15451 Spring 2023

Max Flow: polynomial-time algorithms

Elaine Shi

Recall the max flow problem

Directed graph, each edge **e** has a **capacity c(e)**

Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity Push the maximum possible flow along P
 $\# edges$ Running time: O(m F)
+low value

Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity Push the maximum possible flow along P

Running time: O(m F)

"Pseudo-polynomial time"

Can we have an algorithm whose running time is polynomial in only m and n?

Can we avoid the pathological cases if we select the augmenting path more cleverly?

When people implemented FF using BFS, the performance is always polynomial.

Why?

Edmonds-Karp

When people implemented FF using BFS, the performance is always polynomial.

Why?

BFS shortest path

Edmonds-Karp's Algorithm

Run FF but select the shortest augmenting path

Theorem: Edmonds-Karp makes at most (mn)iterations, i.e. Ek completes in O(n.m²) time

Theorem: Edmonds-Karp makes at most mn iterations

Proof: let d be the distance from s to t in the residual graph

- decreases
- ecreases

 Claim 1: d never increases

 Claim 2: every m iters, d increases by at least 1

de
Claim 1: d never **a**creases $d(s,v)$: shortest distance from s to v' proof: We will $\forall v'$, d(s, vi) never decreases during each iter, how the residual graph can change O some edges may get removed b/c they are saturated 2 add a backword edge (w.r.t. Current residual graph) (u,v) ℓ (v,w) is on the shortest path from s-t (u, v) will not decrease $d(s, v) = d(s, v) + 1$
 w^{2} any v^{3}

Claim 2: every m iterations, d \overline{l} : iter increases by at least 1.
G: residual graph in liter G to side of that in G^j we first start to use a
Suppose that in G^j we first start to use a
back edge w.r. G^i , then $d^{G^j}(s,t) > d^{G^i}(s,t)$ if this is true. Claim 2 follows b/c every ang. it this is true. Claim 2 fourwas 4c comp.
path saturates at least one edge. there are \hat{G} pair sure dges in Gi

Claim: Suppose in G^J , we first start to use a back
edge w.r.t. G^J , then $d^{G^J}(s,t) > d^{G^F}(s,t)$ (u, v) is the last back \hat{U} edge w.r.t $d^{G(S,t)} = d^{G(S,u)+1} + d^{G(V,t)}$ G' in ωG and ωG (v, u) is
on shortest
 ρ_{α} shortest $d^{G^i}(s,t) = d^{G^i(s,u)+1} \longrightarrow d^{G^i}(v,t)$

Running time of Edmonds-Karp: O(nm²) n phases (in term of d) each phase: at most m iters each iter: BFS: Dan)

Dinic's algorithm: O(n²m) 1970, "Dinitz" EK $O(n \cdot m^2)$

Dinic's algorithm: O(n²m) 1970

A single BFS finds distances of all vertices from s, which encodes every shortest path

Let's not waste this work!

A **blocking flow** in a residual graph G_f is a union of flows on shortest augmenting paths such that every shortest path in G_f has at least one edge that is saturated

Dinic's algorithm

- Initially, the residual graph is the original graph
- Repeat at most **n phases**:
	- o Construct the layered graph of the residual graph
	- Find a blocking flow on the layered graph
	- Augment current flow using blocking flow, update residual graph

Goal: find blocking flow in **O(n m)** time \Rightarrow \bigcirc (n², m)

Dinic's algorithm

● Initially, the residual graph is the original graph

d increases every phase

- Repeat at most n phases:
	- Construct the layered graph of the residual graph
	- Find a blocking flow on the layered graph
	- Augment current flow using blocking flow, update residual graph

Goal: find blocking flow in O(n m) time

Find blocking flow using the layered graph

Claim: all augmenting paths of len d must be paths s-t paths in this layered graph

Example of layered graph, blocking flow

Naive algo. for finding blocking flow:
-Repeat until no more path found

- Find a shortest path in layered graph using DFS, push maximum flow through it
- Update the residual capacities and remove edges with 0 residual capacity $Total: O(m^2)$

 W_{ant} : $O(m.n)$ 22

Im time

Naive algo. for finding blocking flow:

Repeat until no more path found

- Find a shortest path in layered graph using DFS, push maximum flow through it
- Update the residual capacities and remove edges with 0 residual capacity

Improved algo: mark dead-end paths and prune them in future searches

Analysis of improved algorithmm DFS iters. $cost$ in iter $i = n + (# new dead-endedges encountered)$ max len of shortest
parn we find total $\omega s = \sum_{i=1}^{m} n + \chi_i = m \cdot n + \left(\sum_{i=1}^{m} \chi_i\right)$

Dinic's algorithm often performs better than O(mn2) in practice

 $blocklogkin\varphi flow: O(m\cdot n) + ime$

n total phases

Dinic's algorithm often performs better than O(mn²) in practice

Claim: For a unit capacity graph, a blocking flow can be found in O(m) time

Claim: For a unit capacity graph, we need at most $2\sqrt{m}$ blocking flows

Claim: For a unit capacity graph, Dinic finishes in

 $O(m \cdot \min(\sqrt{m}, n))$ time

Claim: For a unit capacity graph, a blocking flow can be found in O(m) time

b/c residual graph is also unit capacity wery edge can be un at must 1 aug path in the blaking flow in the blocking $flow$, total part len $\leq m$

Claim: For a unit capacity graph, we need at most $2\sqrt{m}$ blocking flows
proof: Suppose we have completed k phases $d > k$ there are at must $\frac{m}{\epsilon}$ and paths of $\frac{Wk}{\epsilon}$

Len 2 k

max flow in residual net work $\leq \frac{m}{k}$
 \Rightarrow need at must m_k additional blocking flows $\begin{cases} \frac{Wk}{\epsilon} \\ \frac{1}{\epsilon} \\ \frac{1}{\epsilon} \end{cases}$

Latest developments

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

Li Chen* Georgia Tech lichen@gatech.edu

Rasmus Kyng **ETH Zurich** kvng@inf.ethz.ch

Yang P. Liu[‡] **Stanford University** vangpliu@stanford.edu

Richard Peng University of Waterloo[§] v5peng@uwaterloo.ca

Maximilian Probst Gutenberg[†] **ETH Zurich** maxprobst@ethz.ch

Sushant Sachdeva¹ University of Toronto sachdeva@cs.toronto.edu

April 26, 2022

A bstract

We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and polynomially bounded integral demands, costs, and capacities in $m^{1+o(1)}$ time. Our algorithm builds the flow through a sequence of $m^{1+o(1)}$ approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized $m^{o(1)}$ time using a new dynamic graph data structure.

Our framework extends to algorithms running in $m^{1+o(1)}$ time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.