Lecture 7: The Data Stream Model

Data Streams

- A stream is a sequence of data, that is too large to be stored in available memory
- Examples
	- Internet search logs
	- Network Traffic
	- Sensor networks

• Scientific data streams (astronomical, genomics, physical simulations)…

• Single or small number of passes over the data

- Stream of elements a_1 , ..., a_i , ... each from an alphabet Σ and taking b bits to represent
- Single or small number of passes over the data
- Almost all algorithms are randomized and approximate
	- Usually necessary to achieve efficiency
	- Randomness is in the algorithm, not the input
- Goals: minimize space complexity (in bits), processing time

- Let $a_{[1:t]} = < a_1, ..., a_t >$ be the first t elements of the stream
- 1 bit Sign • Suppose $a_1, ..., a_t$ are integers in $\{-2^b + 1, -2^b + 2, ..., -1, 0, 1, 2, ..., \underline{2^b-1}\}$ • Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

 b b its - value

- Let $a_{[1:t]} = < a_1, ..., a_t >$ be the first t elements of the stream
- Suppose $a_1, ..., a_t$ are integers in $\{-2^b + 1, -2^b + 2, ..., -1, 0, 1, 2, ..., 2^b 1\}$
	- Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- How many bits do we need to maintain $f(a_{[1:t]}) = \sum_{i=1,\dots,t} a_i$?
	- Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

- Let $a_{[1:t]} = < a_1, ..., a_t >$ be the first t elements of the stream
- Suppose $a_1, ..., a_t$ are integers in $\{-2^b + 1, -2^b + 2, ..., -1, 0, 1, 2, ..., 2^b 1\}$
	- Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- How many bits do we need to maintain $f(a_{[1:t]}) = \sum_{i=1,\dots,t} a_i$?
	- Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
	- $(-2^{b}+1)\cdot t \leq \sum_{i=1}^{b} a_{i} \leq (2^{b}-1)\cdot t$
 $O(log(2^{b}+1)) = O(b+logt)$ • $O(b + log t)$

- Let $a_{[1:t]} = < a_1, ..., a_t >$ be the first t elements of the stream
- Suppose $a_1, ..., a_t$ are integers in $\{-2^b + 1, -2^b + 2, ..., -1, 0, 1, 2, ..., 2^b 1\}$
	- Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- How many bits do we need to maintain $f(a_{[1:t]}) = \sum_{i=1,\dots,t} a_i$?
	- Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
	- $O(b + log t)$
- $O(b)$ • How many bits do we need to maintain $f(a_{[1:t]}) \neq \max_{i=1,...,t} a_i$?
	- Outputs on example: 3, 3, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, ...

Today: Heavy Hitter and Approximate Count Frequency estimation

Another application of hashing

Applications of Heavy Hitter

- •Internet router may want to figure out which IP connections are heavy hitters, e.g., the ones that use more than .01% of your bandwidth
- •Or maybe the router wants to know the median (or 90-th percentile) of the file sizes being transferred

Finding ϵ -Heavy Hitters

$$
S_t
$$
 the multiset of items at time t, so $S_0 = \emptyset$ $S_1 = \{a_1, \dots, a_i\}$,
count_t(e) = |{ $i \in \{1, 2, \dots, t\}$ such that $a_i = e$ }|

- $e \in \Sigma$ is an ϵ -heavy hitter at time t if count_t $(e) > \epsilon \cdot t$
- Given $\epsilon > 0$, can we output the ϵ -heavy hitters?
	- Let's output a set of size $\frac{1}{\epsilon}$ containing all the ϵ -heavy hitters

Finding ϵ -Heavy Hitters

- S_t is the multiset of items at time t, so $S_0 = \emptyset$, $S_1 = \{a_1\}$, ..., $S_i = \{a_1, ..., a_i\}$, count_t(e) = $|\{i \in \{1, 2, ..., t\} \text{ such that } a_i = e\}|$
- $e \in \Sigma$ is an ϵ -heavy hitter at time t if count_t $(e) > \epsilon \cdot t$
- Given $\epsilon > 0$, can we output the ϵ -heavy hitters?
	- Let's output a set of size $\frac{1}{e}$ containing all the ϵ -heavy hitters
- . Note: can output "false positives" but not allowed to output "false negatives", i.e., not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding ϵ -Heavy Hitters

- Example: E, D, B, D, D, D, B, A, C, B₁₀B, E, E, E, E₁₅ E (the subscripts are just to help you count)
- At time 5, the element \bigcirc is the only 1/3-heavy hitter \bigcirc appears 3 times
• At time 11 hoth B and D are 1/2 '
	-
- At time (1), both B and D are 1/3-heavy hitters
- At time 15, there is no 1/3-heavy hitter
- At time 16, only E is a 1/3-heavy hitter

Can't afford to keep counts of all items, so how to maintain a short summary to output the ϵ -heavy hitters?

Finding a Majority Element $\epsilon = \frac{1}{2}$

Finding a Majority Element

```
memory \leftarrow empty and counter \leftarrow 0
when element a_t arrives
   if (counter == 0)
      memory \leftarrow a<sub>t</sub> and counter \leftarrow 1
   else
      if_{\{a_t\}} = \text{memory}\frac{1}{2} counter + +
      else a_t = memory
         counter --
         (discard \overline{a_t})
```
• At end of the stream, return the element in memory

Memory =
$$
\frac{1}{2}
$$
, Count = $\frac{0}{2}$
\nMemory = $\frac{0}{2}$, Count = $\frac{0}{2}$
\nMemory = $\frac{0}{2}$, Count = $\frac{0}{2}$
\nMemory = $\frac{0}{2}$, Count = $\frac{0}{2}$

 $Memory =$, Count = 1 $Memory =$, Count = 0 $Memory =$, Count = 1 $Memory =$, Count = 0 Memory = \bigstar , Count = 1

Analysis of Finding a Majority Element

- If there is no majority element, we output a false positive, which is OK
- If there is a majority element, we will output it. Why?

$2-\frac{1}{3}$ $2-\frac{1}{0}$

Extending to **ε**-Heavy Hitters

Extending to ε-Heavy Hitters Set $k = \left[\frac{1}{6}\right] - 1$ Array T[1, ..., k], where each location can hold one element from Σ Array C[1, ..., k], where each location can hold a non-negative integer <u> C[i] ← 0 a</u>nd <u>T[i] ← 1</u> for all i

If there is $j \in \{1, 2, ..., k\}$ such that $\left[a_t\right] \in \left(\Gamma[j]\right)$ then $\left(\Gamma[j]\right) + \frac{1}{2}$ **Else if** some counter C[j] = 0 **then** $T[j] \leftarrow a_t$ and C[j] $\leftarrow 1$ Utilian By 1 (and discard element a_t)

$$
ext_t(e) = C[j] \text{ if } e == T[j] \text{ for some } j \text{, and } est_t(e) = 0 \text{ otherwise}
$$

Bounding estimation error

\nLemma:
$$
0 \leq \text{count}_t(e) - \text{est}_t(e) \leq \frac{t}{k+1} \leq e \cdot t
$$

\nProof: $0 \leq \text{count}_t(e) - \text{est}_t(e) \leq \frac{t}{k+1} \leq e \cdot t$

\nProof: $0 \leq \text{Count}_t(e) - \text{est}_t(e)$ **easy**

\nWe now prove that $\text{count}_t(e) - \text{est}_t(e) = \frac{t}{k+1} \leq \text{set}$

\nobserve that $\text{count}_t(e) - \text{est}_t(e) = \frac{t}{k+1} \leq \text{set}$

\nwhere $\text{true}_t(e) \leq \text{true}_t(e) \leq \text{true}_t$

Bounding estimation error

• Lemma:
$$
0 \le \text{count}_t(e) - \text{est}_t(e) \le \frac{t}{k+1} \le e \cdot t
$$

\n \Rightarrow $e \text{ can get } \text{d} \text{ is can } \text{d} \text{ and } \text{at } \text{most } \frac{t}{k+1} \text{ times}$

• At any time t, all ϵ -heavy hitters e are in the array T. Why?

it e is g-heavy hitter $Count_{+}(e)$ \geq . t by Lemma (prev Slide) $est_{t}(e) > 0$

• At any time t, all ϵ -heavy hitters e are in the array T. Why?

• At any time t, all ϵ -heavy hitters e are in the array T. Why?

• At any time t, all ϵ -heavy hitters e are in the array T. Why?

What is the space requirement?

• Space is $O(k (\log(|\Sigma|) + \log t)) = O(1/\epsilon) (\log(|\Sigma|) + \log t)$ bits

Frequency Estimation with Deletion

- Suppose we can delete elements e that have already appeared
- Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

Frequency Estimation with Deletion

- Suppose we can delete elements e that have already appeared
- Example: $\left(\overrightarrow{add}, A\right)$ $\left(\overrightarrow{add}, B\right)$, $\left(\overrightarrow{add}, A\right)$, $\left(\overrightarrow{del}, B\right)$, $\left(\overrightarrow{del}, A\right)$, $\left(\overrightarrow{add}, C\right)$
- Multisets at different times $S_0 = \emptyset$, $S_1 = \{A\}$, $S_2 = \{A, B\}$, $S_3 = \{A, A, B\}$, $S_4 = \{A, A\}$, $S_5 = \{A\}$, $S_6 = \{A, C\}$...
- "active" set S_t has size $|S_t| = \sum_{e \in \Sigma} count_t(e)$ and can grow and shrink

CountMin Sketch: Warmup

- Query "What is count_t (e)?", should output $est_t(e)$ with: $Pr[|est_t(e) - count_t(e)| \leq \epsilon |S_t|] \geq 1 - \delta$
- Want space close to our previous $O(1/\epsilon)$ (log($|\Sigma|$) + log t) bits
- Let $h: \Sigma \rightarrow \{0,1,2,..., k-1\}$ be a hash function (will specify later)
- Maintain an array A[0, 1, ..., k-1] to store non-negative integers

when update a_t arrives:

if $a_t = (add, e)$ then $A[h(e)] + +$ else $a_t = (del, e)$, and $A[h(e)] - -$

 \bullet est_t(e) = A[h(e)]

• A[h(e)] = $\sum_{e' \in \Sigma}$ count_t(e') · **1**(h(e') = h(e)), where **1**(condition) evaluates to 1 if the condition is true, and evaluates to 0 otherwise The sand evaluates to b otherwise
 $1(h(e') = h(e)) = \begin{cases} 1 & h(e') = h(e) \\ 0 & h(e') \neq h(e) \end{cases}$

• A[h(e)] = $\sum_{e' \in \Sigma}$ count_t(e') · **1**(h(e') = h(e)), where **1**(condition) evaluates to 1 if the condition is true, and evaluates to 0 otherwise

$$
ext{Proof}
$$

• $A[h(e)] = count_t(e) + \sum_{e' \neq e} count_t(e') \cdot 1(h(e') = h(e)),$

- A[h(e)] = $\sum_{e' \in \Sigma}$ count_t(e') · 1(h(e') = h(e)), where 1(condition) evaluates to 1 if the condition is true, and evaluates to 0 otherwise
- A[h(e)] = count_t(e) + $\sum_{e' \neq e}$ count_t(e') · **1**(h(e') = h(e)),
- $est_t(e) count_t(e) = \sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e))$

- A[h(e)] = $\sum_{e' \in \Sigma}$ count_t(e') · 1(h(e') = h(e)), where 1(condition) evaluates to 1 if the condition is true, and evaluates to 0 otherwise
- A[h(e)] = count_t(e) + $\sum_{e' \neq e}$ count_t(e') · **1**(h(e') = h(e)),
- $est_t(e) count_t(e) = \sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e))$
- Since we have a small array A with k locations, there are likely many $e' \neq e$ with h(e') = h(e), but can we bound the expected error?

CountMin: Analyzing the error $|A| = k$

- Recall: Family H of hash functions $h(\bigcup) > \{0, 1, ..., k-1\}$ is universal if for all $x \neq y$,
 $\frac{P}{h \leftarrow H}$ $h(x) = h(y) \leq \frac{1}{k}$
- There is a simple family where h can be specified using $O(log |U|)$ bits. Here, $|U| = |\Sigma|$

- Recall: Family H of hash functions $h: U \rightarrow \{0, 1, ..., k-1\}$ is universal if for all $x \neq y$,
 $\left(\Pr_{h \in H} [h(x) = h(y)] \leq \frac{1}{k} \right)$
- There is a simple family where h can be specified using $O(log |U|)$ bits. Here, $|U| = |\Sigma|$ P m
- $E[est_t(e) count_t(e)] = E[\sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e))]$

$$
=Z
$$
 count+(e') \cdot E[1(he')=h(e)]
=Z count+(e') \cdot P_r[h(e')=h(e)]
=Z count+(e') \cdot R \leq |St| \cdot R = |St| \cdot

- Recall: Family H of hash functions h: U -> $\{0, 1, ..., k-1\}$ is universal if for all $x \neq y$, $Pr_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{k}$
- There is a simple family where h can be specified using O(log |U|) bits. Here, $|U| = |\Sigma|$
- $E[est_t(e) count_t(e)] = E[\sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e))]$

What is the space requirement? $k \cdot log t + log E$
= $O(\frac{1}{2} \cdot log t + log E)$

High Probability Bounds for CountMin S_t • Have $0 \leq \text{est}_{t}(e) - \text{count}_{t}(e) \leq |S_{t}|/k$ in expectation from CountMin • With probability at least $1/2$ est_t(e) – count_t(e) $\leq 2(S_t)/k$ Why?

High Probability Bounds for CountMin

• Have $0 \leq \text{est}_{t}(e) - \text{count}_{t}(e) \leq |S_{t}|/k$ in expectation from CountMin

• With probability at least $1/2$, $\text{est}_{t}(e) - \text{count}_{t}(e) \leq 2|S_{t}|/k$ Why?

• Can we make the success probability 1-8?

High Probability Bounds for CountMin

• Have $0 \leq \text{est}_{t}(e) - \text{count}_{t}(e) \leq |S_{t}|/k$ in expectation from CountMin

• With probability at least $1/2$, $est_t(e) - count_t(e) \leq 2|S_t|/k$ Why?

- Can we make the success probability 1- δ ?
	- Independent repetition: pick m hash functions h_1 , ..., h_m with $h_i: \Sigma \to \{0, 1, 2, ..., k-1\}$ independently from H. Create array A_i for h_i when update a_t arrives:

for each i from 1 to m

if $a_t = (add, e)$ then $A_i[h_i(e)] + +$

else $a_t = (del, e)$ and $A_i[h_i(e)] - -$

What is our new estimate of count_t(e)?

What is our new estimate of count_t(e)?

$$
\text{Perf}(e) := \min_{i=1}^{m} A_i[h_i(e)].
$$
\n
$$
\text{Perf on } e \text{ or } \text{Perf on } e \text{ and } e \text{
$$

What is our new estimate of count_t(e)?

$$
\mathtt{best}_t(e) := \min_{i=1}^m A_i[h_i(e)].
$$

Each $A_i[h_i(e)]$ is an *overestimate* to count_t(e) \bullet

What is our new estimate of count_t (e) ?

$$
\texttt{best}_t(e) := \min_{i=1}^m A_i[h_i(e)].
$$

- Each $A_i[h_i(e)]$ is an *overestimate* to count_t(e) \bullet
- By independence, Pr[for all i, A_i[h_i(e)] count_t(e) $\geq 2|S_t|/k] \leq \left(\frac{1}{2}\right)^k$ \bullet

What is our new estimate of count_t (e)?

$$
\texttt{best}_t(e) := \min_{i=1}^m A_i[h_i(e)].
$$

- Each $A_i[h_i(e)]$ is an *overestimate* to count_t(e) \bullet
-
- By independence, $Pr[for \text{ all } A_i[h_i(e)] count_t(e) \ge 2|S_t|/k] \le \left(\frac{1}{2}\right)^m$
• For $k = \frac{2}{\epsilon}$ and $m \ne \log_2\left(\frac{1}{\delta}\right)$, the error is at most $\epsilon|S_t|$ with probability 1- δ

What is our new estimate of count_t (e) ?

$$
\texttt{best}_t(e) := \min_{i=1}^m A_i[h_i(e)].
$$

- Each A_i[h_i(e)] is an *overestimate* to count_t(e) \bullet
- By independence, Pr[for all i, A_i[h_i(e)] count_t(e) $\geq 2|S_t|/k$] $\leq \left(\frac{1}{2}\right)^{m}$ \bullet
- For $k = \frac{2}{\epsilon}$ and $m = \log_2(\frac{1}{\epsilon})$, the error is at most $\epsilon |S_t|$ with probability 1-8

What is the space?

CountMin Sketch

• Our new estimate $best_t(e)$ satisfies $Pr[|best_t(e) - count_t(e)| \le \epsilon |S_t|] \ge 1 - \delta$

and uses
$$
O\left(\frac{\log(\frac{1}{\delta})\log t}{\epsilon} + \log(\frac{1}{\delta})\log |\Sigma|\right)
$$
 bits of space

CountMin Sketch

• Our new estimate $best_t(e)$ satisfies $Pr[|best_t(e) - count_t(e)| \leq \epsilon |S_t|] \geq 1 - \delta$

and uses
$$
O(\frac{\log(\frac{1}{\delta})\log t}{\epsilon} + \log(\frac{1}{\delta})\log |\Sigma|)
$$
 bits of space

• What if we want with probability 9/10, simultaneously for all e, $|\text{best}_{t}(e) - \text{count}_{t}(e)| \leq \epsilon |S_{t}|$?

CountMin Sketch

• Our new estimate $best_t(e)$ satisfies $Pr[|best_t(e) - count_t(e)| \le \epsilon |S_t|] \ge 1 - \delta$

and uses
$$
O(\frac{\log(\frac{1}{\delta})\log t}{\epsilon} + \log(\frac{1}{\delta})\log |\Sigma|)
$$
 bits of space

- What if we want with probability 9/10, simultaneously for all e, $|\text{best}_{t}(e) - \text{count}_{t}(e)| \leq \epsilon |S_{t}|$?
- Set $\delta = \frac{1}{10|\Sigma|}$ and apply a union bound over all $e \in \Sigma$

Other useful streaming algorithms

- Approximate distinct item count
- Random sampling
- Approximate frequency moments