
Lecture 5: Hashing

David Woodruff

Hashing

• Universal hashing

• Perfect hashing

Maintaining a Dictionary

• Let U be a universe of “keys”
• U could be all strings of ASCII characters of length at most 80

• Let S be a subset of U, which is a small “dictionary”
• S could be all English words

• Support operations to maintain the dictionary
• Insert(x): add the key x to S
• Query(x): is the key x in S?
• Delete(x): remove the key x from S

Dictionary Models

• Static: don’t support insert and delete operations, just optimize for fast
query operations

• For example, the English dictionary does not change much
• Could use a sorted array with binary search

• Insertion-only: just support insert and query operations

• Dynamic: support insert, delete, and query operations
• Could use a balanced search tree (AVL trees) to get O(log |S|) time per operation

• Hashing is an alternative approach, often the fastest and most convenient

Formal Hashing Setup
• Universe U is very large

• E.g., set of ASCII strings of length 80 is ଼

• Care about a small subset . Let N = |S|.
• S could be the names of all students in this class

• Our data structure is an array A of size M and a “hash function” h: U , 1, …, M-1}.
• Typically , so can’t just store each key x in A[x]
• Insert(x) will try to place key x in A[h(x)]

• But what if h(x) = h(y) for We let each entry of A be a linked list.
• To insert an element x into A[h(x)], insert it at the top of the list
• Hope linked lists are small

How to Choose the Hash Function h?

• Want it to be unlikely that h(x) = h(y) for different keys x and y
• Want our array size M to be O(N), where N is number of keys

• Want to quickly compute h(x) given x
• We will treat this computation as O(1) time

• How long do Query(x) and Delete(x) take?
• O(length of list A[h(x)]) time

• How long does Insert(x) take?
• O(1) time no matter what
• You may first want to check for a duplicate though – that is O(length of list A[h(x)]) time

• How long can the lists A[h(x)] be?

Bad Sets Exist for any Hash Function

• Claim: For any hash function h: U -> {0, 1, 2, …, M-1}, if ,
there is a set S of N elements of U that all hash to the same location

• Proof: If every location had at most N-1 elements of U hashing to it, we would
have

• There’s no good hash function h that works for every S. Thoughts?

• Universal Hashing: Randomly choose h!
• Show for any sequence of insert, query, and delete operations, the expected number of

operations, over a random h, is small

Universal Hashing

• Definition: A set H of hash functions h, where each h in H maps
U -> {0, 1, 2, …, M-1} is universal if for all ,

୦←ୌ

• The condition holds for every x y, and the randomness is only over the
choice of h from H

• Equivalently, for every , we have: ୦∈ୌ ୦ ୶ ୀ୦ ୷ |

ୌ

ଵ

Universal Hashing Examples

Examples that are Not Universal

• Note that a and b collide with probability more than 1/M = 1/2

2

Universal Hashing Example

• The following hash function is universal with M = |{0,1,2}|

Using Universal Hashing

• Theorem: If H is universal, then for any set with |S| = N, for any
, if we choose h at random from H, the expected number of collisions

between x and other elements in S is less than N/M.

• Proof: For with , let ୶୷ if h(x) = h(y), otherwise ୶୷

Let ୶ ୶୷୷ஷ୶ be the total number of collisions with x

୶୷
ଵ

By linearity of expectation, ୶ ୶୷୷ஷ୶
ିଵ

Using Universal Hashing

• Corollary: If H is universal, for any sequence of L insert, query, and delete
operations in which there are at most M keys in the data structure at any
time, the expected cost of the L operations for a random is O(L)

• Assumes the time to compute h is O(1)

• Proof: For any operation in the sequence, its expected cost is O(1) by the
last theorem, so the expected total cost is O(L) by linearity of expectation

But how to Construct a Universal Hash Family?

• Claim: for , ౣ

• Suppose and M
• Let A be a random m x u binary matrix, and h(x) = Ax mod 2

But how to Construct a Universal Hash Family?

• Claim: For ,
୦

ଵ

ଵ

ଶౣ

• Proof: ୧ ୧୧ mod 2, where ୧ is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) = 0 mod 2
If , there exists an ∗ for which ୧∗ ୧∗

Fix ୨ for all ∗, which fixes b = ୨ ୨ ୨୨ஷ୧∗ mod 2
A(x-y) = 0 mod 2 if and only if ୧∗= b

∗
୧∗

ଵ

ଶౣ

ଵ

So h(x) = Ax mod 2 is universal

More Universal Hashing

• Given a key x, suppose x = ଵ ୩ where each ୧

• Suppose M is prime

• Choose random ଵ ୩ and define
ଵ ଵ ଶ ଶ ୩ ୩

• Claim: the family of such hash functions is universal, in fact,

୦

ଵ

for all distinct x and y

More Universal Hashing

• Claim: the family of such hash functions is universal, that is,

୦

ଵ

for all x y

• Proof: Since , there is an ∗ for which ୧∗ ୧∗

Let ᇱ
୨ ୨୨ஷ୧∗ , and h(x) = h’(x) + ୧∗ ୧∗ mod M

If h(x) = h(y), then h’(x) + ୧∗ ୧∗= h’(y) + ୧∗ ୧∗ mod M

So ୧∗ ୧∗ ୧∗
ᇱ ᇱ mod M, or ୧∗

୦ᇲ ୷ ି୦ᇲ ୶

୶∗ି୷∗
mod M

This happens with probability exactly 1/M

k-wise Independent Families

• Definition: A hash function family H is k-universal if for every set of k distinct
keys ଵ ୩ and every set of values ଵ ୩ ,

Pr[ଵ ଵ ଶ ଶ ୩ ୩ = ଵ

ౡ

• If H is 2-universal, then it is universal. Why?

• h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

• Exercise: Show Ax + b mod 2 is 2-universal, where A in ୫ ୶ ୳ and
୫ are chosen independently and uniformly at random

Perfect Hashing

• If we fix the dictionary S of size N, can we find a hash function h so that all query(x)
operations take worst-case constant time?

• Claim: If H is universal and ଶ, then
୦←ୌ

ଵ

ଶ

• Proof: How many pairs {x,y} of distinct x,y in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision] (N(N-1)/2)/M ଵ

ଶ

Just try a random h and check if there are any collisions
Problem: our hash table has ଶ space! How can we get O(N) space?

Perfect Hashing in O(N) Space – 2 Level Scheme
• Choose a hash function from a universal family

• Let ୧ be the number of items x in S for which h(x) = i

• Choose N “second-level” hash functions ଵ ଶ where ୧ ୧
ଶ

By previous analysis, can
choose hash functions

ଵ ଶ so that there are
no collisions, so O(1) time

Hash table size is ୧
ଶ

୧ୀଵ,…,୬

How big is that??

Perfect Hashing in O(N) Space – 2 Level Scheme
• Theorem: If we pick h from a universal family H, then

୦←ୌ ୧
ଶ

୧ୀଵ,…,

• Proof: It suffices to show ୧
ଶ

୧ and apply Markov’s inequality

Let ୶,୷ if h(x) = h(y). By counting collisions on both sides, ୧
ଶ

୧ ୶,୷୶,୷

If x = y, then ୶,୷ . If , then ୶,୷ ୶,୷
ଵ

୧
ଶ

୶,୷ ୶,୷୶ஷ୷୶,୷୧ < 2N

So choose a random h in H, check if ୧
ଶ

୧ୀଵ,…,୬ , and if so, then choose ଵ

