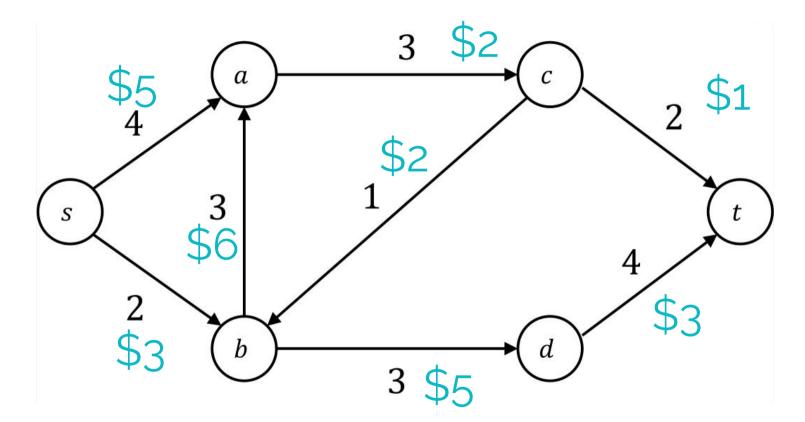
15451 Spring 2023

Min-cost flows

Elaine Shi

Min-cost flow

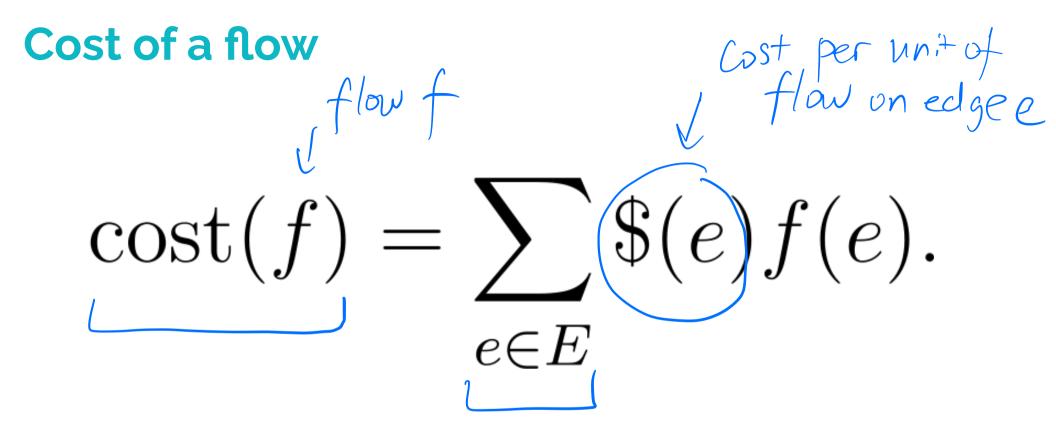


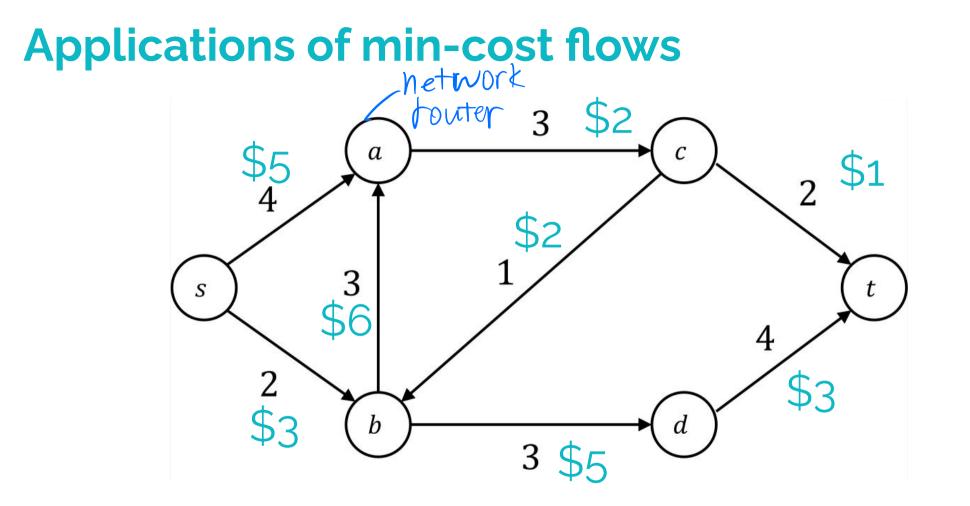
Each edge has a cost, represents cost per unit flow

Goal: find a flow of max value, minimizing cost



Each edge has a cost, represents cost per unit flow





Routing flows on a network (used by Akamai in its early days)

Negative cost and negative cycles?

• Allow negative edges

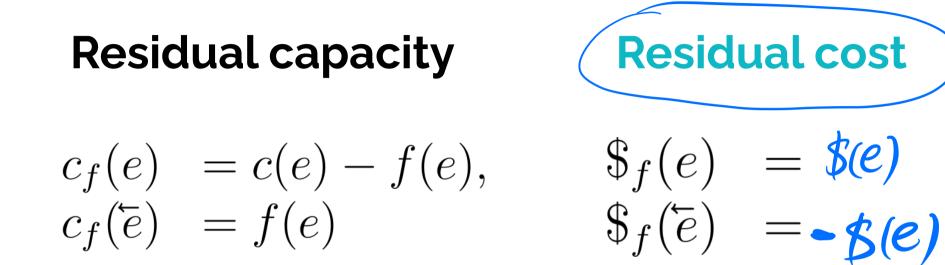
- For now, assume no negative cycle in the original graph
 - Will be relaxed by the end of this lecture

Residual graph for min-cost flows

Residual capacity

 $c_f(e) = c(e) - f(e),$ $c_f(e) = f(e)$ backedge

Residual graph for min-cost flows



Residual graph for min-cost flows

Residual capacity

Residual cost

$$c_f(e) = c(e) - f(e),$$
 $\$_f(e) = \$(e),$
 $c_f(e) = f(e)$ $\$_f(e) = -\(e)

Run FF but how should we select augmenting path?

FF but select cheapest augmenting path w.r.t. residual costs

FF but select cheapest augmenting path w.r.t. residual costs

How to find the cheapest augmenting path? X Dijkstra Does this algorithm give a min-cost max flow?

FF but select cheapest augmenting path w.r.t. residual costs

How to find the cheapest augmenting path?

Dijkstra?

FF but select cheapest augmenting path w.r.t. residual costs

How to find the cheapest augmenting path?Dijkstra?Negative edges!

Bellman-ford?

FF but select cheapest augmenting path w.r.t. residual costs

How to find the cheapest augmenting path?

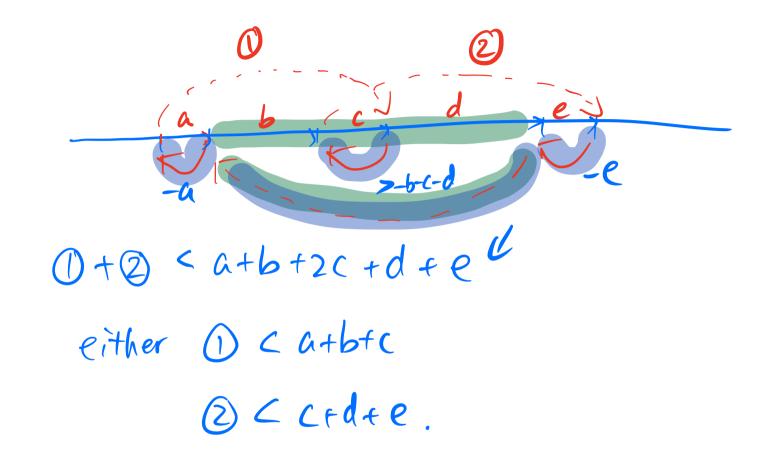
... as long as no negative cycles

Theorem: original graph has no negative cost cycle \Rightarrow in any iter, residual graph has no negative cost cycle

Theorem: original graph has no negative cost cycle \Rightarrow in any iter, residual graph has no negative cost cycle

Proof: simple case Consider the first iter in which we see a negative cost cycle. Simple case: this negative cost cycle uses 1 back edge r-sle)<0 => r<\$6) S->u->V->t (blue porth) cannot have been the cheapest

Proof (cont'd): more general case It suffices to show $r < \$(e_1) + \$(e_1) + \$(e_3) - r_1 - r_2$ $\leq s(e_1) + s(e_2) + s(e_3) + p_1 + p_2$ r< \$(e) + Pi + \$(e2) -\$(e₁) p_1 v_2 (e_2) $r - $(e_1) - $(e_2) - $(e_3) + r_1 + r_2 < 0$ Claim: S->U, ->U, ->U2 ->U2 ->U3 ->U3 ->U3 ->t could have been the chapest parth earlier P1+1,20 P2+1220 in S-N, ->V3->t is cheaper -r1 < p1 -r2 = p2



Running time of the algorithm?

- FF but select **cheapest** augmenting path w.r.t. residual costs

Bellman-Ford Olmn) #iters? [F] +Otal tim: O(mn(F1))

Running time of the algorithm?

FF but select cheapest augmenting path w.r.t. residual costs

- FF but select **cheapest** augmenting path w.r.t. residual costs

How to find the cheapest augmenting path?

Does this algorithm give a min-cost max flow ?

A flow is cost optimal if it is the **cheapest** of all possible flows of the **same value**.

A flow f is cost optimal iff there is no negative-cost cycle in G_{f} residual graph for f

If this theorem holds, then our algorithm earlier indeed finds the min-cost max flow

since we proved there is no negative-cost cycle in any iter

A flow f is cost optimal iff there is no negative-cost cycle in G_{f}

Proof:

- 1. Negative-cost cycle \Rightarrow not optimal (easy)
- 2. Not optimal \Rightarrow negative-cost cycle

1. Negative-cost cycle ⇒ not optimal (easy)

Adding a cycle to the flow

- Does it affect flow conservation?
- Does it change the flow value= flow out of 5 flow into S
- Can it change the cost?

2. Not optimal ⇒ <u>negative-cost cycle</u>

Suppose f is not cost optimal, i.e., \exists f' of the same value but cheaper cost

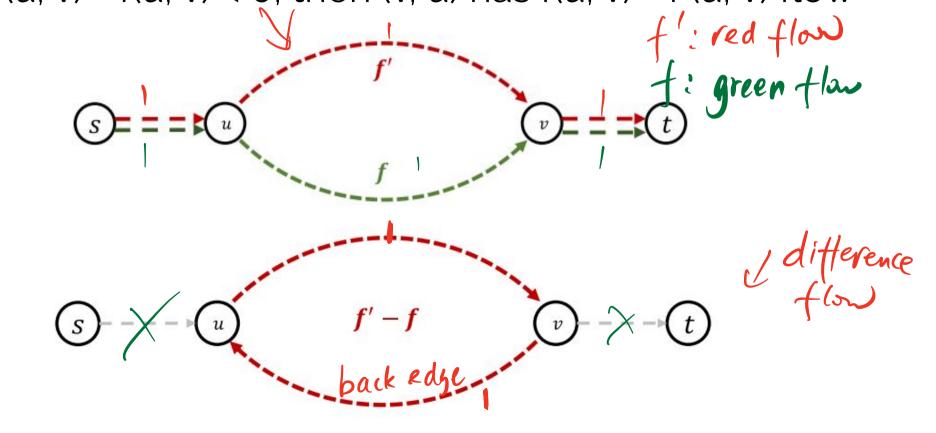
Consider the flow **f'-f**

- If $f'(u, v) f(u, v) \ge 0$, then (u, v) has f'(u, v) f(u, v) flow
- If f'(u, v) f(u, v) < 0, then (v, u) has f(u, v) f'(u, v) flow

f'-f represents how much flow we need to augment to f in order to get f'

Consider the flow **f'-f**

- If $f'(u, v) f(u, v) \ge 0$, then (u, v) has f'(u, v) f(u, v) flow
- If f'(u, v) f(u, v) < 0, then (v, u) has f(u, v) f'(u, v) flow



Consider the flow f'-f

- If $f'(u, v) f(u, v) \ge 0$, then (u, v) has f'(u, v) f(u, v) flow
- If f'(u, v) f(u, v) < 0, then (v, u) has f(u, v) f'(u, v) flow $\leq \frac{f(u, v)}{f(u, v)}$

Claim: f' - f is a valid flow of G_f (residual graph

 $\leq cap(u,v) - f(u,v)$

Consider the flow **f'-f**

- If $f'(u, v) f(u, v) \ge 0$, then (u, v) has f'(u, v) f(u, v) flow
- If f'(u, v) f(u, v) < 0, then (v, u) has f(u, v) f'(u, v) flow

Claim: f' - f is a valid flow of G_f

f' - f represents how much flow we need to augment to f in order to get f'

2. Not optimal ⇒ negative-cost cycle

Claim:

f'-f is a collection of flows on cycles (also called circulation)

Proof:

For every vertex including s and t, "flow in" = "flow out" in f' - f

recall that f'-f is a valid flow in G_f

2. Not optimal ⇒ negative-cost cycle

Claim:

f'-f is a collection of flows on cycles (also called circulation)

At least one cycle in f'-f has negative cost

Summary:

- cheapest augmenting path algorithm augments the flow while maintaining cost optimality
- running time?
 (n·m·|Fl)

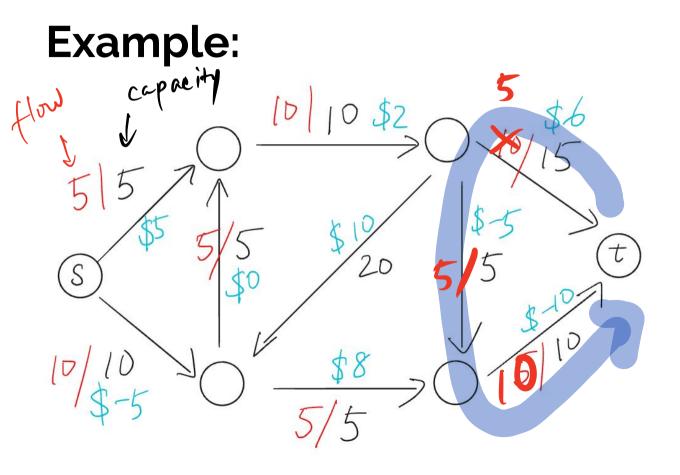
Cycle-canceling algorithm

(another algorithm for min-cost max flow)

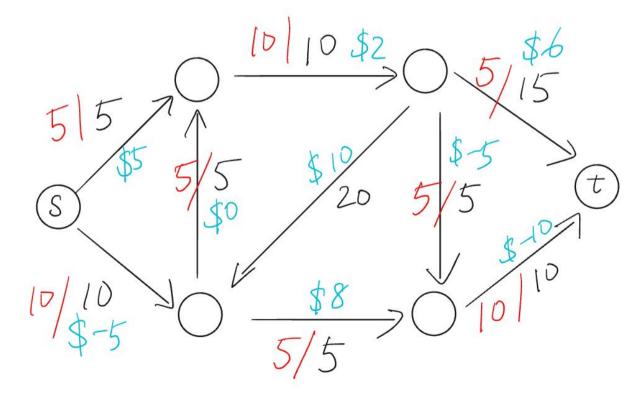
A flow f is cost optimal iff there is no negative-cost cycle in G_{f}

Cycle-canceling algorithm for min-cost flow

Find a max flow f (e.g. use FF, E+K, Dinic) While \exists negative-cost cycle in G_{f} . Augment the max possible amt of flow along the cycle



max flow Example (cont'd) : improved cost



Cycle-canceling algorithm for min-cost flow

Find a max flow f

While **I** negative-cost cycle in G_f:

Augment the max possible amt of flow along the cycle

How can we find negative cycles? Bellman - Ford

Quick recap of Bellman-Ford j'n each iteration i. d(v,i)finds for each U shortest distance from S to v traversing at most i a modification of Bellman-Ford lets you retrieve a negative cycle in O(m.n) vernices

Cycle-canceling algorithm for min-cost flow

Find a max flow f While **I** negative-cost cycle in G_f

Augment the max possible amt of flow along the cycle

Works even if input graph has negative-cost cycle

Running time of cycle canceling algorithm and costs Assume: all capacities, are integers, and edge capacities are at most U, and costs are between -C and C How many iters does the cycle cancelling alg take to complete? Initially, I start with some martlan whose total cost < m.U.C even iter improves the cost by at least l in the end, the min-cust $\ge -mUC$, the total decrease in wst 2 2 mUC

Running time of cycle canceling algorithm

Assume: all capacities are integers, and edge capacities are at most U, and costs are between -C and C

Starting from some max flow, each iteration J improves the cost by at most 1

How much can we lower the cost starting from the initial max flow?

Possible to improve the running time by choosing the negative-cost cycle more cleverly

Goldborg-Tarjan

min mean cost

Max flow

Min-cost max flow

(After spring break)

Linear programming