorithm must
perform at least Ig, (n!)'\comparisons to sort n elements in the worst case

* |.e., for any sorting algorithm A and n = 2, there is an input | of size n so
that A makes > lg(n!) = Q(nlogn) comparisons to sort I.



e Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

* How many possible inputs are there? N |
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e Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct



Proving the Sorting Lower Bound

Think of an algorithm as a
decision tree



procedure InsertionSort(A: list of items)
n = length (A)
for 1 = 2 to n do
J =1
while 7 > 1 and A[jJ-1] > A[]j] do
swap (A[J], A[J-11])
J =3 -1
end while
end for
end procedure

Example: A=13, 2, 1]
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Example: A= [3 ]
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al<a2<a3
al<a3<a?
a2<al<a3
a2<a3<al
a3<al<a?
a3<a2<al
YES 5 17 NO
<
a2<al<a3 a al:
a2<a3<kal
a3<a2<al
YES NO
a3 <al?
a2<a3<al
a3<a2<al

YES 33 <g2?2 NO
a3<a2<al




al=1,a2=2,a3 =3 initial
cmp(az, al)

al=1,a2=2,a3=3
cmp(a3, a2)

al=1,a2=2,a3=3



YES
a2<al<a3
a2<a3<al
a3<a2<al

YES NO
a3 <al?
a2<a3<al
a3<a2<al
ves a3 <a2? MO

a3<a2<al

al<a2<a3
al<a3<a2
a2<al<a3
a2<a3<a
a3<al<a
a3<a2<al

a2 <al?

al<a2<a3

<a3
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al<a2<a3
al<a3<a2
a2<al<a3
a2<a3<al
a3<al<a2
a3<a2<al

a2<al<a3
a2<a3<kal
a3<a2<al

:

YES NO
a3 <al?
<aos<
2§<2;<:1 a2<al<a3

YES a3 <g2?2 N
a3<a2<al

YES
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*
al<a2<a3
al<a3<a?
| a3<al<a?
YES NO
a3 < a2?
al<a3<a? 1<a7<a3
ac<al<a2 CRREPaS:

N



Sorting Lower Bound 2 log,(n!)

* Information-theoretic: need lg(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!)) =lgn) +1glh—1) +1g(n —2) + ..+1g(1) < nlgn



Sorting Lower Bound

* Information-theoretic: need lg(n!) bits of information about the input
before we can correctly decide on the output

* lIg(n!) =1g(n) +1gln — 1) +Ig(n —2) + ... +1g(1) <nlgn
e lg(n) =1gln) +1gln—1) +1gln — 2) + ...+ 1g(1) > (2) Ig (g) = Q(nlgn)
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* Information-theoretic: need Ig(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!)) =lgln) +1glh—1) +1g(n —2) + ..+1g(1) < nlgn
e lg(n!)) =lg(n) +1gln —1) +1gn —2) + ...+ 1g(1) > (g) Ig (2) = Q(nlgn)

n

n
. n!E[(g) ,n"], sonlgn —nlge <lg(n!) <nlgn
nlgn —1.443n < Ig(n!) <nlgn

* Ig(n!) = (nlgn) (1 —o(1))
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* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is ¥, .[lgkl <n|lgn|

Why don’t we often use binary insertion sort in practice?



Sorting Upper Bounds

* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
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* Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is },._, ,[lgk] < nlgn

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons

What's the cost?

e —



= Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is },._, ,[lgk] < nlgn

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons



any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

® no matter whether actual algorithm is implemented as a
RAM program or circuit
e a useful guide and sanity check when we design algorithm



any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

Non-comparison-based algorithms can take o(n log

n) time
e.g., bucket sort
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Deterministic sorting in O(nlog log n) time and linear
space

¥ ingw f &=

Author: Yijie Han Authors Info & Claims

STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing « May 2002 « Pages 602—
608 « https://doi.org/10.1145/509907.509993

Online: 19 May 2002 Publication History




any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

Cool fact about comparison-based sort (0-1

principle)

® any comparison-based sorting algorithm that can
sort Os and 1s can sort arbitrary numbers!

® Proof: see Knuth’s textbook



Go down the list and check if each element is bigger
than the previous. If not, eliminate the element.

The result must be sorted

Elimination-based sorting <



Selection in the Comparison Model

* How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?
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Selection in the Comparison Model

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?




How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?
* Only 4 hich is too weak

Also, we have to look at all e ants, otherwise we may have not looked at the largest,
but that can be done wit gmparisons, also not tight




Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements




* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

ﬁ Adversarial argument

If output produced without having made enough
comparisons, can construct an adversarial input
consistent with all the answers so far, that fools the
algorithm to output incorrectly



A=2B  AcB
Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppos@is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

-—W

* Construct a graph G_in which we join two elements by an edge if they are
compared b 2 +M

M5 5/ 4>‘5



Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,




* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

. Suppostputs elemen@s the maximum, an@ € Cy

s —



* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

* Suppose A outputs element u as the maximum, andu € Cy

* Add a large positive number to each element in G,

* Does not change any of the comparisons made by A, so will still output u
e But now u is not the maximum, so A is incorrect




*Recap: upper and lower bounds match at n-1

&

* Argument different from information-theoretic bound for sorting,
use the adversarial argument




—

* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?




* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

* Claim: omparisons are needed in the worst-case
— - - e e —m

* Proof: need to at least find the maximum



What about Upper Bounds?



What about Upper Bounds?

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest sing@ompariso then find the largest of
the remainder usin@comparisons, saI
\_~



* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest using n-1 comparisons, then find the largest of
the remainder using n-2 comparisons, so 2n-3 total

* Upper bound is 2n-3, and lower bound n-1, both are ®(n) but can we
get tight bounds?



Second Largest of n Elements Upper Bound

. Claimparisons are sufficient to find the first and
second-largest of n elements



Second Larges ofments Upper Bound

* Claim: n + lgn/—-z pa are sufficient to find the first and

second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6

4 2 1 8 @ 3 )
Round 1 \6 / \2/ \8 m
Round 2 \
/ 8
8

Round 3
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Second Largest of n Elements Upper Bound

* Claim: n + lgn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6 4 2 1 8 7 3 )
Round 1 \6 / \2/ \8/ N 5/

Round 2 \ 6/ \8/
Round 3 \ 8/

* How do we find the second maximum?



* Claim: n + 1gn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

6 4 2 1 8 7 3 )
Round 1 \G/ \‘)/ \8/ \r_/

4 > )
Round 2 \b/ \8/
Round 3 \ 8/

* How do we find the second maximum?
* Must have been directly compared to the maximum and lost, so Ig(n)-1
additional comparisons suffice. Kislitsyn (1964) shows this is optimal



Sorting in the Exchange Model

* Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

| E k. .
= s =
z z EIN
2 5
> = = 1
N - ;o :
i i : O NS E
: ;3 il 2 : I
AR FE 3 ‘B
: E |-
i - c EIE B
= 1 i e b )
- ~ <
2 = & 5 3
4 [E - '
'k "M
i B i
EGRRD! g ;7}
Ll A [ b B
.




e Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

*In the_exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

* All other work is free, e.g., the items can be examined and
compared



Sorting in the Exchange Model

* Claim: n-1 exchanges is sufficient



 Claim: n-1 exchanges is sufficient
* Proof:
* 1st step: swap the smallest item with the item in the first location

» 2nd step: swap the second smallest item with the item in the second
location

* k-th step: swap the k-th smallest item with item in the k-th location
* If no swap is necessary, just skip a given step

* No swap ever undoes our previous work

* At the end, the last item must already be in the correct location



Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

—



Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j m-h‘a'

C\(\‘ ‘ OLPL\ Consists 0’" 8’
m? %r oy cles d l
\ ()
M Q Q ()/ Q Figure 1: Graph for input 9 cdeb a



* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location |

Graph is a set of cycles
Indegree and Outdegree of each node is 1

Figure 1: Graph for input [f ¢ d e b a g]



Lower Bound for Sorting in Exchange Model

Case |

* What is the effect of exchanging any two elements in the same cycle?

j i
o <" Swap il andi2

VY



Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in the same cycle?

j1
iy i Swap i1 and i2

J2



Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in the same cycle?

Break into 2 cycles



Lower Bound for Sorting in Exchange Model

(o -
* What is the effect of exchanging any two elements in differem Excles?

: Swap i1 and i2
\

2

)2




Lower Bound for Sorting in Exchange Model

. What is the effect of exchanging any two elements in different cycles?

W\erﬂeA 0 one ;Z;‘@

| case : W‘f'/’f

(2

J2




* Exchanging any two elements;in the same cycle?
* Get two disjoint cycles \/

*Exchanging any two elements in different cycles?
* Merges two cycles into one cycle

e Corner cases also result in self loop and create two
disjoint cycles




*How many cycles are in the final sorted array?
*n cycles

*Suppose we begin with an array [n, 1, 2, ..., n-1]
with one big cycle

*Each step increases the # cycles by at most 1, so
need n-1 steps



* Let G be the adjacency matrix of an n-node graph
* G[i,j] = 1if there is an edge between i and j, else GJ[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?
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* Claim: n(n-1)/2 queries suffice



* Let G be the adjacency matrix of an n-node graph
* G[i,j] = 1if there is an edge between i and j, else GJ[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?
* Claim: n(n-1)/2 queries suffice

e What about lower bounds?



Connectivity is an Evasive Graph Property

* Theorem: n(n-1)/2 queries are necessary to determine connectivity



Algorithm A playing a game with an evader E

Each time, A asks about (i, j), E reveals whether there’s an edge
At some point, A outputs a decision

E wants to force A to query the entire graph to rule out any
ambiguity



Example









e Maintain ambiguity
among all graphs consistent with the revealed part, some are
connected and some are not

e Make sure it’s not possible for A to decide without querying
some unqueried edge



Revealed edges form two connected components A and B.
A contains al and a2, B contains b1l and b2.

(al, bl), (a2, b2) not queried.

Now, query (al, bl).



v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.



v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.
e what if (v, u) in same connected component?



v

Let T1, T2, ... Tk be the current connected components among the edges
revealed to exist.
Query (v, u).
® Supposev € Tlandu € T2. Answer YES only if every other edge
between T1 and T2 have been queried. Otherwise answer NO.
e what if (v, u) in same connected component? This will not happen.



Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.



Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Proof: by induction
® Base case: it’s true initially
e Induction hypothesis: suppose true now, true after next query



Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Theorem: A must query all pairs when interacting with this evader



Claim: The evader algorithm maintains the following invariants:
1. All pairs inside a connected component have been queried

2. Between any two connected components T and Tj, some pair has
not been queried.

Theorem: A must query all pairs when interacting with this evader
Proof: at the end of the algorithm, there cannot be more than 1

connected components left, since otherwise, by invariant 2, correctness
is not guaranteed. The theorem follows due to invariant 1.
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