
Elaine Shi

Range query data structures

15451 Spring 2023

Range queries have many applications
● Databases:

Select avg(price) from Trades where time
∈ [2023/1/1, 2023/2/1]

Range queries have many applications
● Databases:

Select avg(price) from Trades where time
∈ [2023/1/1, 2023/2/1]

● Computational geometry
● Geographic information systems
● Computer-aided design
● Connection to parallel algorithms
● Cryptography (Elaine’s favorite topic)

Today: 1-D range query

Today: 1-D range query

Suppose we have an array a[0], a[1] … , a[n-1]

Design a data structure that supports:

RangeSum(i, j): Return

Idea 1:

Store the array a

Compute the sum on the fly

Idea 1:

Store the array a

Compute the sum on the fly

O(n) space, O(n) time per query

Idea 2:

Precompute all prefix sums

On query (i, j), return

Idea 2:

Precompute all prefix sums

On query (i, j), return

O(n) pre-processing,
O(n) space, O(1) query time

Suppose we also want to support update

Suppose we have an array a[0], a[1] … , a[n-1]

Design a data structure that supports:

RangeSum(i, j): Return

Update(i, x): update a[i] to x

What’s the cost of Update in Idea 2?

Precompute all prefix sums

On query (i, j), return

Idea 1:

Store the array a

Compute the sum on the fly

Idea 1: O(1) Update, O(n) RangeSum

Store the array a

Compute the sum on the fly

Good for infrequent queries and frequent updates

Idea 2:

Precompute all prefix sums

On query (i, j), return

Idea 2: O(n) update, O(1) RangeSum

Precompute all prefix sums

On query (i, j), return

Good for frequent queries and infrequent updates

Can we balance the
Update and RangeSum costs?

e.g., suppose queries and updates are both
frequent

Inspired by parallel algorithms

Inspired by parallel algorithms

Inspired by parallel algorithms

Inspired by parallel algorithms

Preprocess:
● compute this tree
● each node stores the sum of the subtree

How to support RangeSum and Update?

RangeSum(1, 6) query

RangeSum(0, 6) query

Claim: every range sum is the sum of
at most 2log2n nodes in the tree

Update(3, 21)

Update(3, 21) takes log n time!

21

31

35

55

Claim: any interval [i, j) can be made up by
at most 2 intervals from each level.

Claim: any interval [i, j) can be made up
using at most 2 intervals from each level.

Proof:
● Suppose that [i, j) is expressed by some configuration C

that contains more than 2 intervals in some level(s)

Claim: any interval [i, j) can be made up
using at most 2 intervals from each level.

Claim: any interval [i, j) can be made up
using at most 2 intervals from each level.
Proof:
● Suppose that [i, j) is expressed by some configuration C

that contains more than 2 intervals in some level(s)
● Let h be the deepest level with > 2 intervals
● Construct another config D that represents [i, j) s.t.

○ Every level deeper than h uses at most 2 intervals
○ Level h uses at most s-1 intervals

● Find the middle interval J at level h
● Add its parent P
● Delete all of P’s descendants including

J itself

X X

X

Case 1:

Case 2:

Assume: middle interval is right child,
the other case is mirroring

Example

Finding the intervals in O(log n) time

Implementing the Range Tree

Take advantage of the binary heap ordering trick

Store tree in an array

● Root index: 0
● LeftChild(i) = 2i + 1
● RightChild(i) = 2i + 2
● Parent(i) = ⌊(i-1)/2⌋

See notes for the detailed pseudocode

Speeding up algorithms
with Range Trees

Inversion counting

Given a permutation p of 0.. n-1

inversions of p:
of pairs (i, j) such that i < j but p[i] > p[j]

Inversion counting

Example: 5, 3, 1, 2, 6, 0, 4, 8, 7

Example: 5, 3, 1, 2, 6, 0, 4, 7

5:
3: 5
1: 5, 3
2: 5, 3
6:
0: 5, 3, 1, 2, 6
4: 5, 6
7:

Design an algorithm for inversion
counting

Naive: O(n2) time

0

Index 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7

0

Index 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7

RangeSum(5, 7): 0

Total = 0

0

Index 0 1 2 3 4 5 6 7

0 0 0 0 1 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 0

0

Index 0 1 2 3 4 5 6 7

0 0 0 0 1 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 1

RangeSum(3, 7): 1

0

Index 0 1 2 3 4 5 6 7

0 0 1 0 1 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 1

0

Index 0 1 2 3 4 5 6 7

0 0 1 0 1 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 3

RangeSum(1, 7): 2

0

Index 0 1 2 3 4 5 6 7

1 0 1 0 1 0 0

Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 3

Just repeat this for the entire input

Running time?

Extensions of Range Trees

Sum need not be sum

Can be any associate operator
e.g., min, max, average

How do we support
Add(i, x): update a[i] to a[i] + x

Design a data structure that supports

RangeAdd(i, j, x): add x to a[i] … a[j-1]

GetVal(i): return a[i]

Persistent range tree with versioning

Optional: finding the k-th smallest
number in some prefix

Just for fun: applications of range tree in
cryptography and privacy

● Privacy-preserving federated learning
○ Deployed by Google’s Spanish GBoard
○ Uses Elaine’s algorithm!

● Range queries over encrypted data (see Elaine’s
Ph.D. thesis!)

● Puncturable PRFs
● Efficient private information retrieval
● Efficient/parallel data-oblivious algorithms

