15451 Spring 2023

Range query data structures

Elaine Shi

Range queries have many applications

• Databases:

Select avg(price) from Trades where time $\in [2023/1/1, 2023/2/1]$

Range queries have many applications

- Databases:
 - Select avg(**price**) from **Trades** where **time** $\in [2023/1/1, 2023/2/1]$
- Computational geometry
- Geographic information systems
- Computer-aided design
- Connection to parallel algorithms
- Cryptography (Elaine's favorite topic)

Today: 1-D range query

Today: 1-D range query

Suppose we have an array a[0], a[1] ... , a[n-1]

Store the array a

Compute the sum $\sum_{i \le k < j} a[k]$ on the fly

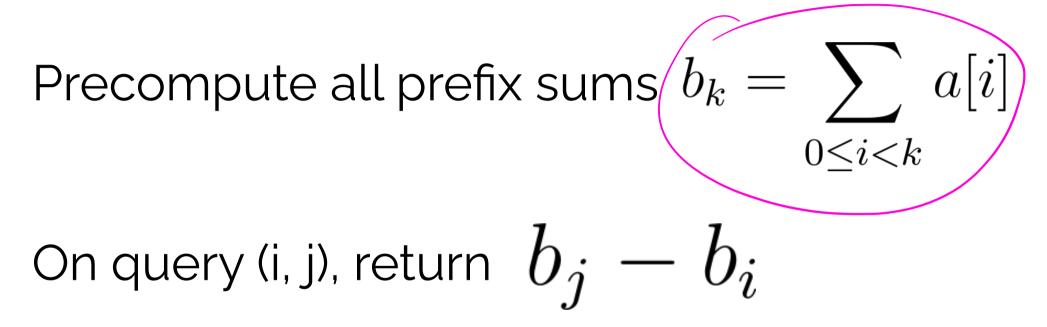
Store the array a

Compute the sum $\sum_{i \leq k < j} a[k]$ on the fly

O(n) space, O(n) time per query

Precompute all prefix sums $b_k = \sum_{0 \le i < k} a[i]$

On query (i, j), return $\,b_j - b_i$



O(n) pre-processing, O(n) space, O(1) query time

Suppose we also want to support update

Suppose we have an array a[0], a[1] ... , a[n-1]

Design a data structure that supports:

RangeSum(i, j): Return
$$\sum_{i \leq k < j} a[k]$$

Update(i, x): update a[i] to x

What's the cost of **Update** in Idea 2?

Precompute all prefix sums $b_k = \sum_{0 \le i < k} a[i]$

On query (i, j), return $\,b_j - b_i$

Store the array a

Compute the sum $\sum_{i \le k < j} a[k]$ on the fly

Idea 1: O(1) Update, O(n) RangeSum

Store the array a

Compute the sum $\sum_{i \leq k < j} a[k]$ on the fly

Good for infrequent queries and frequent updates

Precompute all prefix sums $b_k = \sum_{0 \le i < k} a[i]$

On query (i, j), return $\,b_j - b_i$

Idea 2: O(n) update, O(1) RangeSum

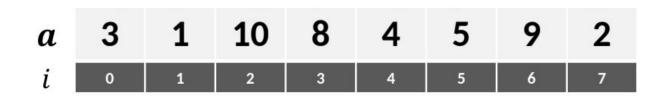
Precompute all prefix sums $b_k = \sum_{0 \le i < k} a[i]$

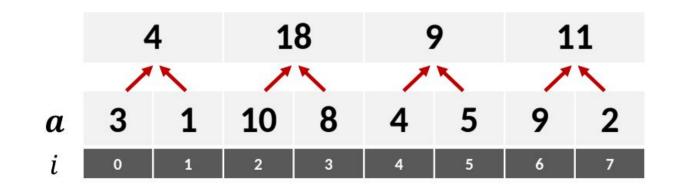
On query (i, j), return $\,b_j - b_i$

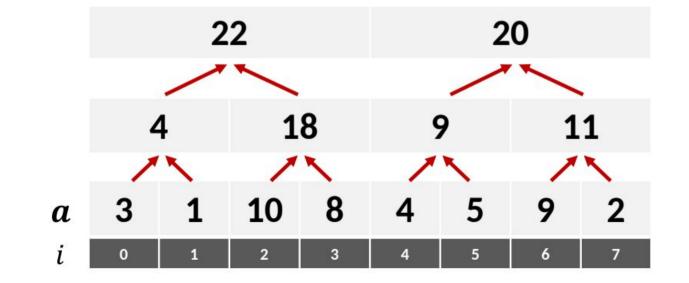
Good for frequent queries and infrequent updates

Can we balance the **Update** and **RangeSum** costs?

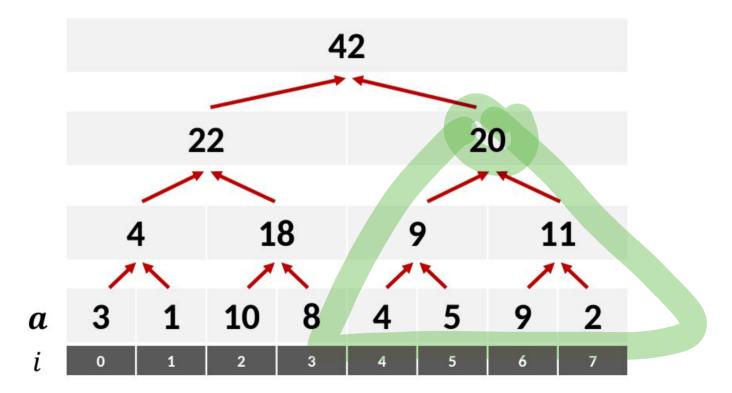
e.g., suppose queries and updates are both frequent





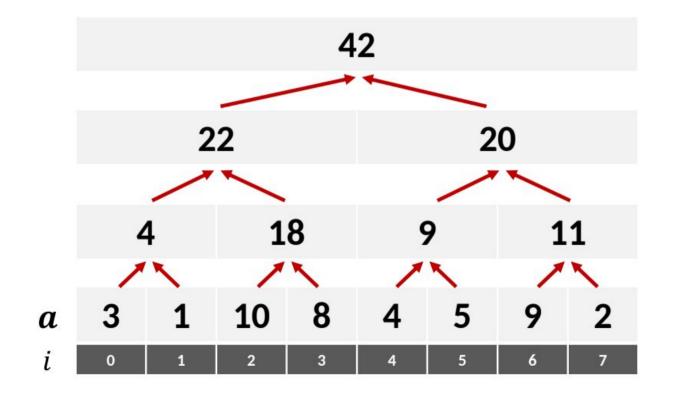


Inspired by parallel algorithms

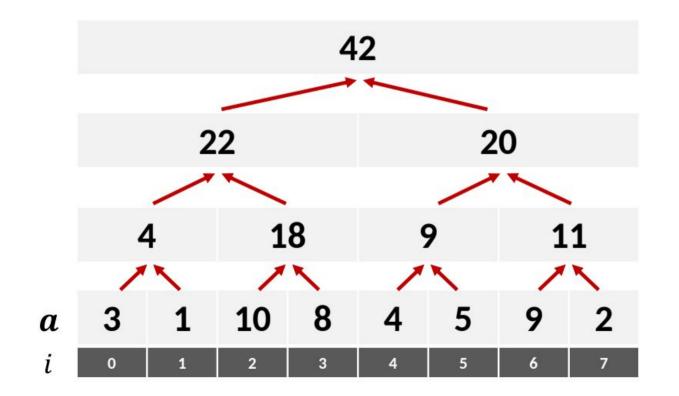


Preprocess:

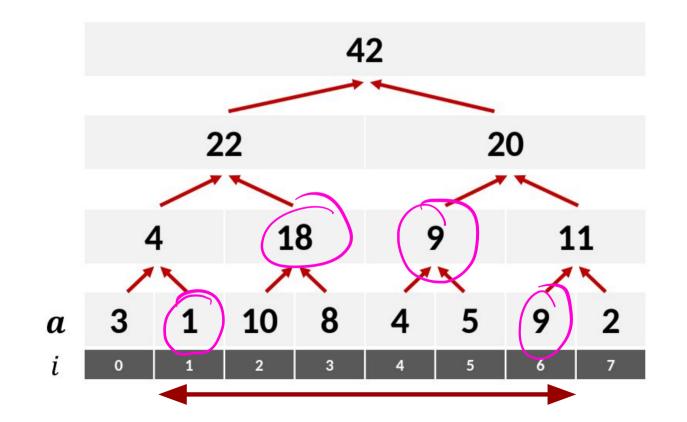
- compute this tree
- each node stores the sum of the subtree



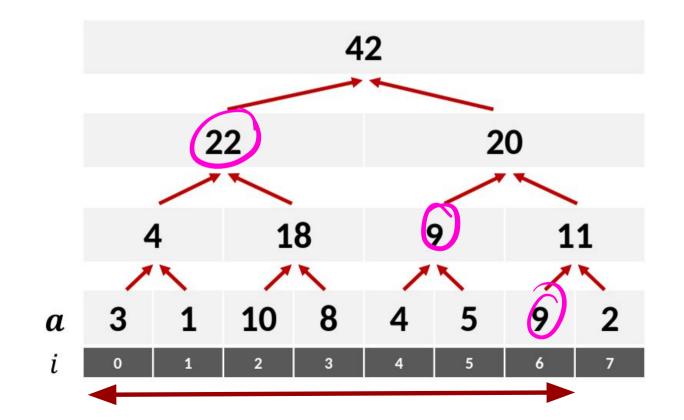
How to support RangeSum and Update?



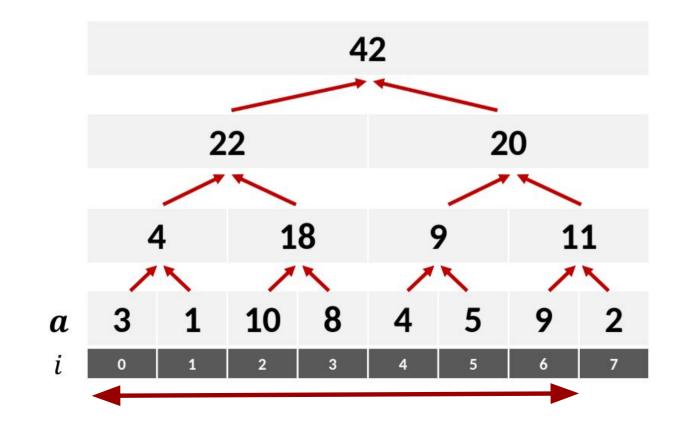
RangeSum(1, ⁷6) query

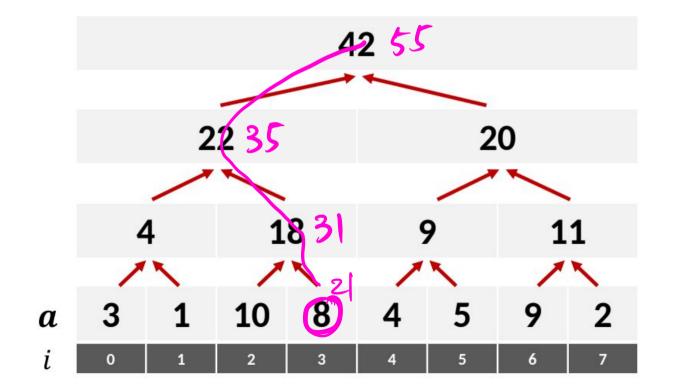


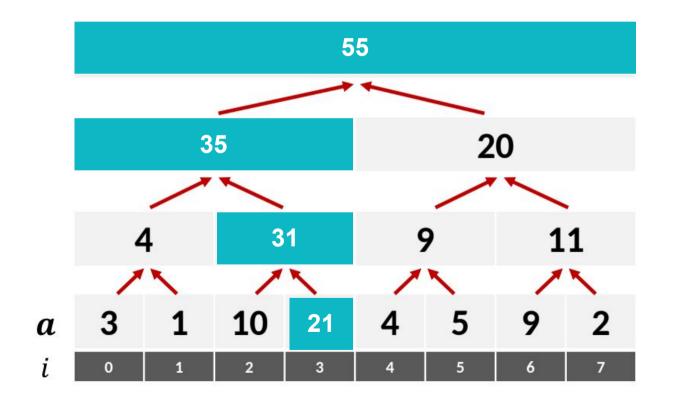
RangeSum(0, ⁷6) query



Claim: every range sum is the sum of at most 2log₂n nodes in the tree







Claim: any interval [i, j) can be made up by at most 2 intervals from each level. interval

Claim: any interval [i, j) can be made up using at most 2 intervals from each level.

Claim: any interval [i, j) can be made up using at most 2 intervals from each level.

Proof:

• Suppose that [i, j) is expressed by some configuration C that contains more than 2 intervals in some level(s)

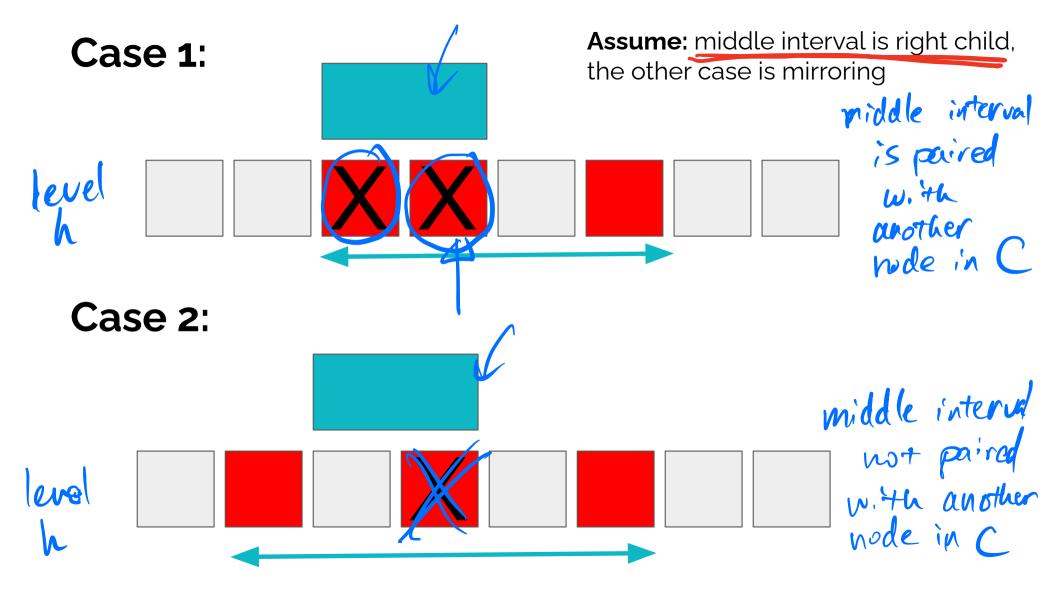
Claim: any interval [i, j) can be made up using at most 2 intervals from each level.

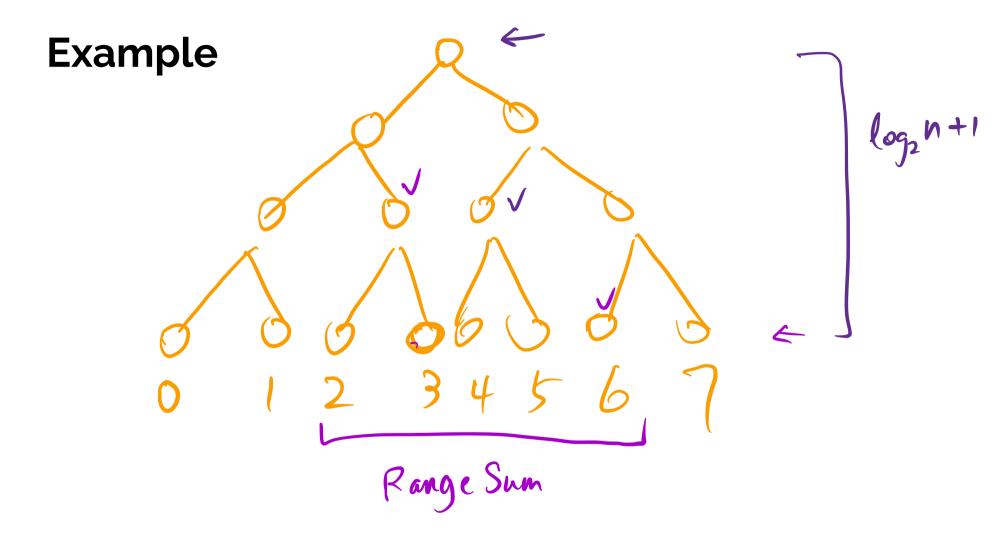
Proof:

- Suppose that [i, j) is expressed by some configuration C that contains more than 2 intervals in some level(s)
- Let h be the deepest level with > 2 intervals
- Construct another config D that represents [i, j) s.t.
 - Every level deeper than h uses at most 2 intervals
 - Level h uses at most s-1 intervals

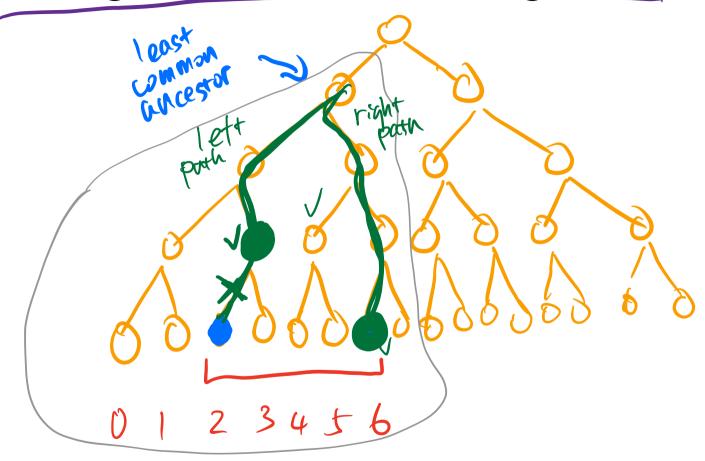
• Find the middle interval J at level h

- Add its parent P
 - Delete all of P's descendants including
 - Jitself _____ Eadd parent. ()





Finding the intervals in O(log n) time



Implementing the Range Tree

Take advantage of the binary heap ordering trick

Store tree in an array

- Root index: 0
- LeftChild(i) = 2i + 1
- RightChild(i) = 2i + 2
- Parent(i) = L(i-1)/2J

See notes for the detailed pseudocode

Speeding up algorithms with Range Trees

Given a permutation p of 0.. n-1

inversions of p:

of pairs (i, j) such that i < j but p[i] > p[j]

Inversion counting

Example: 5, 3, 1, 2, 6, 0, 4, 8, 7 5: / 3: 5 1: 5,3 2: 5,3 6:/

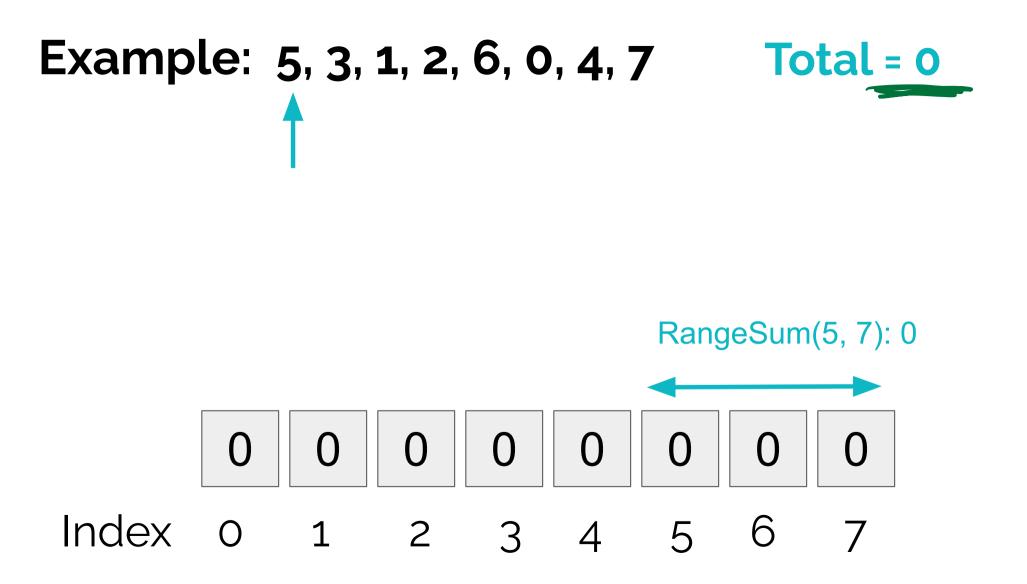
Example: 5, 3, 1, 2, 6, 0, 4, 7

0 5: 1 3:5 2 1:5,3 2 2: 5, 3 () 6: **5** 0: 5, 3, 1, 2, 6 2 4:5,6

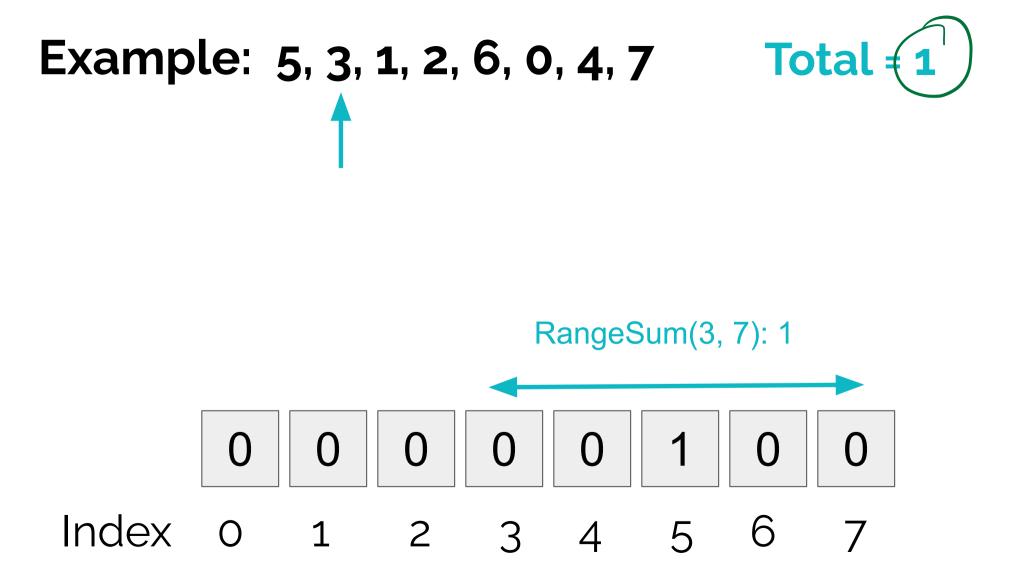
Design an algorithm for inversion counting

Example: 5, 3, 1, 2, 6, 0, 4, 7

0 0 0 0 0 0 0 0 0 0 Index 0 1 2 3 4 5 6 7

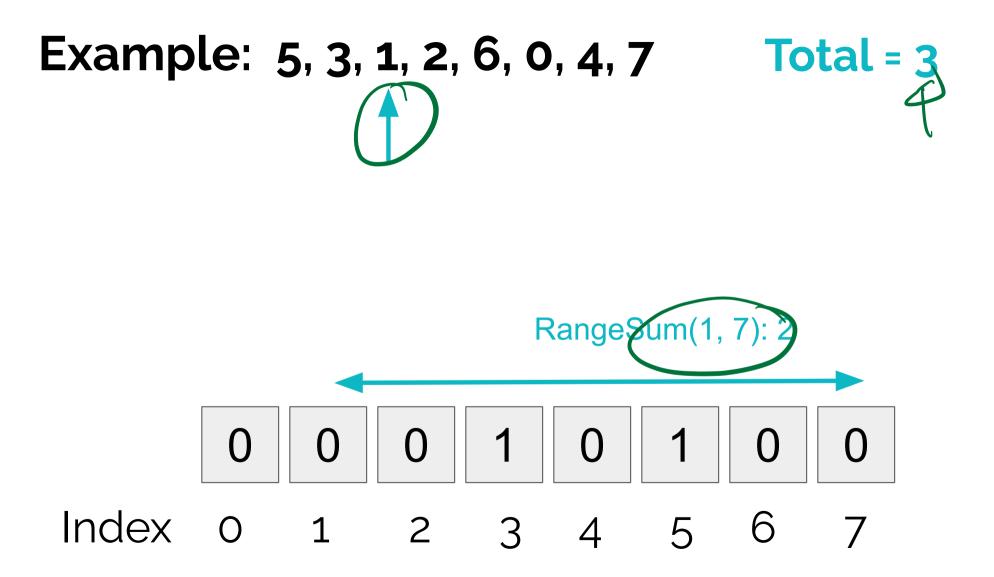


Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 0

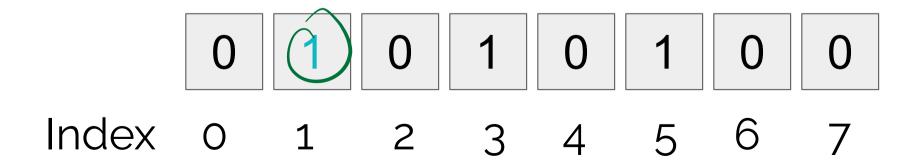


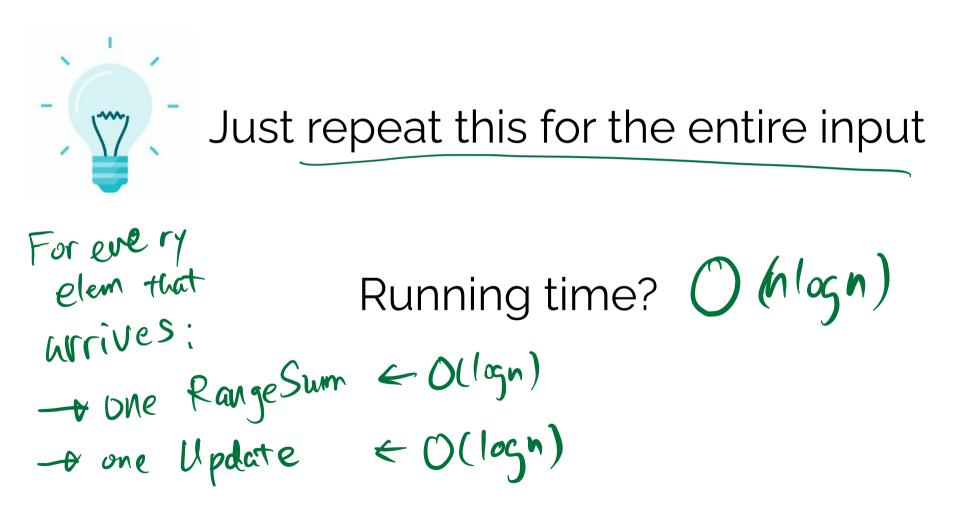
Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 1

0 0 0 1 0 1 0 0 Index 0 1 2 3 4 5 6 7



Example: 5, 3, 1, 2, 6, 0, 4, 7 Total = 3





Extensions of Range Trees

Sum need not be sum

 $(A \circ B)C = A \circ (B \circ C)$

Can be any <u>associate</u> operator e.g., min, max, average

Update (i,x): assign x How do we support Add(i, x): update a[i] to a[i] + x

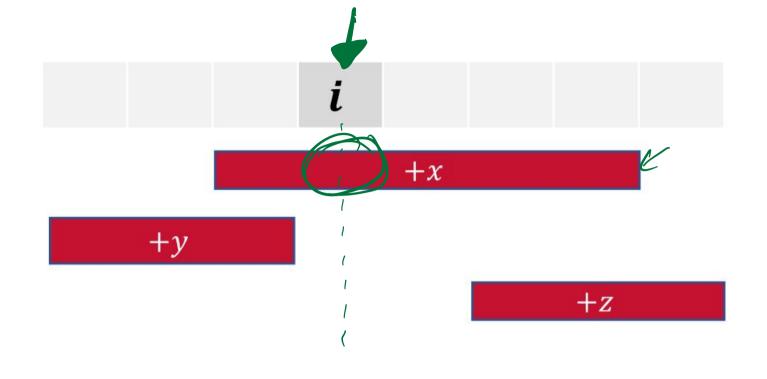
Range Sum (I, I+1) update (i, a [i]+x)

to aci]

Design a data structure that supports

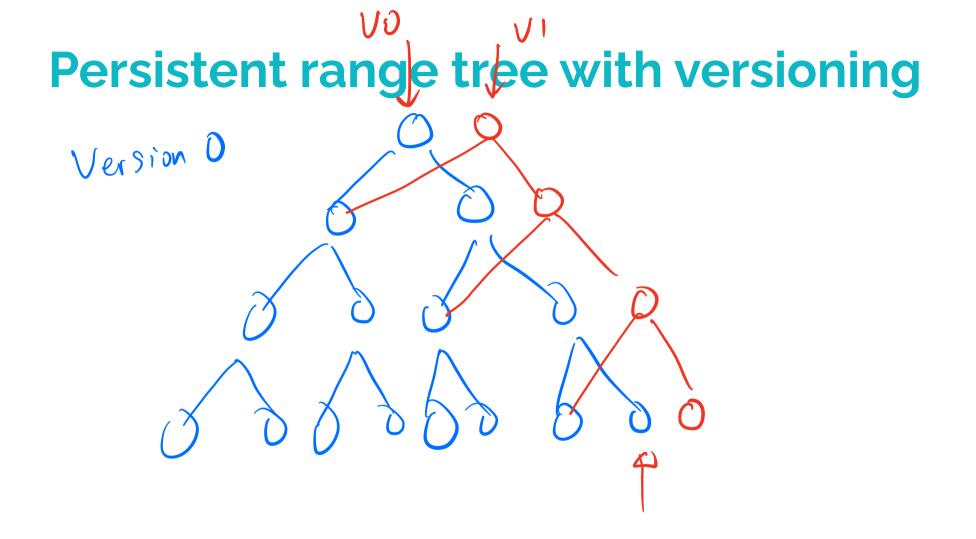
RangeAdd(i, j, x): add x to a[i] ... a[j-1]

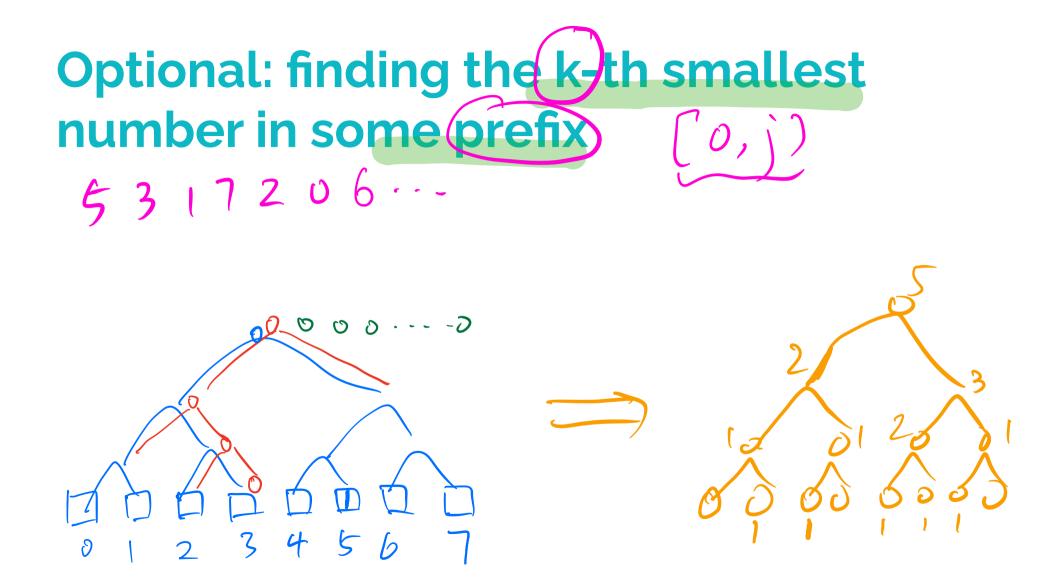
GetVal(i): return a[i]



leaves

$$+x$$
 $+y$ $-y$ $+z$ $-z$
 $+y$ $+z$ $-z$
Gret Val(i): Range Sum(0, i+1)
Range Update (i, ĵ, x): Add (i, x)
Add (ĵ, -x)





Just for fun: applications of range tree in cryptography and privacy

- Privacy-preserving federated learning
 - Deployed by Google's Spanish GBoard
 - Uses Elaine's algorithm!
- Range queries over **encrypted** data (see Elaine's Ph.D. thesis!)
- Puncturable PRFs
- Efficient private information retrieval
- Efficient/parallel data-oblivious algorithms