15451 Spring 2023

Max Flow: polynomial-time
algorithms

Elaine Shi

Recall the max flow problem

Sink

Directed graph, each edge e has a capacity cle)

Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time: O(m F)

Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time: O(m F)

v

“Pseudo-polynomial time”

Can we have an algorithm whose
running time Is polynomial in only
and n?

Pathological example for FF

Can we avoid the pathological
cases If we select the augmenting
path more cleverly?

L Select the "widest’ path

'Edmonds-Karp

When people implemented FF
using BFS, the performance is
always polynomial.

Why?

Edmonds-Karp

When people implemented FF
using BFS, the performance is
always polynomial.

Why?

BFS == shortest path

Edmonds-Karp's Algorithm

Run FF but select the shortest
augmenting path

Theorem: Edmonds-Karp makes at most

——

mn)iterations e, E-K comdetes i 0 (p.m?) 4ne

Theorem: Edmonds-Karp makes at most
mn iterations

Proof: let@be the distance from sto t in the
residual graph

. decrease iters
e Claim 1: d never seseasss = =0 wm)

e Claim 2: every miters, d increases by at least 1

Claim 1. d never é-fcreases)
d(S, "t)’): shortest distace from S VU

provi . Ne Wil YU dE weva; decreases

du (g each ter how +he réS'Wd 6‘”\'90\—;&.,‘ ;(,:?:h’aw
Q) Some edyes mey ge+ remoe e ey

@ add a bockwprd edge (W.IF Curpent resdud graph)
é r m Slur"u'T ,owh ,(—mm (5%
(‘MN) ' (;f'\,fz'z ,zufy';mﬁeresv‘dmm' ﬁmFI/\

. W)= d(Sv)T]
v wil pot Jecgage 35,\/‘)(-(’vf' any V>

Claim 2: every m iterations, d
increases by at least1 = ¢

- L
Qoo el . ¢
Elle wrd G, then déj(s,¢)>d¢s7)

%l

Qi

@(3

|

-

backe €4y

P

on

'+ s is tTue, Clacw? —(’oMVV'& b/c ey 2vg.
. sadwates ot leamst one edge there are

ly O0m edges 'n G

aa'm Suppee i G) we {irst Start 4o st 2 back

edoe v 1. G . then AC(ST) >d (sr)
B U.v) i3 the [asT back

~a)
s
=) (
g ’U u ~ -t 0, In) j\
G3 G.; ¢’ aug, path e
d s t)=d s+ +d WO @y
Vi ~L(‘ | (UU') 5 ;
/dat(s M)‘f" on g@':m
c‘ A (Vt) r'fm—“

d LS,I‘\ dé’lcs\) 7‘0{ (. t)

Running time of Edmonds-Karp: O(nm?)
N PO\(A$€$ (‘'n tefm D’f d)

e o b P{nage .ot mst m o ters

eoch 1ter . BFS . D)

Dinic's algorithm: O(n®*m) 1970, *Dinitz’

EKk Own-m’)

Dinic's algorithm: O(n*>m) 1970
A single BES finds distances of all

O vertices from s, which encodes
every shortest path

| et's not waste this work!

Dinic's algorithm

(!—ior each@ do a BFS, find
“multiple shortest augmenting
paths to form a "blocking flow”

A blocking flow in a residual graph G, is a union of flows
on shortest augmenting paths such that every shortest
path in G, has at least one edge that is saturated

- S—

d<

Dinic's algorithm
e Initially, the residual graph is the original graph
e Repeat at most n phases:
o Construct the@ laiered graphlof the residual graph
o Find a blocking flow on the layered graph

o Augment current flow using blocking flow, update
residual graph

Goal: find blocking flow in O(n m) time = () (nlm”)
—+me '» ‘PD'HL(

Dinic’s algorithm d increases every phase

e Initially, the residual gr?gh s the original graph

e Repeat at most n phases:
o Construct the layered graph of the residual graph
o Find a blocking flow on the layered graph
o Augment current flow using blocking flow, update
residual graph

Goal: find blocking flow in O(n m) time

Find blocking flow using the layered graph

Claim: all augmenting paths of len d must be
paths s-t paths in this layered graph

Example of layered graph, blocking flow

Corrert 12540l graph ¢4 “ro ©)

o @ 4 O 0]D&/@ég&'\?@

SERANDCIN -,

D ST
9 0 2

ﬁtyéd ﬁra,o‘t

Example of layered graph, blocking flow

o[10 0%4%
é/N \@
\Q?Q//

7

(w/e/reo‘ G e ph
lolock‘\'/\5 How

Naive algo. for finding blocking flow:
/ M i Teyathon
Repeat until no more path found

e Find a shortest path in la;gred graph using
DES, push maximum flow through it

Update the residual capacities and remove
edges with 0 residual capacity

‘m TW&’: O(ml)
O(M e Want O(mﬂ} 2

Naive algo. for finding blocking flow:

Repeat until no more path found

e Find a shortest path in layered graph using
DES, push maximum flow through it

e Update the residual capacities and remove
edges with 0 residual capacity

Running time:
—

Improved algo: mark dead-end paths and
prune them in future searches

Analysis of improved algorithm
m DES iTer s,

»oter €= N+ (# heaw desdend
Cost 1 7_5 (# edges entourterdd
yy\M len X }
Shortest
4>m\ we Lm
total wost= 2 N+¥ =—mn+

A=)
va‘V\«tW‘

Dinic's algorithm often performs better than

O(mn?3) in practice
~—

blOcWﬁ r{—lom) - Ofnn) +me

N Fotal qpﬂwses

Dinic's algorithm often performs better than
in practice
o,

Claim: For a unit capacity graph, a blocking flow can be
found in time

Clair@l:or a unit capacity graph, we need at mos@

blocking flows

[Claim: For a unit capacity graph, Dinic finishes in
.—// ° . —
O(m - min(y/m,n)) time
D)

— L

Claim: For a unit capacity graph, a blocking flow can be
found in O(m) time

bl¢ revdudl ﬁmph s also umt Capaeny

ul‘elyzdﬁecambfbnm‘ mosr |

0U§ _ (75{44« o He block\j .(Jm._,

o +he lo(odﬂ‘w} ~(-/ow, +otal ((ggcn, ey < m

Claim: For a unit capacity graph, we need at most 2+/m
blocking flows T

moﬁ Suppuse W how@ (,amP;@LQC/ iﬂﬁ

d 7k -
t st S of / VZJ N
fhere are @ - 9 F o
(en 2,k X SK—P%
M axX ‘(L/Ow ' /‘QSI\O(MQ(het wirk < ? P'(Ck
:) V’—Qefl C{*’VMQ*‘ Vn/t add,‘?‘l‘da&, b{DCk"‘j \'L/Ouus K;Fm
|

Latest developments

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

Li Chen* Rasmus Kyng! Yang P. Liuf
Georgia Tech ETH Zurich Stanford University
lichen@gatech.edu kyng@inf.ethz.ch vangpliun@stanford.edu
Richard Peng Maximilian Probst Gutenberg’ Sushant Sachdeva¥
University of Waterloo $ ETH Zurich University of Toronto
ybpeng@uwaterloo.ca maxprobst@ethz.ch sachdeva@cs.toronto.edu

April 26, 2022

Abstract

We give an algorithm that computes exact maximum flows and minimum-cost flows on
directed graphs with m edges and polynomially bounded integral demands, costs, and capacities
in m!*°) time. Our algorithm builds the flow through a sequence of m!'*°") approximate
undirected minimum-ratio cycles, each of which is computed and processed in amortized m°(!)
time using a new dynamic graph data structure.

Our framework extends to algorithms running in m!*°(!) time for computing flows that
minimize general edge-separable convex functions to high accuracy. This gives almost-linear
time algorithms for several problems including entropy-regularized optimal transport, matrix
scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.

