
15-451/651: Design & Analysis of Algorithms Feb 2, 2023
Lecture #6: Range query data structures last changed: February 22, 2023

Today we are going to explore a class of data structures for performing range queries and see how they can
be applied to speed up algorithms. Our focus is therefore twofold. First, we would like to design and analyze
a specific data structure, that we will refer to as a SegTree, and explore its power. Then, we will see how
such data structures can be useful to improve the performance of algorithms. This is a general skill that we
would like to emphasize throughout the course – when designing algorithms, how can the use of appropriate
data structures be used to obtain the best performance?

Objectives of this lecture

In this lecture, we will:

- Introduce the SegTree data structure

- See what kinds of problems SegTrees are capable of solving

- See how SegTrees and related data structures can be used to speed up algorithms

1 Range queries

Today we are interested in solving range queries. Range queries have a lot of applications, including in
databases, computational geometry, geographic information systems, and computer-aided design.

Definition: Range queries

Given a sequence of data (often, but not strictly necessarily integers), a range query on that sequence
asks about a property of some contiguous range of the data i to j. For example, given a sequence of
n integers, we might want to ask what is the sum of the integers from position i to j, or what is the
maximum integer among those in positions i to j.

For example, suppose we have a sequence of n integers a[0], a[1], . . . , a[n−1], and we want to support querying
for the sum of the integers in positions i to j. We will use the convention that the left index is inclusive, and
the right index is exclusive. Here are two approaches to get us warmed up.

Approach #1 For each query, just loop over the integers in positions i to j − 1 and compute the sum.
This takes Θ(j − i) = O(n) time. This is very simple, but not at all efficient if the sequence is long.

Approach #2 Start by precomputing the prefix sums

p[j] =
∑

0≤i<j

a[i]

then answer a query for the sum between i and j by returning p[j] − p[i]. This takes O(n) preprocessing
time, which seems reasonable, then each query can be answered in O(1) time! Amazing.

Approach #2 is basically optimal if we never plan to modify the elements of the array, but range queries
become so much more useful if we allow modifications. So, our goal is to support an API that enables fast
modifications and fast queries. Specifically, lets try to design a data structure that maintains an array of n
integers and implements:

1



- Assign(i, x): Assign a[i]← x,

- RangeSum(i, j): Return
∑

i≤k<j

a[k].

How would approaches #1 and #2 above fare now that we want to support modifications?

1. Approach #1 can implement Assign in O(1) time by just assigning x to a[i], then RangeSums are still
the same as before and take O(n) time.

2. Approach #2 would require us to re-compute the prefix sums p[j] for all j < i whenever we perform
Assign(i, x), which requires Θ(n− i) = O(n) time. Queries however still take O(1) time which is nice.

So, in both cases we have one operation that takes O(1) time, and the other which takes O(n) time. If in
some particular application, one of the operations is extraordinarily rare, maybe this is a good solution, but
if we perform roughly half and half updates and queries, then both solutions are taking O(n) time on average
for each operation. This is not great at all. Can we design a data structure that makes both operations fast?

You may have already seen a data structure that can do this. In fact, we’ve already seen it in this course!
Augmented balanced binary search trees (e.g., Splay Trees) can be used to solve this problem in just O(log n)
time per operation and O(n) words of space. However, they are tricky to implement, and often in practice
the constant factor is quite high, making them somewhat less practical. Splay Trees also give amortized
bounds rather than worst case, though you can improve this by using AVL trees or Red-Black trees.

Today, we are going to design a data structure for this problem with the same bounds, O(log n) worst-case
time per operation and O(n) words of space, but that is much simpler to implement, and much faster in
practice due to smaller constants hidden by the big-O. We will refer to this data structure as a SegTree1.
We will also discuss how to generalize SegTrees to handle a much wider class of problems, where the

∑
operation is replaced by an arbitrary associative operator, enabling us to perform many different kinds of
range queries with just one data structure!

2 Making range queries dynamic

Let’s take a step back and have a closer look at Approach #2 from earlier and see if we can find inspiration
for a better algorithm. What the algorithm from Approach #2 is really doing is computing the sum from 1
to n in a sequential loop and just saving the results along the way. The inefficiency of performing updates
was due to the fact that if we edit element 0, there are n values in p that depend on it, and hence we do
O(n) work in updating everything.

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

0 3 4 14 22 26 31 40 42

The dependencies here are what make the update algorithm slow. Is there instead an alternative way to
break up the computation such that most of the intermediate calculations depends on fewer of the numbers?
You may or may not have seen this idea before when seeking a parallel algorithm for computing the sum (or

1“SegTree” has become the traditional name for this data structure in 15-451, though you might not find it called that in
other places. In the competition programming literature they are called “segment trees”. However, this name conflicts with
another specifically augmented binary search tree that represents a set of line segments in the plane. To remove this ambiguity,
Danny Sleator coined the name “SegTree” and it has stuck.

2



in general, any reduction) of a range of values. The left-to-right sequential sum is completely not parallel
because of the dependencies, but a divide-and-conquer algorithm avoids this problem.

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

The divide-and-conquer sum has fewer dependencies now because each element of the input only affects log2 n
intermediate vales produced by the computation. This means that if we update an element of the input,
the output could be updated efficiently2. Its not clear yet though how we can actually answer RangeSum
queries using this information, so lets figure that out now.

Doing queries The key idea is in figuring out how to build any interval [i, j) that we might want to query
out of some combination of the intervals represented by the divide-and-conquer tree. For example, if we
wanted to query the interval [1, 7) = [1, 6], we could add up the intervals [1, 1], [2, 3], [4, 5], [6, 6] as shown
below. Similarly, we can query [0, 7) as shown on the right.

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

We need to somehow prove that we don’t need too many intervals to make up any query interval. Because
of course, we could always answer any query [i, j) by summing up all of the intervals of size 1 from i to j,
but that’s just the first algorithm which takes O(n) time.

Lemma 1: Few blocks per level

Any interval [i, j) can be made up of a set of disjoint intervals/blocks from the tree such that we use
at most two intervals from any level.

2What we’ve actually made here is an extremely cool and powerful observation! It turns out that parallel algorithms are
usually much easier to convert into dynamic algorithms / data structures than sequential ones, because they both share a
common feature—both of them rely on having shallow dependence chains. An algorithm where all of the computations are
dependent on the previous ones is hard to parallelize, and also hard to dynamize (make updatable) because changing a small
amount of the input may change a large amount of the computation.

3



Proof. Suppose there is some configuration C for the range [i, j) that involves more than 2 intervals at some
level(s). Let h be the deepest level in C that contains s > 2 configurations. Our idea is to construct a new
configuration D for the same range, such that level h now uses at most s− 1 intervals, and any level deeper
than h uses at most 2 intervals. If we can succeed in doing so, we can just repeat the process until every
level has at most 2 intervals.

More specifically, once we identify level h, we can look at the first 3 intervals in level h and reduce them to
2 or fewer intervals. Let I be the middle interval among the three. Starting from the current configuration
C, we will do the following

- Add I’s parent denoted parent(I) (if it is not already in C),

- Delete I and all of parent(I)’s descendants.

Without loss of generality, we may assume that I is the right child of its parent — since the other case is
symmetric/mirroring. Since each parent has two children, only the following cases are possible:

X X

X

Case 1: 

Case 2: 

Case 1 is when the interval I is paired with another interval in the configuration C. Case 2 is when the
interval I is not paired with another interval in C. In Case 1, the number of intervals at level h is reduced
by 2. In Case 2, the number of intervals at level h is reduced by 1. No matter which case, in any level
deeper than h, the number of intervals cannot increase. Also, because the range is contiguous, performing
the above operation does not modify the range represented.

Since there is a construction with at most two blocks per level, we immediately get the following corollary.

Corollary: O(log2 n) blocks per query

Any interval [i, j) can be made up of a set of at most 2 log2 n disjoint blocks from the tree.

Proof. If the root is chosen, then no other nodes would be chosen. Henceforth, we assume that root is not
chosen. In this case, the corollary follows from Lemma 1 and the fact that the tree has log2 n non-root
levels.

4



3 The data structure

Now that we have the key ingredients, we can put together the data structure. For the moment let’s assume
that n is a power of two. If it is not, we can always round it up to the next one by at most doubling it, so it
won’t affect our asymptotic bounds. We will talk about some fairly low level implementation details today,
more than we might often do so in this course.

One of the things that make common tree data structures inefficient is that traversing them requires chasing
down pointers throughout the tree, each of which points to a node that might reside far away from the former
in memory. To make SegTrees more efficient, we will apply the same ordering trick from the binary heap
data structure that you may have seen before. It works because the SegTree data structure is a so-called
perfect binary tree (every internal node has two children, and all leaves are on the same depth).

Definition: The binary heap ordering trick

Given a perfect binary tree on N nodes, we can lay it out in memory using an array of size N using
the following scheme:

- Place the root node at position 0

- Given the node at position i, place its left child in position 2i + 1

- Given the node at position i, place its right child in position 2i + 2

7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

Notice that the number of nodes N = 2n− 1, and that when using this trick, the n input elements of a are
all stored in the last n elements of the array. We can use these ideas to implement the data structure. We
will make use of the following convenience functions:

- Parent(i) := b(i− 1)/2c. Returns the parent of node i

- LeftChild(i) := 2i + 1. Returns the left child of i

- RightChild(i) := 2i + 2. Returns the right child of i

Building the tree To build the tree, we start with the input a[0 . . . (n−1)]. We then perform the recursive
divide-and-conquer to compute all of the block values for the intermediate sums.

Algorithm: Building a SegTree

n : int
A : array〈int〉

SegTree(a : list〈int〉) {
n := size(a)
A := array〈int〉(2*n−1)
for i in 0 to (n−1) do
A[n + i − 1] = a[i]

build(0, 0, n)
}

5



build : (u : int, L : int, R : int) −> () = {
mid := (L + R)/2
if LeftChild(u) < n−1 then
build(LeftChild(u), L, mid)

if RightChild(u) < n−1 then
build(RightChild(u), mid, R)

A[u] = A[LeftChild(u)] + A[RightChild(u)] // reduce the value of the children
}

Implementing updates To implement Assign(i, x), we just have to update the element at position i
and all of its ancestor blocks in the tree. This takes O(log n) time and looks like this.

Algorithm: Updating a SegTree

Assign : (i : int, x : int) −> () = {
u := i + n − 1
A[u] = x
while u > 0 do {
u = Parent(u)
A[u] = A[LeftChild(u)] + A[RightChild(u)] // reduce the value of the children

}
}

Implementing queries To implement RangeSum(i, j), we need to figure out how to identify the set of
O(log n) blocks that make up [i, j). Fortunately, we can do this very naturally with recursion. What we will
do is essentially the same as the original divide-and-conquer sum, except we only need to recurse when we
are on a block that contains some elements from [i, j) and some elements not from [i, j).

Algorithm: Querying a SegTree

RangeSum : (i : int, j : int) −> int = {
return compute sum(0, i, j, 0, n)

}

compute sum = (u : int, i : int, j : int, L : int, R : int) −> int {
if (i <= L && R <= j) then
return A[u]

else {
mid := (L + R)/2
if i >= mid then
return compute sum(RightChild(u), i, j, mid, R)

else if j <= mid then
return compute sum(LeftChild(u), i, j, L, mid)

else {
left sum := compute sum(LeftChild(u), i, j, L, mid)
right sum := compute sum(RightChild(u), i, j, mid, R)
return left sum + right sum // reduce the value of the children

}
}

}

6



4 Speeding up algorithms with range queries

Since this is a course on design and analysis of algorithms after all, one aspect that we want to focus on
is choosing the right data structure for the job when designing an algorithm. We’ve seen in recent lectures
that applying hashing can often drastically reduce the running time of algorithms. How can range queries
help us design better algorithms? If we find ourselves designing an algorithm that requires summing over,
or taking the minimum or maximum of a set of numbers in a loop, then we may be able to improve it by
substituting that code with a range query. Lets see a great example.

Problem: Inversion count

Given a permutation p of 0 through n−1, the number of inversions in the permutation is the number
of pairs i, j such that i < j but p[i] > p[j].

For example, the inversion count of the sorted permutation is 0, because everything is in order. The inversion
count of the reverse sorted permutation is

(
n
2

)
since every pair is out of order. Lets start by designing an

inefficient algorithm. Per the definition, we can just loop over all pairs i < j and check whether p[i] > p[j].

inversions : (p : list〈int〉) −> int {
n := size(p)
result : int = 0
for j in 0 to n − 1 do {
for i in 0 to j − 1 do {
if p[i] > p[j] then
result = result + 1

}
}
return result

}

This will take O(n2) time, but can we improve it somehow using range queries? Lets try to decompose what
the loops of the algorithm are doing. The first one is considering each index j in order, straightforward
enough. The second loop is considering all i < j and counting the number of such i’s that have been seen
previously such that p[i] is larger than p[j]. Okay, this is sounding like some kind of range query now because
we are counting the number of things in a range... How exactly do we express this using a SegTree?

We need a range of values to correspond to the count of the number of elements that we have seen that are
greater than a certain value. So, lets just store an indicator variable for each element x that contains a 1 if
we have seen that element, or otherwise contains a 0. To count the number of elements that are greater than
p[j] will therefore correspond to a range query of RangeSum(p[j], n). The optimized code for inversion
counting therefore looks something like this.

Algorithm: Optimized inversion count using a SegTree

inversions : (p : list〈int〉) −> int {
n := size(p)
counts : SegTree = (list〈int〉(n, 0)) // SegTree initially containing n zeros
result : int = 0
for j in 0 to n − 1 do {
result = result + counts.RangeSum(p[j], n)
counts.Assign(p[j], 1)

}
return result

}

Since each Assign and each RangeSum cost O(log n), the total cost of this algorithm is just O(n log n),

7



which is a great improvement over the earlier O(n2) one!

5 Extensions of SegTrees

5.1 Other range queries

We just figured out how to implement SegTrees that support an Assign and RangeSum API. What makes
SegTrees so versatile, though, is that they are not limited to only performing sums of integers. There was
nothing particularly special about summing integers, except that it made for a good motivating example.
Note that nowhere in our algorithm did we ever need to perform subtraction, which means we never made the
assumption that the operation was invertible, which actually makes it even more general than the original
“Approach #2” at the beginning! The exact same algorithm that we have just discussed can therefore also
be used to implement range queries over any associative operation. In the code presented above, there
are three lines commented with reduce the value of the children, which add the values computed at
the child nodes. Replacing just these three lines with any other associative operation yields a correct data
structure for performing range queries over that operator.

For example, we can also compute the maximum or minimum over a range by replacing X + Y in the three
commented lines above with max(X,Y ) or min(X,Y ). There’s also no reason to restrict ourselves to integers.
We can use any value type, such as floating-point values, or tuples of multiple values, as long as we are able
to provide the corresponding associative operator.

Key Idea: SegTrees with any associative operation

SegTrees can be used with any associative operation, such as sum, min, max, but also even more
complicated ones that you will see in recitation!

5.2 Other update operations

Our update operation for our vanilla SegTree is Assign(i, x), which sets the value of a[i] to x. In some
applications, instead of directly setting the value, we might want something slightly different. For example,
we might want to add to the value instead of overwriting it. Fortunately, this can be supported with a
combination of Assign and RangeSum. Note that we can always get the current value of a[i] by performing
RangeSum(i, i + 1), and then use that in an Assign. So to implement a new operation Add(i, x), which
adds x to a[i], we can just write

- Add(i, x): Assign(i, x + RangeSum(i, i + 1))

The Add operation calls a constant number of SegTree operations, and hence it also runs in O(log n) time.
This operation will be convenient for the next extension.

5.3 Flipping the operations

Our vanilla SegTree supports point updates and range queries, that is, we can edit the value of one element
of the sequence and then query for properties (e.g., sum, min, max) of a range of values in O(log n) time.
What if we want to do the opposite? Lets imagine that we want to support the following API over a sequence
of n integers:

- RangeAdd(i, j, x): Add x to all elements a[i], . . . , a[j − 1]

- GetValue(i): Return the value of a[i]

8



Rather than come up with a brand new data structure, lets try to use our original SegTree as a black box
and reduce this new problem to the old one. This should always be your first choice when designing a new
data structure or algorithm (can I reduce to something that I already know how to solve? This is almost
always easier than designing something new from scratch!)

The idea Somehow we need to convert range additions into just a single update, and range sums into the
ability to get a specific value. How might we do that? Well, notice that at a particular location i, the value
a[i] is equal to the sum of all of the RangeAdds that have touched location i. That sounds like RangeSum
should be able to help us then...

Consider the diagram above. The value of Get(i) is affected only by +x since the ranges +y and +z do not
touch i. Notice that more specifically, the value at i is the sum of all of the ranges whose starting point is
at most i, but whose ending point is at least i. We can represent this using prefix sums.

Notice that the value of i is just the sum of the +x’s that occur at or before i, then subtract the −x’s that
occur before at or before i (since the interval ended before it reached i). This is exactly just the prefix sums
of all of these +x’s and −x’s up to position i. Therefore, we can use the RangeSum method to compute
this prefix sum and hence implement Get. Our algorithm therefore looks as follows.

Algorithm: RangeAdd and Get

We can implement the RangeAdd and Get API in terms of Add and RangeSum as follows.

- RangeAdd(i, j, x): Add(i, x); Add(j,−x)

- Get(i): return RangeSum(0, i + 1)

Both RangeAdd and Get call a constant number of SegTree operations, and hence they both run in
O(log n) time as well.

Note that in this algorithm we had to make use of subtraction, which means that it isn’t applicable to any
arbitrary associative operation anymore, since not every associative operator has an inverse. This algorithm
is therefore only applicable to invertible associative operations.

9



5.4 Range queries and range updates

Optional content — Will not appear on the homeworks or the exams

We have now seen how to implement point updates with range queries (i.e., Assign and RangeSum) and
the opposite set of operations, range updates with point queries (i.e., RangeAdd and Get). Wouldn’t it
be amazing if we could get the best of both worlds and have both? It would be amazing if there existed a
data structure that supported the following API:

- RangeAdd(i, j, x): Add x to all elements a[i], . . . , a[j − 1]

- RangeSum(i, j): Return
∑

i≤k<j

a[k].

This almost sounds too good to be true, but it turns out that there is a very clever reduction that involves
using two SegTrees as black boxes that implements both of these operations in O(log n) time.

Exercise: RangeAdd and RangeSum

Figure out how to implement a data structure that supports both RangeAdd and RangeSum.

Can we do even better? At this point maybe we are starting to ask for too much, but would it be
possible to support range queries for more general associative operations again, while also supporting range
update operations too? Surely we are dreaming at this point, but it turns out to still be possible! We won’t
delve into the full implementation details, but it is super cool to know that this is possible, so lets just sketch
a high-level overview of the how it works. The key technique is called lazy propagation.

Lazy propagation Suppose we want to perform RangeAdd(i, j, x). The naive way would be to manually
add x to all elements a[i], . . . , a[j − 1] and then reduce the ancestors of these nodes in the tree, but this
would take O(n) time. Instead, lets use the same idea that we used for querying and start by identifying a
set of at most 2 log2 n disjoint blocks that make up the interval [i, j). What if we only performed the update
operation +x on these blocks? Well, for each block that was affected, if the block contained s elements, then
the sum would increase by s · x. Then, we could reduce the ancestors of the affected blocks to update their
values, too. This would leave us with a partially updated tree of blocks like so...

0 1 2 3 4 5 6 7

All of the red blocks have the most up-to-date value, but the descendants of the dark red blocks are all
out of date, they are missing the update! To fix this, we remember for each child block of the updated
blocks, a “pending” value, which indicates that an update is still waiting to be applied to that block and its
descendants. In the following diagram, green blocks are up-to-date, and gray blocks are out of date. The
blue values indicate the pending updates that are waiting to be applied.

10



0 1 2 3 4 5 6 7

So, when do we actually apply the pending updates? Well, if we never traverse to those blocks then we
never need to, because we don’t care about their values! Only when we actually traverse to that block in
the future as part of a subsequent update or query do when then apply the update and then propagate the
update to the block’s children. Hence the name lazy propagation. We only propagate the update when we
actually need it, instead of when we first perform the operation!

0 1 2 3 4 5 6 7

In the diagram above, a future query visits a block with a pending update +2x, so it applies it to the value
of the block and then propagates the update, which creates pending updates of +x on both of the children.
That’s it! With lazy propagation, you can have range updates and range queries, and you don’t need your
operation to be invertible since we didn’t make use of subtraction this time.

Exercise: Cost of lazy propagation

Show that with lazy propagation, updates and queries still take O(log n) worst-case time.

11


	Range queries
	Making range queries dynamic
	The data structure
	Speeding up algorithms with range queries
	Extensions of SegTrees
	Other range queries
	Other update operations
	Flipping the operations
	Range queries and range updates


