
Elaine Shi

Max Flow: polynomial-time 
algorithms

15451 Spring 2023

 



Recall the max flow problem

Directed graph, each edge e has a capacity c(e)

SinkSource



Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time:  O(m F)



Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time:  O(m F)

“Pseudo-polynomial time”



Can we have an algorithm whose
running time is polynomial in only 
m and n?



Pathological example for FF



Can we avoid the pathological 
cases if we select the augmenting 
path more cleverly?



Select the “widest” path



When people implemented FF 
using BFS, the performance is 
always polynomial.

Why?

Edmonds-Karp 1972



Edmonds-Karp

When people implemented FF 
using BFS, the performance is 
always polynomial.

Why?

BFS           shortest path



Edmonds-Karp’s Algorithm

Run FF but select the shortest 
augmenting path



Theorem: Edmonds-Karp makes at most 
mn iterations



Theorem: Edmonds-Karp makes at most 
mn iterations

Proof: let d be the distance from s to t in the 
residual graph

● Claim 1: d never increases
● Claim 2: every m iters, d increases by at least 1



Claim 1: d never increases



Claim 2: every m iterations, d 
increases by at least 1





Running time of Edmonds-Karp: O(nm2)



Dinic’s algorithm: O(n2m) 1970, “Dinitz”



A single BFS finds distances of all 
vertices from s, which encodes 
every shortest path

Dinic’s algorithm: O(n2m)

Let’s not waste this work!

1970



Dinic’s algorithm

For each d: do a BFS, find 
multiple shortest augmenting 
paths to form a “blocking flow”

A blocking flow in a residual graph Gf is a union of flows 
on shortest augmenting paths such that every shortest 
path in Gf has at least one edge that is saturated



Dinic’s algorithm
● Initially, the residual graph is the original graph
● Repeat at most n phases: 

○ Construct the layered graph of the residual graph
○ Find a blocking flow on the layered graph
○ Augment current flow using blocking flow, update 

residual graph

Goal:  find blocking flow in O(n m) time



Dinic’s algorithm
● Initially, the residual graph is the original graph
● Repeat at most n phases: 

○ Construct the layered graph of the residual graph
○ Find a blocking flow on the layered graph
○ Augment current flow using blocking flow, update 

residual graph

Goal:  find blocking flow in O(n m) time

d increases every phase



Find blocking flow using the layered graph



Claim: all augmenting paths of len d must be 
paths s-t paths in this layered graph



Example of layered graph, blocking flow



Example of layered graph, blocking flow



Naive algo. for finding blocking flow:

Repeat until no more path found
● Find a shortest path in layered graph using 

DFS, push maximum flow through it
● Update the residual capacities and remove 

edges with 0 residual capacity



Naive algo. for finding blocking flow:

Repeat until no more path found
● Find a shortest path in layered graph using 

DFS, push maximum flow through it
● Update the residual capacities and remove 

edges with 0 residual capacity

Running time: O(m2)



Improved algo: mark dead-end paths and 
prune them in future searches



Analysis of improved algorithm



Dinic’s algorithm often performs better than 
O(mn2) in practice



Dinic’s algorithm often performs better than 
O(mn2) in practice

Claim: For a unit capacity graph, a blocking flow can be 
found in O(m) time

Claim: For a unit capacity graph, we need at most             
blocking flows

Claim: For a unit capacity graph, Dinic finishes in                    

 time



Claim: For a unit capacity graph, a blocking flow can be 
found in O(m) time



Claim: For a unit capacity graph, we need at most             
blocking flows



Latest developments


