
15-451/651: Design & Analysis of Algorithms February 9, 2023
Lecture #8: Fingerprinting and String Matching last changed: February 9, 2023

In today’s lecture, we will talk about randomization and hashing in a slightly different way. In particular,
we use arithmetic modulo prime numbers to (approximately) check if two strings are equal to each other.
Building on that, we will get an randomized algorithm (called the Karp-Rabin fingerprinting scheme) for
checking if a long text T contains a certain pattern string P as a substring.

Objectives of this lecture

In this lecture, we will:

- Cover some facts about prime numbers that are useful for randomized hashing schemes

- See a new application of hashing to string equality checking

- Look at the Karp-Rabin pattern matching algorithm

Recommended study resources

- CLRS, Introduction to Algorithms, Section 32.2, The Rabin-Karp algorithm

- DPV, Algorithms, Section 1.3.1, Generating random primes

1 How to Pick a Random Prime

In this lecture, we will often be picking random primes, so let’s talk about that. (In fact, you do this when
generating RSA public/private key pairs.)

How to pick a random prime in some range {1, . . . ,M}? Here’s the most straightforward approach:

Algorithm: Random prime generation

- Pick a random integer x in the range {1, . . . ,M}.

- Check if x is a prime. If so, output it. Else go back to the first step.

Okay this is not quite complete, we have to fill in some details. How would you pick a random number in the
prescribed range? Pick a uniformly random bit string of length blog2Mc + 1. (We assume we have access
to a source of random bits.) If it represents a number ≤M , output it, else repeat. The chance that you will
get a number ≤M is at least half, so in expectation you have to repeat this process at most twice.

How do you check if x is prime? You can use the Miller-Rabin randomized primality test1 (which may produce
false positives, but it will only output “prime” when the number is composite with very low probability).
There are other randomized primality tests as well, see the Wikipedia page. Or you can use the Agrawal-
Kayal-Saxena2 primality test, which has a worse runtime, but is deterministic and hence guaranteed to be
correct. We won’t cover those algorithms in this course, so for now, just know that they exist, we can use
them, and know that they run in O(polylogM) time.

1http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
2http://en.wikipedia.org/wiki/AKS_primality_test

1

http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/AKS_primality_test

2 How Many Primes?

You have probably seen a proof that there are infinitely many primes. Here’s a different question that we’ll
need for this lecture.

For positive integer n, how many primes are there in the set {1, 2, . . . , n}?

Let there be π(n) primes between 0 and n. One of the great theorems of the 20th century was the Prime
Number theorem:

Theorem 1: The prime number theorem

The prime counting function π(n) satisfies

lim
n→∞

π(n)

n/(lnn)
= 1.

And while this is just a limiting statement, an older result of Chebyshev (from 1848) says that

Theorem 2: Chebyshev

For n ≥ 2, the prime counting function π(n) satisfies

π(n) ≥ 7

8

n

lnn
= (1.262 . . .)

n

log2 n
>

n

log2 n

Here are two consequences of this theorem. The first is that a random integer between 1 and n is a prime
number with probability at least 1

log2 n . Put another way, we also get the following useful fact:

Corollary 1: Density of primes

If we want at least k ≥ 4 primes between 1 and n, it suffices to have n ≥ 2k log2 k.

Proof. Just plugging in to Theorem 2, we get π(2k log2 k) ≥ 2k log2 k
log2(2k log2 k) ≥

2k log2 k
log2 2+log2 k+log2 log2 k ≥ k.

2.1 Tighter Bounds

The following even tighter set of bounds were proved by Pierre Dusart in 2010.

Theorem 3: Dusart

For all n ≥ 60184 we have:
n

lnn− 1.1
> π(n) >

n

lnn− 1

Because this is a two-sided bound, it allows us to deduce a lower bound on the number of primes in a range.
For example, the number of 9-digit prime numbers (i.e. primes in the range [108, 109 − 1]) is

π(109 − 1)− π(108 − 1) >
109 − 1

ln(109 − 1)− 1
− 108 − 1

ln(108 − 1)− 1.1
= 44928097.3 . . .

2

http://en.wikipedia.org/wiki/Prime_number_theorem
http://en.wikipedia.org/wiki/Prime_number_theorem
http://mathworld.wolfram.com/PrimeNumberTheorem.html

From this we can infer that a randomly generated 9 digit number is prime with probability at least
0.049920 Thus, the random sampling method would take at most 21 iterations in expectation to find a
9-digit prime.

3 The String Equality Problem

Here’s a simple problem: we’re sending a Mars lander. Alice, the captain of the Mars lander, receives an
N -bit string x. Bob, back at mission control, receives an N -bit string y. Alice knows nothing about y, and
Bob knows nothing about x. They want to check if the two strings are the same, i.e., if x = y. 3

One way is for Alice to send the entire N -bit string to Bob. But N is very large. And communication is
super-expensive between the two of them. So sending N bits will cost a lot. Can Alice and Bob share less
communication and check equality?

If they want to be 100% sure that x = y, then one can show that fewer than N bits of communication
between them will not suffice. But suppose we are OK with being correct with probability 0.9999. Formally,
we want a way for Alice and Bob to send a message to Bob so that, at the end of the communication:

- If x = y, then Pr[Bob says equal] = 1.

- If x 6= y, then Pr[Bob says unequal] = 1− δ.

Here’s a protocol that does almost that. We will hash the strings using the hash function hp(x) = (x mod p)
for a random prime p, then check whether the hashes are equal.

Algorithm: Randomized string equality test

1. Alice picks a random prime p from the set {1, 2, . . . ,M} for M = d2 · (5N) · log2(5N)e.

2. She sends Bob the prime p, and also the value hp(x) := (x mod p).

3. Bob checks if hp(x) ≡ y mod p. If so, he says equal else he says unequal.

For now, let’s not worry about where the particular value of M came from: it will arise naturally. Let’s see
how this protocol performs.

Lemma 1

If x = y, then Bob always says equal.

Proof. Indeed, if x = y, then x mod p = y mod p. So Bob’s test will always succeed.

Lemma 2

If x 6= y, then Pr[Bob says equal] ≤ 1
5 .

Proof. Consider x and y and N -bit binary numbers. So x, y < 2N . Let D = |x − y| be their difference.
Bob says equal only when x mod p = y mod p, or equivalently (x− y) = 0 mod p. This means p divides
D = |x− y|. In words, the random prime p we picked happened to be a divider of D. What are the changes
of that? Let’s do the math.

3E.g., this could be the latest update to the lander firmware, and we want to make pretty sure the file did not get corrupted

3

The difference D is a N -bit integer, so D ≤ 2N . So D can be written (uniquely) as D = p1p2 · · · pk, each pi
being a prime, where some of the primes might repeat4. Each prime pi ≥ 2, so D = p1p2 · · · pk ≥ 2k. Hence
k ≤ N : the difference D has at most N prime divisors. The probability that the randomly chosen prime p
is one of them is

N

number of primes in {1, 2, . . . ,M}
.

We want this to be at most 1/5, i.e., we would like that the number of primes in {1, 2, . . . ,M} is at least
5N . But Corollary 1 says that choosing M ≥ 10N log2 5N will give us at least 5N primes. Hence

Pr[Bob says equal and hence errs] ≤ N

number of primes in {1, 2, . . . ,M}
≤ N

5N
≤ 1

5
.

3.1 Communication cost

Näıvely, Alice could have sent x over to Bob. That would take N bits. Now she sends the prime p, and x
mod p. That’s two numbers at most M = 10N log2 5N . The number of bits required for that:

2 log2M = 2 log2(10N log2 5N)) = O(logN).

To put this in perspective, suppose x and y were two copies of all of Wikipedia. Say that’s about 25 billion
characters (25 GB of data!). Say 8 bits per character, so N ≈ 2 · 1011 bits. With the new approach, Alice
sends over 2 log2(10N log2 5N)) ≈ 86 bits, or 11 bytes of data. That’s a lot less communication!

3.2 Reducing the Error Probability

If you don’t like the probability of error being 20%, here are two ways to reduce it.

Approach #1 Have Alice repeat this process multiple times independently with different random primes,
with Bob saying equal if and only if in all repetitions, the test passes. For example, for 10 repetitions, the
chance that he will make an error (i.e., say equal when x 6= y) is only

(1/5)10 =
1024

1010
≤ 0.000001.

That’s a 99.999% chance of success! In general, if we repeat R times, we get the probability of error is at
most (1/5)R, so if we desire an error probability of δ, we should do R = log5(1/δ) repetitions. Since each
round requires communicating O(logN) bits, the total number of bits that Alice must communicate is

O(log(1/δ) logN).

Can we do better than this?

Approach #2 Have Alice choose a random prime from a larger set. For some integer s ≥ 1, if we choose
M = 2 · sN log2(sN), then the arguments above show that the number of primes in {1, . . . ,M} is at least
sN . And hence the probability of error is 1/s. If we desire an error probability of δ, then we must choose
s = 1/δ. For example, to obtain the same 99.999% chance of success, we would pick s = 1/10−6 = 106. Now
Alice is communicating two integers at most 2 · sN log2(sN), so the number of bits is

2 log2(2 · sN log2(sN)) = 2 log2 s+ 2 log2N + 2 log2(log2(sN)) + 2,

= O(log s+ logN),

= O(log(1/δ) + logN).

This is much better than Approach #1!
4This unique prime-factorization theorem is known as the fundamental theorem of arithmetic.

4

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

4 The Karp-Rabin Algorithm (a.k.a. the “Fingerprint” Method)

Let’s use this idea to solve a different problem.

Problem: Pattern matching

In the pattern matching problem, we are given, over some alphabet Σ,

- A text T , of length m.

- A pattern P , of length n.

The goal is to output the locations of all the occurrences of the pattern P inside the text T . E.g., if
T = abracadabra and P = ab then the output should be {0, 7}.

There are many ways to solve this problem, but today we will use randomization to solve this problem. This
solution is due to Karp and Rabin.5 The idea is smart but simple, elegant and effective—like in many great
algorithms. To simplify the presentation, we will start by assuming that Σ = {0, 1}, i.e., all of our strings
are written in binary, but all of the ideas generalize to larger alphabets.

4.1 The Karp-Rabin Idea: “Rolling the hash”

As in the last section, if we interpret the string written in binary as an integer, lets use the hash function

hp(x) = (x mod p)

for some randomly chosen prime p.

Now look at the string x′ obtained by dropping the leftmost bit of x, and adding a bit to the right end. E.g.,
if x = 0011001 then x′ might be 0110010 or 0110011. If I told you hp(x) = z, can you compute hp(x′) fast?

10100110011100

𝒙

𝒙′
Let x′lb be the lowest-order (rightmost) bit of x′, and xhb be the highest order (leftmost) bit of x. Now
observe that

- removing the high-order bit (xhb) is just equivalent to subtracting xhb · 2n−1,

- shifting all of the remaining bits to one higher position is equivalent to multiplying by 2,

- appending the low-order bit x′lb is equivalent to just adding x′lb.

Therefore, we can write
x′ = 2(x− xhb · 2n−1) + x′lb

5Again, familiar names. Dick Karp is a professor of computer science at Berkeley, and won the Turing award in 1985. Among
other things, he developed several max-flow algorithms we will cover later in the course, and his 1972 paper showed that many
natural algorithmic problems were NP complete. Michael Rabin is professor at Harvard; he won the Turing award in 1976
(jointly with CMU’s Dana Scott). You may know him from the popular Miller-Rabin randomized primality test (the Miller
there is our own Gary Miller); he’s responsible for many algorithms in cryptography.

5

Since hp(a+ b) = (hp(a) + hp(b)) mod p, and hp(2a) = 2hp(a) mod p, we then have

hp(x′) = (2hp(x)− xhb · hp(2n) + x′lb) mod p.

Take a moment to understand the significance of this fact. Given the hash hp(x) for the substring x and the
value hp(2n), we can compute the hash of the next adjacent substring hp(x′) in just a constant number of
arithmetic operations modulo p. This is an enormous speedup compared to computing hp(x′) from scratch
which would take O(n) arithmetic operations.

4.2 The pattern matching algorithm

To keep things short, let Ti...j denote the string from the ith to the jth positions of T , inclusive. So the string
matching problem is: output all the locations i ∈ {0, 1, . . . ,m− n} such that

Ti...i+(n−1) = P.

Here’s the algorithm.

Algorithm: Karp-Rabin pattern matching

1. Pick a random prime p in the range {1, . . . ,M} for M = d2sn log2(sn)e (we’ll choose s later.)

2. Compute hp(P) and hp(2n), and store these results.

3. Compute hp(T0...n−1), and check if it equals hp(P). If so, output match at location 0.

4. For each i ∈ {0, . . . ,m− n}

(i) compute hp(Ti+1...i+n) using hp(Ti...i+n−1)

(ii) If hp(Ti+1...i+n) = hp(P), output match at location i+ 1.

Notice that we’ll never have a false negative (i.e., miss a match) but we may erroneously output location
that are not matches (have a false positive) if we get a hash collision! Let’s analyze the error probability,
and the runtime.

Probability of Error We do m different comparisons, each has a probability 1/s of failure. So, by a
union bound, the probability of having at least one false positive is m/s. Hence, setting s = 100m will make
sure we have at most a 1

100 chance of even a single mistake.

This means we set M = (200 ·mn) log2(200 ·mn), which requires at most log2M + 1 = O(logm+ log n) bits
to store. Hence our prime p is also at most O(logm+ log n) bits.6

Running Time Let’s say we can do arithmetic and comparisons on O(logM)-bit numbers in constant
time. And let’s not worry about the time to pick a random prime for now.

- Computing hp(x) for n-bit x can be done in O(n) time. So each of the hash function computations in
Steps 2 and 3 take O(n) time.

- Now, using the idea in Section 4.1, we can compute each subsequent hash value in O(1) time! So iterating
over all the values of i takes O(m) time.

That’s a total of O(m+ n) time! And you can’t do much faster, since the input itself is m+ n bits long.

6If we you do the math, and say m,n ≥ 10, then log2 M ≤ 4(log2 m + log2 n). Now, just for perspective, if we were looking
for a n = 1024-bit phrase in Wikipedia, this means the prime p is only 4(log2 238 + log2 210) ≤ 192 bits long.

6

4.3 Extensions and Connections

General alphabets For simplicity, we looked at the case where Σ = {0, 1}. The Karp-Rabin algorithm
generalizes naturally to larger alphabets. Instead of treating the input as a number in binary, treat it as
base-|Σ|. For example, if the text contains only lower-case English words, we would use base-26. The formula
for rolling the hash still works, except we replace 2 with |Σ|, and the range {1, . . . ,M} from which we should
select our prime becomes slightly larger.

Exercise: Larger alphabets

Suppose we use an alphabet Σ which has size |Σ| for Karp-Rabin. What should we use as our new
value of M , and how does this affect the number of bits required to store the prime p?

Other pattern matching algorithms and problems There are other (deterministic) fast ways of
solving the pattern matching problem we mentioned above. See, e.g., the Knuth-Morris-Pratt algorithm7,
and the suffix tree and suffix array data structures8. You don’t need to know those for this course, but they
are very interesting and useful. The advantage of the Karp-Rabin approach is not only the simplicity, but
also the extensibility. You can, for example, solve the following 2-dimensional problem using the same idea.

Exercise: 2D pattern matching

Given a (m1 ×m2)-bit rectangular text T , and a (n1 × n2)-bit pattern P (where ni ≤ mi), find all
occurrences of P inside T . Show that you can do this in O(m1m2) time, where we assume that you
can do modular arithmetic with integers of value at most poly(m1m2) in constant time.

7https://en.wikipedia.org/wiki/Knuth_Morris_Pratt_algorithm
8http://www.cs.cmu.edu/~15451-f19/LectureNotes/lec24-sufftree.pdf

7

https://en.wikipedia.org/wiki/Knuth_Morris_Pratt_algorithm
http://www.cs.cmu.edu/~15451-f19/LectureNotes/lec24-sufftree.pdf

	How to Pick a Random Prime
	How Many Primes?
	Tighter Bounds

	The String Equality Problem
	Communication cost
	Reducing the Error Probability

	The Karp-Rabin Algorithm (a.k.a. the ``Fingerprint'' Method)
	The Karp-Rabin Idea: ``Rolling the hash''
	The pattern matching algorithm
	Extensions and Connections

