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Recall the max flow problem

Sink

Directed graph, each edge e has a capacity cle)



Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time: O(m F)



Recall Ford-Fulkerson

While exists augmenting path P of positive residual capacity
Push the maximum possible flow along P

Running time: O(m F)
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“Pseudo-polynomial time”



Can we have an algorithm whose
running time Is polynomial in only
and n?



Pathological example for FF




Can we avoid the pathological
cases If we select the augmenting
path more cleverly?



L Select the "widest’ path



'Edmonds-Karp

When people implemented FF
using BFS, the performance is
always polynomial.

Why?



Edmonds-Karp

When people implemented FF
using BFS, the performance is
always polynomial.

Why?

BFS == shortest path




Edmonds-Karp's Algorithm

Run FF but select the shortest
augmenting path



Theorem: Edmonds-Karp makes at most
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mn)iterations e, E-K comdetes i 0 (p.m?) 4ne



Theorem: Edmonds-Karp makes at most
mn iterations

Proof: let@be the distance from sto t in the
residual graph

. decrease iters
e Claim 1: d never seseasss = =0 wm)

e Claim 2: every miters, d increases by at least 1
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Claim 2: every m iterations, d
increases by at least1 = ¢
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Running time of Edmonds-Karp: O(nm?)
N PO\(A$€$ (‘'n tefm D’f d)

e o b P{nage .ot mst m o ters

eoch 1ter . BFS . D)



Dinic's algorithm: O(n®*m) 1970, *Dinitz’

EKk Own-m’)




Dinic's algorithm: O(n*>m) 1970
A single BES finds distances of all

O vertices from s, which encodes
every shortest path

| et's not waste this work!



Dinic's algorithm

(!—ior each@ do a BFS, find
“multiple shortest augmenting
paths to form a "blocking flow”

A blocking flow in a residual graph G, is a union of flows
on shortest augmenting paths such that every shortest
path in G, has at least one edge that is saturated
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Dinic's algorithm
e Initially, the residual graph is the original graph
e Repeat at most n phases:
o Construct the@ laiered graphlof the residual graph
o Find a blocking flow on the layered graph

o Augment current flow using blocking flow, update
residual graph

Goal: find blocking flow in O(n m) time = () (nlm”)
—+me '» ‘PD'HL(



Dinic’s algorithm d increases every phase

e Initially, the residual gr?gh s the original graph

e Repeat at most n phases:
o Construct the layered graph of the residual graph
o Find a blocking flow on the layered graph
o Augment current flow using blocking flow, update
residual graph

Goal: find blocking flow in O(n m) time



Find blocking flow using the layered graph



Claim: all augmenting paths of len d must be
paths s-t paths in this layered graph



Example of layered graph, blocking flow
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Example of layered graph, blocking flow
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Naive algo. for finding blocking flow:
/ M i Teyathon
Repeat until no more path found

e Find a shortest path in la;gred graph using
DES, push maximum flow through it

Update the residual capacities and remove
edges with 0 residual capacity

‘m TW&’: O(ml)
O(M e Want O(mﬂ} 2




Naive algo. for finding blocking flow:

Repeat until no more path found

e Find a shortest path in layered graph using
DES, push maximum flow through it

e Update the residual capacities and remove
edges with 0 residual capacity

Running time:
—



Improved algo: mark dead-end paths and
prune them in future searches




Analysis of improved algorithm
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Dinic's algorithm often performs better than

O(mn?3) in practice
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Dinic's algorithm often performs better than
in practice
o,

Claim: For a unit capacity graph, a blocking flow can be
found in time

Clair@l:or a unit capacity graph, we need at mos@

blocking flows
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Claim: For a unit capacity graph, a blocking flow can be
found in O(m) time
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Claim: For a unit capacity graph, we need at most 2+/m
blocking flows T
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Latest developments
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Abstract

We give an algorithm that computes exact maximum flows and minimum-cost flows on
directed graphs with m edges and polynomially bounded integral demands, costs, and capacities
in m!*°) time. Our algorithm builds the flow through a sequence of m!'*°") approximate
undirected minimum-ratio cycles, each of which is computed and processed in amortized m°(!)
time using a new dynamic graph data structure.

Our framework extends to algorithms running in m!*°(!) time for computing flows that
minimize general edge-separable convex functions to high accuracy. This gives almost-linear
time algorithms for several problems including entropy-regularized optimal transport, matrix
scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.



