
Elaine Shi

Min-cost flows

15451 Spring 2023

Min-cost flow
$2

$1

$3
$5

$2

$6

$5

$3

Each edge has a cost, represents cost per unit flow

Goal: find a flow of max value, minimizing cost
$2

$1

$3
$5

$2

$6

$5

$3

Each edge has a cost, represents cost per unit flow

Cost of a flow

Applications of min-cost flows
$2

$1

$3
$5

$2

$6

$5

$3

Routing flows on a network (used by Akamai in its early days)

Negative cost and negative cycles?

● Allow negative edges

● For now, assume no negative cycle in
the original graph
○ Will be relaxed by the end of this lecture

Residual graph for min-cost flows

Residual capacity

Residual graph for min-cost flows

Residual capacity Residual cost

Residual graph for min-cost flows

Residual capacity Residual cost

How do we find min-cost max flow?

Run FF but how should we select
augmenting path?

How do we find min-cost max flow?

FF but select cheapest augmenting
path w.r.t. residual costs

How do we find min-cost max flow?

How to find the cheapest augmenting path?

Does this algorithm give a min-cost max flow ?

FF but select cheapest augmenting
path w.r.t. residual costs

How do we find min-cost max flow?

How to find the cheapest augmenting path?
Dijkstra?

FF but select cheapest augmenting
path w.r.t. residual costs

How do we find min-cost max flow?

How to find the cheapest augmenting path?
Dijkstra? Negative edges!

FF but select cheapest augmenting
path w.r.t. residual costs

How do we find min-cost max flow?

How to find the cheapest augmenting path?
Bellman-ford?

FF but select cheapest augmenting
path w.r.t. residual costs

… as long as no negative cycles

Theorem: original graph has no negative cost
cycle ⇒ in any iter, residual graph has no
negative cost cycle

Theorem: original graph has no negative cost
cycle ⇒ in any iter, residual graph has no
negative cost cycle

Proof: simple case

Proof (cont’d): more general case

Running time of the algorithm?

FF but select cheapest augmenting
path w.r.t. residual costs

Running time of the algorithm?

FF but select cheapest augmenting
path w.r.t. residual costs

How to find the cheapest augmenting path?

Does this algorithm give a min-cost max flow ?

FF but select cheapest augmenting
path w.r.t. residual costs

Cost optimality of flows

A flow is cost optimal if it is the cheapest of all
possible flows of the same value.

Theorem:
A flow f is cost optimal iff there is no negative-cost
cycle in Gf

If this theorem holds, then our algorithm earlier
indeed finds the min-cost max flow

➢ since we proved there is no negative-cost
cycle in any iter

Theorem:
A flow f is cost optimal iff there is no negative-cost
cycle in Gf

Proof:
1. Negative-cost cycle ⇒ not optimal (easy)
2. Not optimal ⇒ negative-cost cycle

1. Negative-cost cycle ⇒ not optimal (easy)

Adding a cycle to the flow
● Does it affect flow conservation?
● Does it change the flow value
● Can it change the cost?

2. Not optimal ⇒ negative-cost cycle

Suppose f is not cost optimal, i.e., ∃ f’ of the same value
but cheaper cost

Consider the flow f’-f
● If f’(u, v) - f(u, v) ≥ 0, then (u, v) has f’(u, v) - f(u, v) flow
● If f’(u, v) - f(u, v) < 0, then (v, u) has f(u, v) - f’(u, v) flow

f’-f represents how much flow we need to augment to f
in order to get f’

Consider the flow f’-f
● If f’(u, v) - f(u, v) ≥ 0, then (u, v) has f’(u, v) - f(u, v) flow
● If f’(u, v) - f(u, v) < 0, then (v, u) has f(u, v) - f’(u, v) flow

Consider the flow f’-f
● If f’(u, v) - f(u, v) ≥ 0, then (u, v) has f’(u, v) - f(u, v) flow
● If f’(u, v) - f(u, v) < 0, then (v, u) has f(u, v) - f’(u, v) flow

Claim: f’ - f is a valid flow of Gf

Consider the flow f’-f
● If f’(u, v) - f(u, v) ≥ 0, then (u, v) has f’(u, v) - f(u, v) flow
● If f’(u, v) - f(u, v) < 0, then (v, u) has f(u, v) - f’(u, v) flow

Claim: f’ - f is a valid flow of Gf

f’ - f represents how much flow we need to augment
to f in order to get f’

2. Not optimal ⇒ negative-cost cycle

Claim:
f’-f is a collection of flows on cycles (also called circulation)

Proof:
For every vertex including s and t, “flow in” = “flow out” in f’ - f

recall that f’-f is a valid flow in Gf

2. Not optimal ⇒ negative-cost cycle

Claim:
f’-f is a collection of flows on cycles (also called circulation)

Since cost(f’ - f) = cost(f’) - cost(f) < 0

At least one cycle in f’-f has negative cost

Summary:

● cheapest augmenting path algorithm augments
the flow while maintaining cost optimality

● running time?

(another algorithm for min-cost max flow)

Cycle-canceling algorithm

Recall
A flow f is cost optimal iff there is no negative-cost
cycle in Gf

Cycle-canceling algorithm for min-cost flow

Find a max flow f
While ∃ negative-cost cycle in Gf:

Augment the max possible amt of flow along the cycle

Example:

Example (cont’d) : improved cost

Cycle-canceling algorithm for min-cost flow

Find a max flow f
While ∃ negative-cost cycle in Gf:

Augment the max possible amt of flow along the cycle

How can we find negative cycles?

Quick recap of Bellman-Ford

Cycle-canceling algorithm for min-cost flow

Find a max flow f
While ∃ negative-cost cycle in Gf:

Augment the max possible amt of flow along the cycle

Works even if input graph has negative-cost cycle

Running time of cycle canceling algorithm
Assume: all capacities are integers, and edge capacities
are at most U, and costs are between -C and C

Running time of cycle canceling algorithm
Assume: all capacities are integers, and edge capacities
are at most U, and costs are between -C and C

Starting from some max flow, each iteration
improves the cost by at most 1

How much can we lower the cost starting from the
initial max flow?

Possible to improve the running time by
choosing the negative-cost cycle more
cleverly

Max flow

Min-cost max flow

Linear programming
(After spring break)

