Lecture 7: The Data
Stream Model

Data Streams

- A stream is a sequence of data, that is too large to be stored in available
memory

- Examples

* Internet search logs

O Sensor Node

- Network Traffic
O O Q Gateway

Sensor Node

- Sensor networks

- Scientific data streams (astronomical, genomics, physical simulations)..

Streaming Model

\/
HBDUEIEIEIPI

e Stream of eIements@ @ each from an alphabet X and
taking b bits to represent -

 Single or small number of passes over the data

Streaming Model

\

 Stream of elements a, ..., @, ... each from an alphabet X and
taking b bits to represent

 Single or small number of passes over the data

* Almost all algorithms are randomized and approximate
* Usually necessary to achieve efficiency
* Randomness is in the algorithm, not the input

* Goals: minimize space complexity (in bits), processing time

Simple Streaming Problems

* Letapy.g =< ay, ..., a; > be the first t elements of the stream
b bts- velue

1 bit— Siowm
* Suppose a, ..., a; are integers in {2b4+1,2b+2,..-101,2,..,2b-1} ?

* Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

Simple Streaming Problems

* Letapy. =< ay, ..., a¢ > be the first t elements of the stream

* Suppose a, ..., a; are integers in {2b4+1,2b+2,..-101,2,..,2b-1}
 Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

* How many bits do we need to maintain f(aj;.q)= Xi=1 .. ¢ai?
* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

Simple Streaming Problems

* Letapy.g =< ay, ..., a; > be the first t elements of the stream

* Suppose a, ..., a; are integers in {2b4+1,2b+2,..-101,2,..,2b-1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

* How many bits do we need to maintain f(aj;.q)= Xi=1 .. ¢ai?
* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
* O(b + log t) L — L
— & W)t e awelDt

¢=-1

OO 0 (Zb- f)j/:O cb+t07t>

Let afy.y) =< @y, ..., a¢ > be the first t elements of the stream

Suppose aq, ..., a; are integers in {-Zb +1,-2b+2,..,-1,0,1, 2, .., 2b-1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

How many bits do we need to maintain f(aj.q)= Xj=1 . tai?

* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b +logt)

How many bits do we need to maintain f(a[l:t]) D[b)

e Qutputs on example: 3,3,17,17,17, 32, 101, 101,101, 101, 900, 900, 900, ...

Today. Heavy Hitter and
Approximate Count

Fféj ency Qsmim chon

Another application of hashing

* Internet router may want to figure out which IP connections
are heavy hitters, e.g., the ones that use more than .01% of your
bandwidth

» Or maybe the router wants to know the median (or 90-th
percentile) of the file sizes being transferred

Finding e-Heavy Hitters
the multiset of items at time t, s 51 = §a1§ LS = {al, ai},
‘gcountt(e) =Hie {1,z such thata; = e |

* e € X is an e-heavy hitter at time t if count (e) > € -t

— —

* Given € > 0, can we output the e-heavy hitters?

* Let’s output a set of siz ontaining all the e-heavy hitters

~ S; is the multiset of items at timet,so S, = 0, S; = {a;}, ...,S; ={ay, ..., a;},
counti(e) = |{i € {1, 2, ..., t} such that a; = e}|

* e € X is an e-heavy hitter at time t if count (e) > € -t

* Given € > 0, can we output the e-heavy hitters?

.1 . .
* Let’s output a set of size — containing all the e-heavy hitters

* Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding e-Heavy Hitters
J
« Example: E, D, B, D, DBACB@BEEEE@E
(the subscripts are just to help you count)

meS
| . 4 S ; 4 me
* Attime 5, the element the only 1/3-heavy hitter Ef i‘:: ‘.

* At time(l) both B and D are 173-heavy hitters
» At time 15, there is no 1/3-heavy hitter
» At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short

summary tc to output the e-heavy hitters?
o

Finding a Majority Element

(S

DO | —

FInding a Majority Element

‘memory < empty and counter « 0
when element a; arrives -
if (counter ::6)
memory < a; and counter « 1
else -
i= memory
counter + +
else (u #memor\/
counter - -
(discard ay)

* At end of the stream, return the element in memory

YV
@ | |

_—

Memory = , Count=0
Memory =@ Count = |
Memory =@ Count =
Memory = Count =
Memory =®, Count =

-l |l— o

ok m kK

Memory = e, Count=1
Memory = e, Count =0
Memory = m, Count=1
Memory = m, Count=0
Memory = %, Count = 1

Alternative view of the algorithm

LY oLy o
Example: ek %% m %%k
ournve guene shp
-2 "
'S y o ¥
s p
5 §
5 & 0
T %4

Analysis of Finding a Majority Element

* |f there is no majority element, we output a false positive, which is OK

* If there is a majority element, we will output it. Why?

—

‘“

5 oty elem i< diScuded
Lf e paurmIne of e unGjorty " roped)

4 mugt be pared 't dnother dH} clem

TO/C ’HAe 6fw 15 Vnajor«‘“/ . net OU(COIOF@ "’f o
Com ke Pﬂffed.

E = ‘§l 22'/%
Extending to e-Heavy Hitters

Extending to e-Heavy Hitters
/MV\’ mawy eSS T k@ef S yv\cuﬂ\ol\f

Array T[1, ..., k], where each location can hold one element from_z_
Array C[1, ..., k], where each location can hold a non-negative integer

Cl[il « 0 and T[i] «. for all i

If there isj € {1, 2, ...,k} such tha then(C[j]| +
Else if some counter C[j] = 0 then T[j] «< a, and Clj] <1

T o
—/Else decrement all counters by 1 (and discard element a;)

esttf'(e’ = C[j] if e == TJ[j] for some j, and est.(e) = 0 otherwise

Alternative view of the algorithm

L v Ly
Example: ek @&k &%k mkk ¢£-=1/3
purival queve sh'p
® o _
¥ o X
g/ o 4 2:0¢
& y_
<o & S
& o) O

Bounding estimation error

&J‘M\ ot / gstmated coutt _é;\ -~ 2
« Lemma] 0 < count,(e) — esﬁe){ < Ft1 g@
Prosf: 0% County @) —esti(e) easy
We now grove Chnnl+ +€) léerlégt
Observe that cowt @) -eogt @) = how muny) copres -
' of e fhat

6@" d(lSCﬂfded

C/Shﬁszd)

wherever @ 15 discorded. i+ is dicgarded
toqether wrth K other d¥f. elems

Bounding estimation error

* Lemma: 0 < count(e) — est (e) < k— <e-t

_t~
.";) £ C N ﬁ@ff d(SCQ,(del ot ng—f KT/ “ el

ot FWme

Heavy Hitters Guarantee

e At any tim_g_t_, all e-heavy hitters e are in the array T. Why?
f'r ¢ s G- hewy Ihntter
(WMM&@)7ZT-
\0\/ | emma Cprov Slide)

ﬁs(t,t (€) > 9

Heavy Hitters Guarantee

* At any time t, all e-heavy hitters e are in the array T. Why?

Heavy Hitters Guarantee

* At any time t, all e-heavy hitters e are in the array T. Why?

XVhat IS the space requirement?o(_é—(loj,Z\ t (O?t)

Heavy Hitters Guarantee

e At any time t, all e-heavy hitters e are in the array T. Why?

What is the space requirement?
* Space is O(k (log(|X|) + log t)) = O(1/ €) (log(|XZ]) + log t) bits

Frequency Estimation with Deletion

* Suppose we can delete elements e that have already appeared

* Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

—— —_—

Frequency Estimation with Deletion

* Suppose we can delete elements e that have already appeared

+ Example{(add, A) @ (add, A), (del, B), (del, A), (add, C)

. Mult| ets at different times

9, , { }Sz—{AB}Sg—{AA\B§\S4—{AA}SS—{A}
56—{AC}

e “active” set S; has size |S;¢| = Y.y count,(e) and can grow and shrink

19)

Data Structure for Frequency Estimation
Ve, 0,91

* Query “What is Count,(e)y”, should output est.(e) with: /
Priiestt; e) — countt(e)l <e€lS]=1-
T |

* Want space close to our previous 0(1/ €) (log(|Z]) + log t) bits

&9

* Query “What is count,(e)?”, should output est.(e) with:
Pr[|est.(e) — counti(e)| < €|S¢|]] = 1—-6

* Want space close to our previous O(1/ €) (log(|Z|) + log t) bits
e Leth:X - {0,1,2, ...,k — 1} be a hash function (will specify later)
* Maintain an array A[Q, 1, ..., k-1] to store non-negative integers

when update a; arrives:
if a;, = (add, e) then A[h(e)] + +
else a, = (del,e), and A[h(e)] — —

* esty(e) = A[h(e)]

CountMin: Analyzing the error

* Alh(e)] =_@ountt(e’) : » where 1(condition)

evaluates to the condition s true, and evaluates to 0 otherwise

o 1 he')=he)
=] 4
Z,D ne)xhe)

1(he) =he)

CountMin: Analyzing the error

* Alh(e)] = Yorex counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to O otherwise

errol

county(e’) - 1(h(e’) = h(e)),

— s A[h(e)] = count,(e) +E N 7y

e #e

* Alh(e)] = Yorex counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to O otherwise

* Alh(e)] = count((e) +). count(e’) - 1(h(e") = h(e)),

e #e

* esty(e) — county(e) = Y./, counti(e’) - 1(h(e') = h(e))

* Alh(e)] = Yorex counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to O otherwise

* Alh(e)] = count((e) +). count(e’) - 1(h(e") = h(e)),

* esty(e) — county(e) = Y./, counti(e’) - 1(h(e') = h(e))

* Since we have a small array A with k locations, there are likely many
e’ # e with h(e’) = h(e), but can we bound the expected error?

Al=k

* Recall: Family H of hash functions h@> {0, 1, ..., k-1} is universal if for all x # Y,
- T
@(X) = h(y)] < K

* There is a simple family where n be specified using O(log |U|) bits. Here, |U| = |Z|

CountMin: Analyzing the error

CountMin: Analyzing the error

* Recall: Family H of hash functions h: I P
Pr [h(x) = h(Y)]
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

Lrnr
* E[est;(e) — counti(e)] = E[Z

is universal if for all x # y,

count¢(e’) - 1(h(e’) = h(e))]

e'£e

=7 wourtile)- E[Zﬂ_(l«e) We))]

cye

=z wmm@) 19([he)=he))

Zz éwﬁift(e . < lS‘(T‘ St" 2

CountMin: Analyzing the error

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # vy,

1

— < —

Pr[h(0 = h()] <7
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* E[esti(e) — count(e)] = E[X./..count.(e") - 1(h(e") = h(e))]

e/ e

What Is the space requirement? Ke 10317 * "’9@
= OG{‘(U%T —(—la%\i\)

High Probability Bounds for CountMin
9 Y E,P“fed error < %

* Have 0 < est.(e) — count.(e) < |S;|/k in expectation from CaeuntMin
« With probabilit m est.(e) — count(e) < (@ hy?

-3

High Probability Bounds for CountMin

* Have 0 < est.(e) — count.(e) < |S;|/k in expectation from CountMin

* With probability at least 1<tt(e) — count.(e) < 2|S¢|/k Why?

* Can we make the success probabilityj‘-)ﬁ?

* Have 0 < est (e) — count(e) < |S¢|/k in expectation from CountMin
» With probability at least 1/2, est.(e) — count(e) < 2|S¢|/k Why?

e Can we make the success probability 1-6?
* Independent repetition: pick m hash functions_}_lg e ith
hi:X - {0,1,2, ..., k— 1} independently from H. Createarray A; for h;
when update a; arrives:
for eachifrom1tom
if a, = (add, e) then A;[h;(e)] + +
else a, = (del, e) and A;[h;(e)] — —

High Probability Bounds and Overall Space

What is our new estimate of count.(e)?

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?

@Ze) = min Aihie)].)

Pr{one copy bad) s >
M
il ol moapies bad) £ (5) <0
m = bgC’g}

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?

best(e) := min A;ilhi(e)].

1=1

* Each Ai[h;(e)] is an overestimate to count,(e)

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?
'".I,
best(e) := min A;lhi(e)].
7=
* Each Aj[h;(e)] is an overestimate to count,(e)
« By independence, Pr[foralli, A;[h;(e)] — count,(e) = 2|S;|/Kk] < G@

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?

bests(e) := min A;[h;(e)].

=1

* Each Ai[h;(e)] is an overestimate to count,(e)
H 1 m
Ailh;(e)] — count,(e) = 2|S;|/Kk] < (E)

* By independence, Pr[for

e Fork=2andm log, (%), the error is at most €|S;| with probability 1-6

€

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?

i
best(e) := mi{l A;lhi(e)].
7=
* Each Aj[h;(e)] is an overestimate to count,(e)
m
« By independence, Pr[for alli, A;[h;(e)] — count(e) = 2|S;|/Kk] < G)

e Fork= %and m =log, (%), the error is at most €|S;| with probability 1-6

What Is the space?

 Our new estimate best(e) satisfies
Pr[|best.(e) — count.(e)| < €|S¢|]] =1—-6

log(%) log t
and uses O(Og(Sz > + log (%) log |Z]) bits of space

» Our new estimate best(e) satisfies
Pr[|best.(e) — count (e)| < €|S{|]] =1—-6

log(%) logt

€

and uses O(+ log Z log |Z|) bits of space
8

* What if we want with probability 9/10, simultaneously for all e,
|best.(e) — count,(e)| < €|S|?

* Our new estimate best(e) satisfies
Pr[|best.(e) — count.(e)| < €|S¢|]] =1—-6

log()log

€

and uses O(log()log |2|) bits of space

* What if we want with probability 9/10, 5|multaneously for all e,
|best.(e) — count,(e)| < €|S,|? ———

1

e Setd = ol and apply a union bound over all e € X

e Approximate distinct item count
e Random sampling

e Approximate frequency moments

