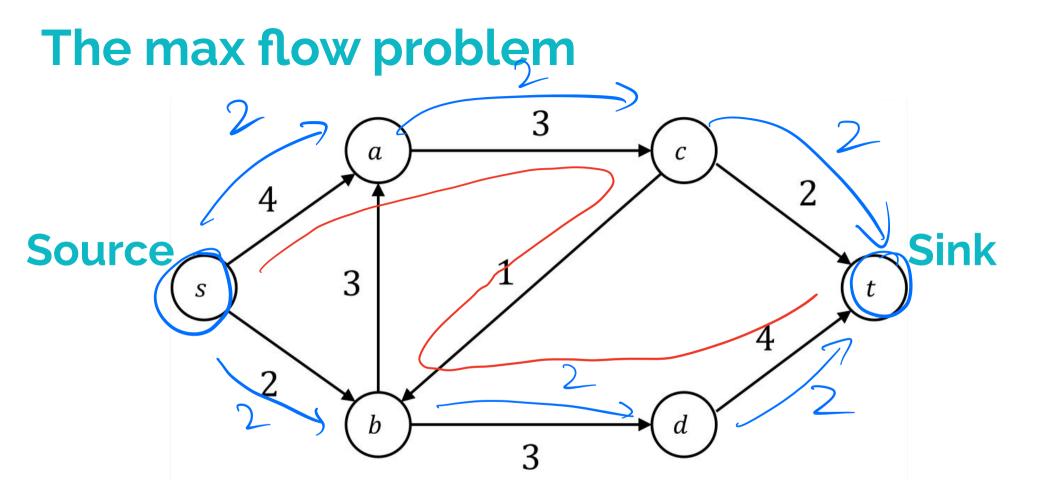
15451 Spring 2023

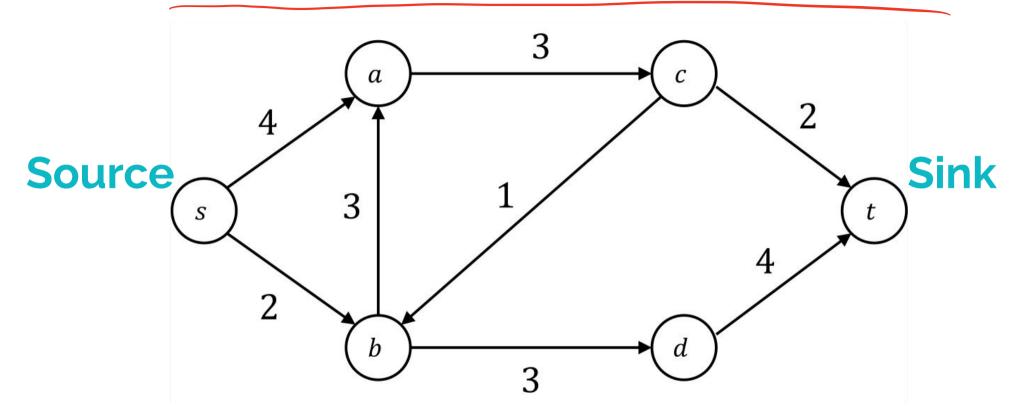
Max Flow, Min Cut, Ford-Fulkerson

Elaine Shi



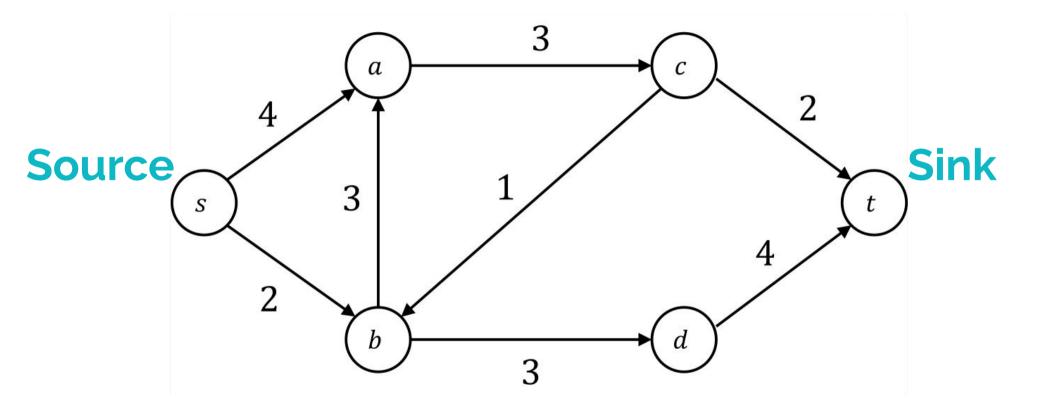
Directed graph G =(V, E), each edge e has a **capacity** c(e)

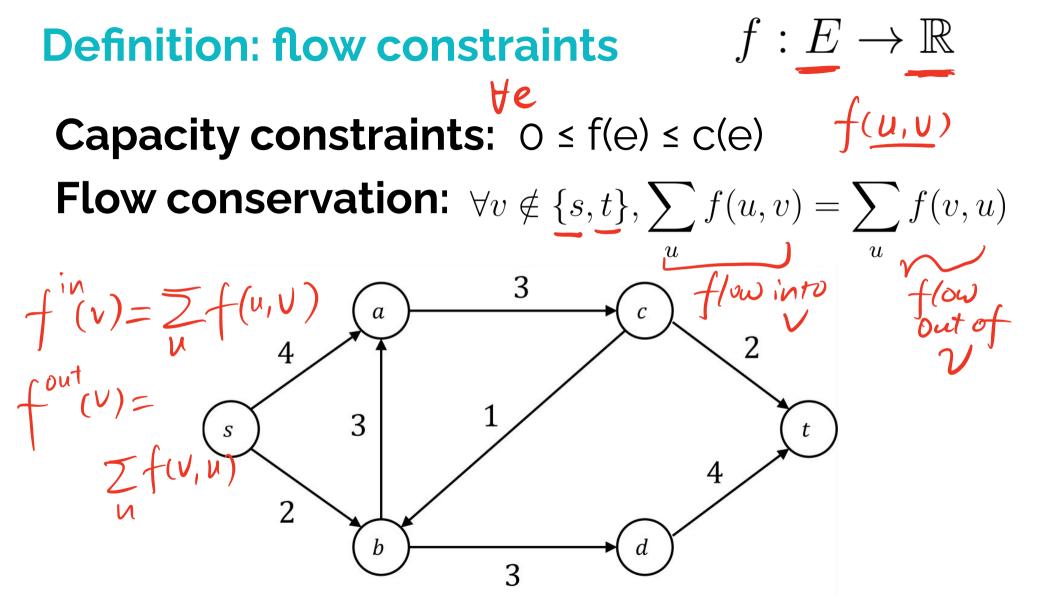
Goal: push maximum amount of flow through



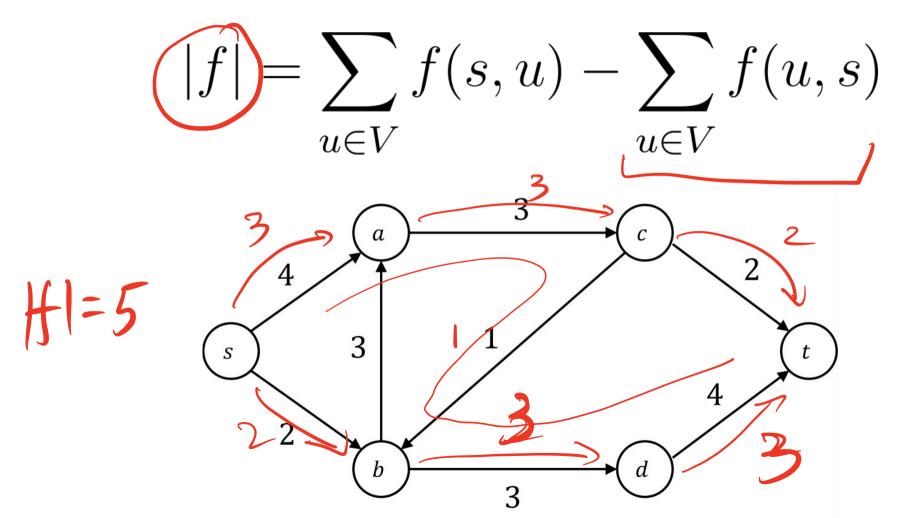
Directed graph, each edge e has a capacity c(e)

Flow example

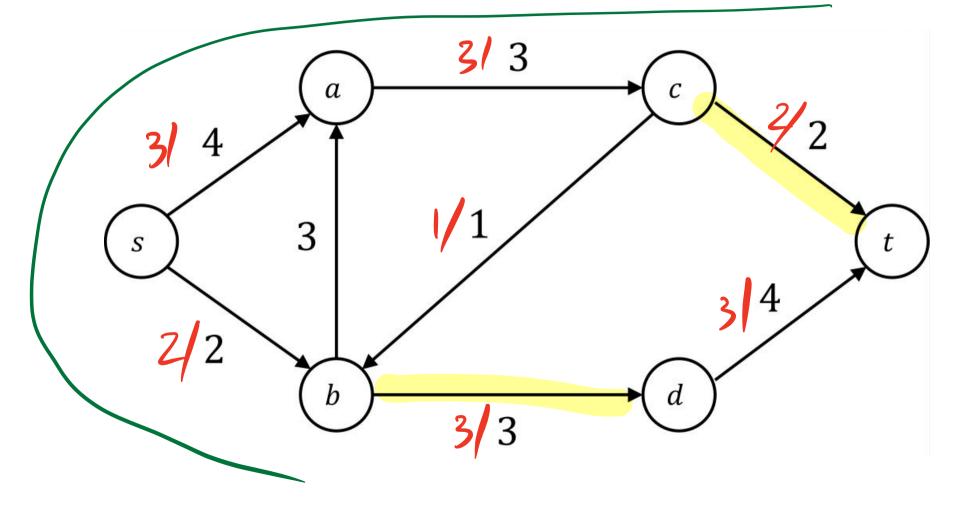




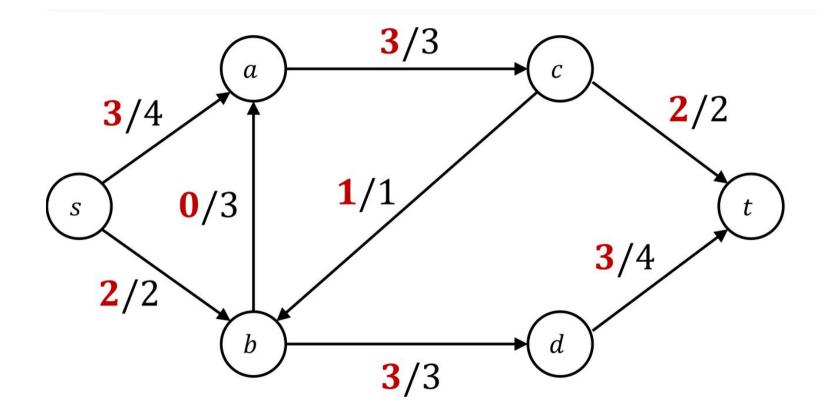
Value of a flow or "net flow from s to t"



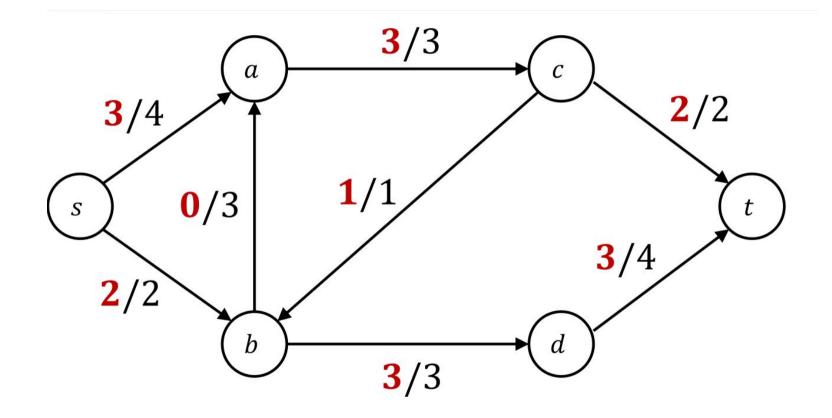
What's the max flow in this graph?



Is this the max flow?



Certifying optimality: s-t cuts



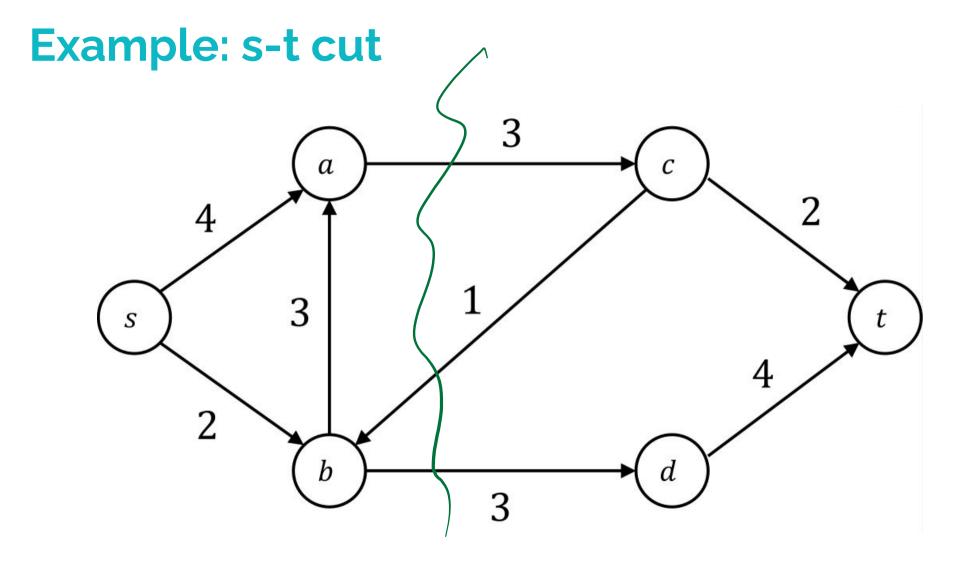
Certifying optimality: s-t cuts

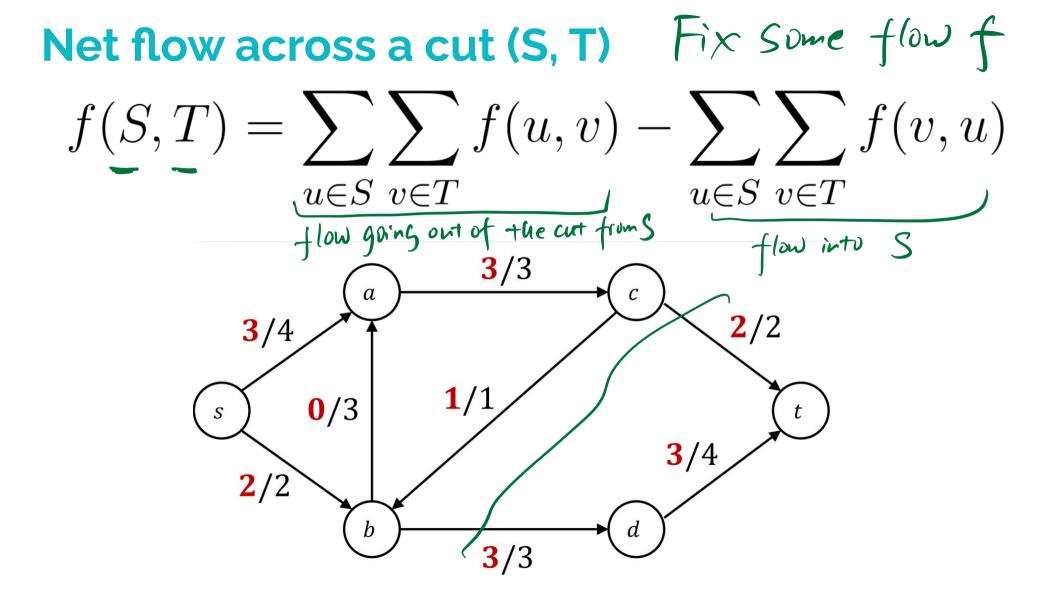
s-t cut: (S, T)

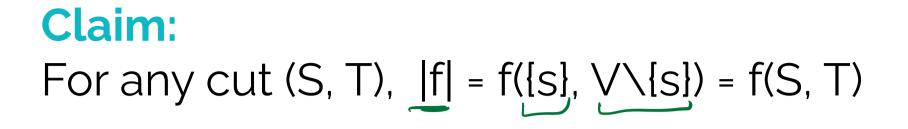
- S, T is a partition of V
- $s \in S, t \in T$

Capacity of the cut (S, T)

$$\underline{\operatorname{cap}(S,T)} = \sum_{u \in S} \sum_{v \in T} \underline{c(u,v)}$$







Claim:

For any cut (S, T), $|f| = f(\{s\}, V \setminus \{s\}) = f(S, T)$ recall ses

$\underline{|f|} = \underline{f^{\text{out}}(s)} - \underline{f^{\text{in}}(s)} = \sum_{v \in S} (f^{\text{out}}(v) - f^{\text{in}}(v))$

Claim: For any cut (S, T), $|f| = f(\{s\}, V \setminus \{s\}) = f(S, T)$

 $|f| = f^{\text{out}}(s) - f^{\text{in}}(s) = \sum (f^{\text{out}}(v) - f^{\text{in}}(v))$ $v \in S$ $= \sum f(e) - \sum f(e)$ e out of S e into S $= f(s, \pm 1)$

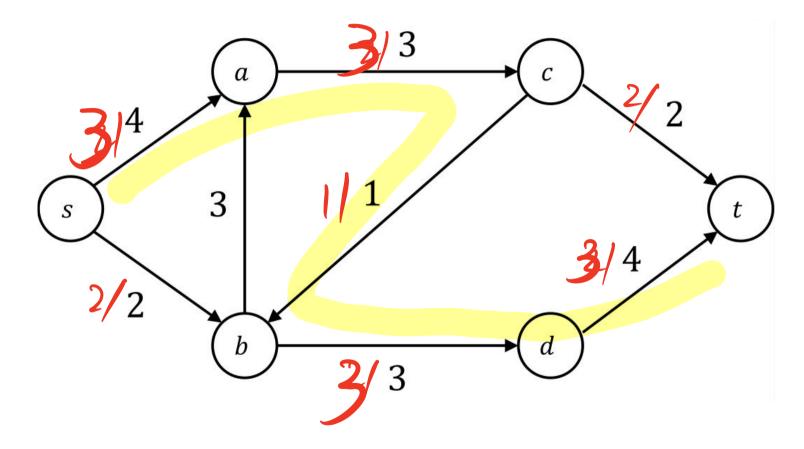
Claim:

$$s_{s}t$$

For any cut (S, T), any flow f, $|f| \le cap(S, T) \le f^{out}(s)$
i.e., max flow $\le min$ cut

How can we find a max flow?

Recall the greedy algorithm



Recall the greedy algorithm

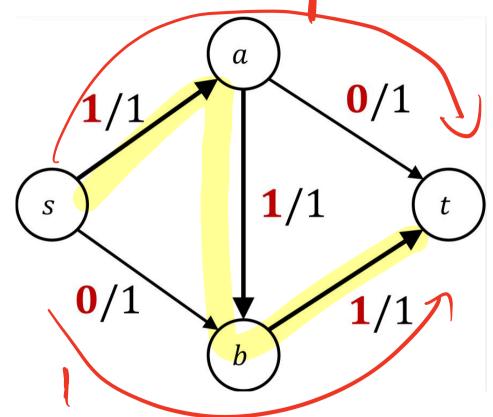
Find a path from s to t, push as much flow through the path as possible

Modify the capacities to the "leftover capacities"

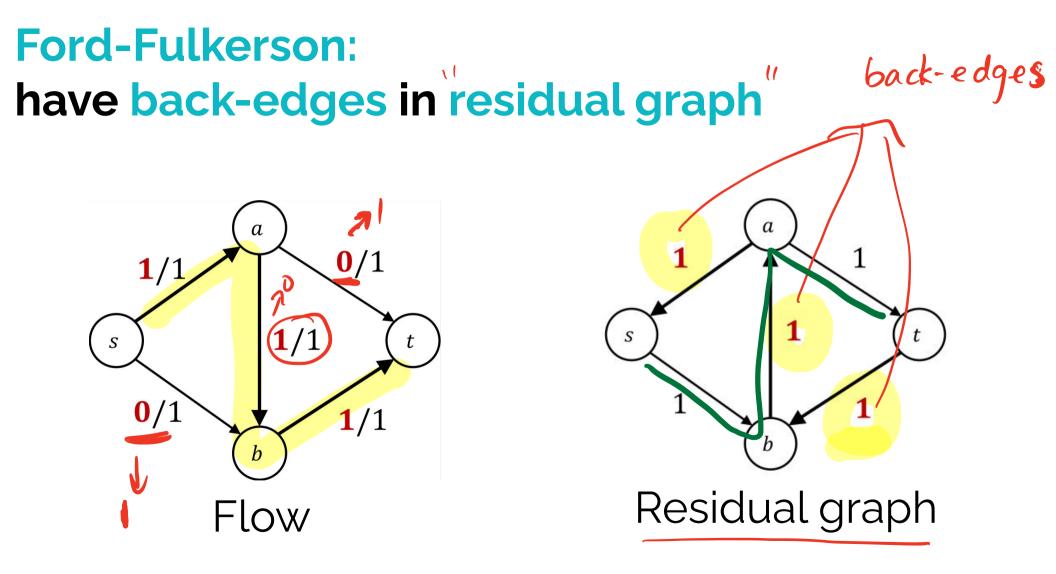
Repeat until no more improvement found

Is this algorithm correct?

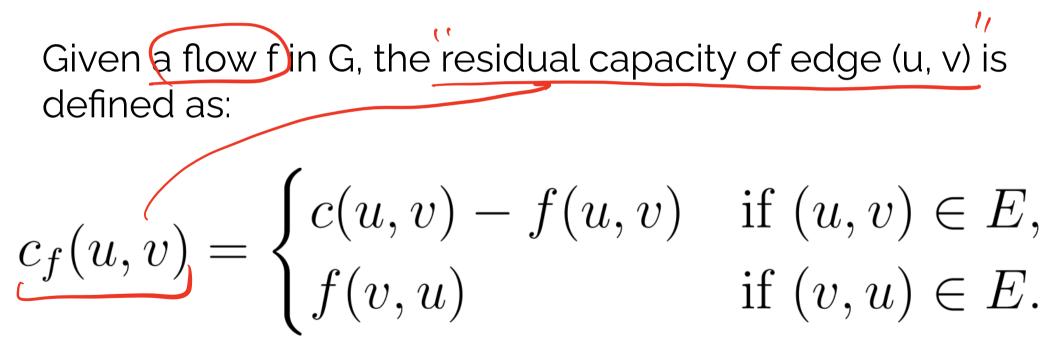
A counter-example for the greedy algorithm



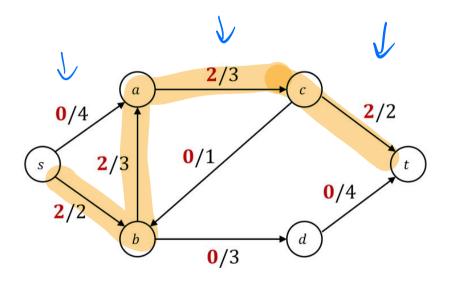
Issue: $a \rightarrow b$ is a bad decision

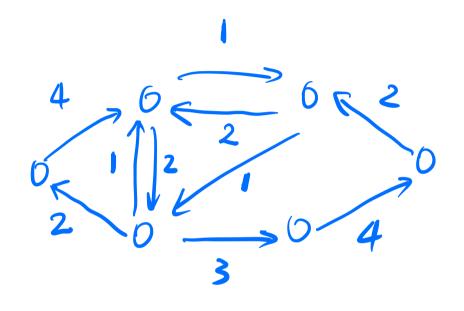


Ford-Fulkerson: have back-edges in residual graph



Another example





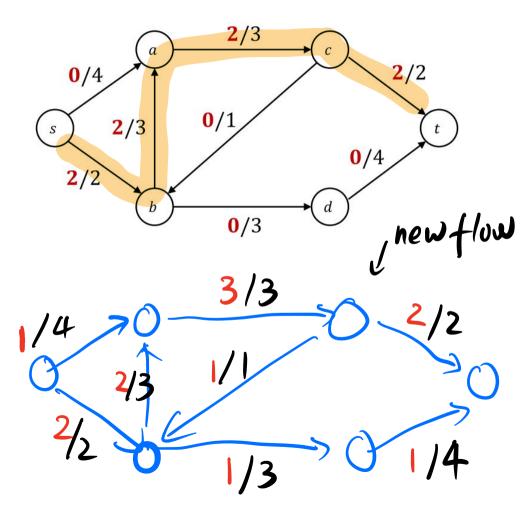
4100

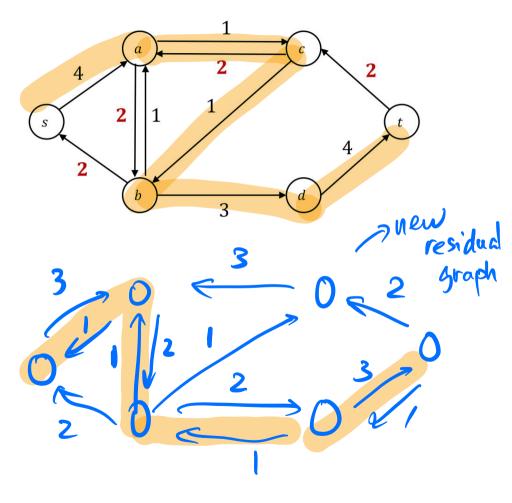
residual Graph

augment = improve

While exists $s \rightarrow t$ augmenting path P of positive residual capacity Push the maximum possible flow along P

Ford-Fulkerson:





What's the running time of FF?

Claim:

If G has integer capacities, FF terminates in time O(mF)

m: # edges 🖌 F: value of max flow 🖌

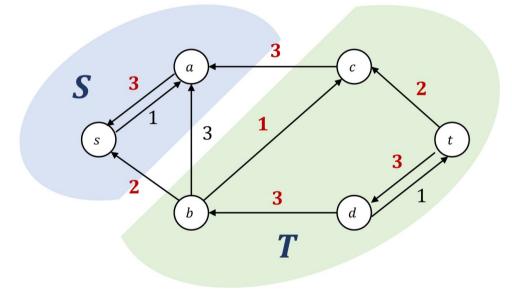
When FF terminates, output flow value = min cut



Recall max flow ≤ min cut

Claim implies: FF finds max flow when it terminates

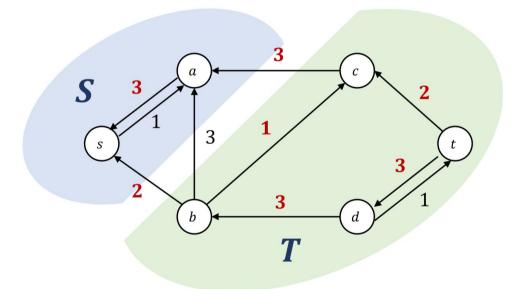
Claim: When FF terminates, output flow value = min cut



Idea: construct a cut that is equal to flow value

Such a cut must be min cut

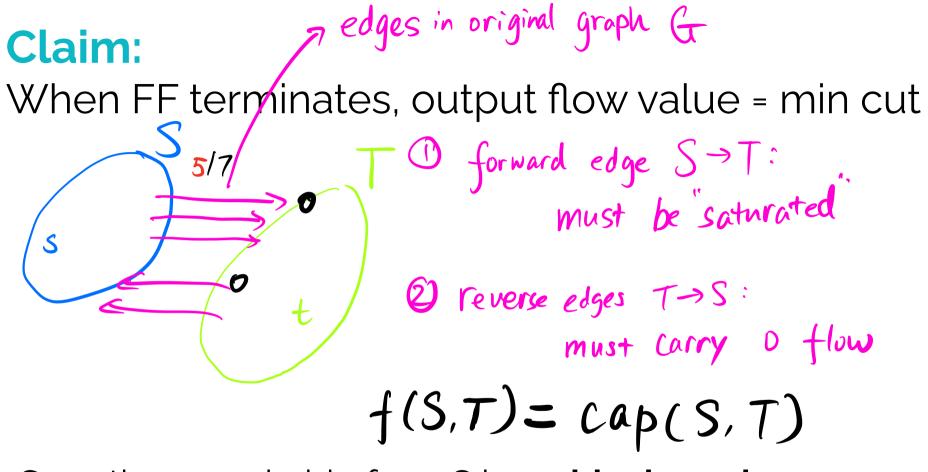
Claim: When FF terminates, output flow value = min cut



Idea: construct a cut that is equal to flow value

S: vertices reachable from S in residual graph

T: V\{S}



S: vertices reachable from S in residual graph

T: V\{S}

Theorem: Max flow = min cut

Observation:

for integer capacities, FF finds an integral flow

Application: Bipartite matching Matching Size is Slot. Group Find the maximum we say it's a perfect matching matching 2 **matching**: set of edges that do not share vertices

Application: Bipartite matching

