
15-451/651: Design & Analysis of Algorithms March 14, 2023
Lecture #14: Game Theory, Zero-sum Games last changed: March 13, 2023

In today’s lecture, we’ll talk about game theory and some of its connections to computer science. Game
theory is the study of how people behave in social and economic interactions, and how they make decisions in
these settings. It is an area originally developed by economists, but given its general scope, it has applications
to many other disciplines, including computer science.

Objectives of this lecture

In this lecture, we will:

- Understand two-player zero-sum games, and the concept of (minimax) optimal strategies.

- Practice the process of solving for the value of a two-player zero-sum game

- See the connection of two-player zero-sum games to randomized algorithms.

1 Introduction to Game Theory

A clarification at the very beginning: a game in game theory is not just what we traditionally think of as a
game (chess, checkers, poker, tennis, or football), but is much more inclusive — a game is any interaction
between parties, each with their own interests. And game theory studies how these parties make decisions
during such interactions.1

Since we very often build large systems in computer science, which are used by multiple users, whose actions
affect the performance of all the others, it is natural that game theory would play an important role in many
CS problems. For example, game theory can be used to model routing in large networks, or the behavior of
people on social networks, or auctions on Ebay, and then to make qualitative/quantitative predictions about
how people would behave in these settings.

In fact, the two areas (game theory and computer science) have become increasingly closer to each other
over the past two decades — the interaction being a two-way street — with game-theorists proving results
of algorithmic interest, and computer scientists proving results of interest to game theory itself.

2 Definitions and Examples

In a game, we have

- A collection of participants, often called players.

- Each player has a set of choices, called actions, from which players choose about how to play (i.e., behave)
in this game.

- Their combined behavior leads to payoffs (think of this as the “happiness” or “satisfaction level”) for
each of the players.

Let us look at some examples: all of these basic examples have only two players which will be easy to picture
and reason about.

1Robert Aumann, Nobel prize winner, has suggested the term “interactive decision theory” instead of “game theory”.

1

http://en.wikipedia.org/wiki/Robert_Aumann


2.1 The Shooter-Goalie Game

This game abstracts what happens in a game of soccer, when some team has a penalty shot. There are two
players in this game. One called the shooter, the other is called the goalie. Hence this is a 2-player game.

The shooter has two choices: either to shoot to her left, or shoot to her right. The goalie has two choices as
well: either to dive to the shooter’s left, or to the shooter’s right. Hence, in this case, both the players have
two actions, denoted by the set {L,R}.2

Now for the “payoffs”. If both the shooter and the goalie choose the same strategy (say both choose L, or
both choose R) then the goalie makes a save. Note this is an abstraction of the game: for now we assume
that the goalie always makes the save when diving in the correct direction. This brings great satisfaction
for the goalie, not so much for the shooter. On the other hand, if they choose different strategies, then
the shooter scores the goal (again, we are modeling a perfect shooter). This brings much happiness for the
shooter, but the goalie is disappointed.

Being mathematically-minded, suppose we say that the former two choices lead to a payoff of +1 for the
goalie, and −1 for the shooter. And the latter two choices lead to a payoff of −1 for the goalie, and +1 for
the shooter. We can write it in a matrix (called the payoff matrix M) thus:

goalie

L R

shooter
L (−1, 1) (1,−1)

R (1,−1) (−1, 1)

The rows of the game matrix are labeled with actions for one of the players (in this case the shooter), and
the columns with the actions for the other player (in this case the goalie). The entries are pairs of numbers,
indicating who wins how much: e.g., the L, L entry contains (−1, 1), the first entry is the payoff to the row
player (shooter), the second entry the payoff to the column player (goalie). In general, the payoff is (r, c)
where r is the payoff to the row player, and c the payoff to the column player.

In this case, note that for each entry (r, c) in this matrix, the sum r + c = 0. Such a game is called a
zero-sum game. The zero-sum-ness captures the fact that the game is “purely competitive”. Note that
being zero-sum does not mean that the game is “fair” in any sense—a game where the payoff matrix has
(1,−1) in all entries is also zero-sum, but is clearly unfair to the column player.

Lastly, for 2-player games, we will define the row-payoff matrix R which consists of the payoffs to the row
player, and the column-payoff matrix C consisting of the payoffs to the column player. The tuples in the
payoff matrix M contain the same information, i.e.,

Mij = (Rij , Cij).

The game being zero-sum now means that R = −C, or R + C = 0. In the example above, the matrix R is

goalie

L R

shooter
L −1 1

R 1 −1

2Note carefully: we have defined things so that left and right are with respect to the shooter. From now on, when we say
the goalie dives left, it should be clear that the goalie is diving to the shooter’s left.

2



Note that the row payoff matrix R has all of the information about the game, since we can deduce the
column player’s payoff by taking the negative of the row player’s payoff.

2.2 Pure and Mixed Strategies

Now given a game with payoff matrix M , the two players have to choose strategies, i.e., decide how to play.

One strategy would be for the row player to decide on a row to play, and the column player to decide on a
column to play. Say the strategy for the row player was to play row I and the column player’s strategy was
to play column J , then the payoffs would be given by the tuple (RIJ , CIJ) in location I, J :

payoff RIJ to the row player, and CIJ to the column player

In this case both players are playing deterministically. (E.g., the goalie decides to always go left, etc.) A
strategy that decides to play a single action is called a pure strategy.

Definition: Pure strategy

A pure strategy for a player is one in which the player deterministically selects a single action to
always play, e.g., always shoot left.

But very often pure strategies are not what we play. We are trying to compete with the worst adversary, and
we may like to “hedge our bets”. Hence we may use a randomized algorithm: e.g., the players dive/shoot left
or right with some probability, or when playing the classic game of Rock-Paper-Scissors the player choose
one of the options with some probability. This is called a mixed strategy

Definition: Mixed strategy

A mixed strategy for a player consists of a non-negative real probability pi for each action such that∑
i pi = 1, i.e., a probability distribution over the actions for the player.

When talking about a pair of mixed strategies (one for the row player and one for the column player), we
will usually write pi for each row, such that

∑
i pi = 1 for the row player, and similarly, a qi ≥ 0 for each

column, such that
∑

i qi = 1 for the column player. The probability distributions p,q are called the mixed
strategies for the row and column player respectively. And then we look at the expected payoff

Claim: Expected payoff

The expected payoff to the row player is

VR(p,q) :=
∑
i,j

Pr[row player plays i and column player plays j] ·Rij =
∑
ij

piqjRij ,

and the expected payoff to the column player is

VC(p,q) :=
∑
i,j

piqjCij

This being a two-player zero-sum game, we know that VR(p,q) = −VC(p,q), so we will just mention the
payoff to one of the players (say the row player). For instance, if p = (0.5, 0.5) and q = (0.5, 0.5) in the
shooter-goalie game, then VR = 0, whereas p = (0.75, 0.25) and q = (0.6, 0.4) gives VR = 0.45−0.55 = −0.1.

3



2.3 Minimax-Optimal Strategies

What does the row player want to do? She wants to find a vector p? that maximizes the expected payoff to
her, over all choices of the opponent’s strategy q. The mixed strategy that maximizes the minimum payoff.

Definition: Lower bound for the row player

For any strategy of the column player, the row player can always attain an expected payoff of at least

lb := max
p

min
q

VR(p,q)

This is called the lower bound for the row player.

Make sure you parse this correctly:

lb :=

mixed strategy that maximizes
the minimum expected payoff︷ ︸︸ ︷

max
p

min
q

VR(p,q)︸ ︷︷ ︸
payoff when opponent

plays the optimal response
against our choice p

Loosely, the row player can guarantee to herself this much payoff no matter what the column player does.
The quantity lb is a lower bound on the row-player’s payoff.

What about the column player? She wants to find some q? that maximizes her own expected payoff, over
all choices of the opponent’s strategy p. She wants to optimize

max
q

min
p

VC(p,q)

But this is a zero-sum game, so this is the same as

max
q

min
p

(−VR(p,q))

And pushing the negative sign through, we get the column player is trying to optimize her own worst-case
payoff, which is

−min
q

max
p

VR(p,q)

So the payoff in this case to the row player is

Definition: Upper bound for the row player

The column player can ensure that for any strategy of the row player, their expected payoff is at most

ub := min
q

max
p

VR(p,q).

This is called the upper bound for the row player.

The column player can guarantee that the row player does not get more than this much payoff, no matter
what the row-player does. This is an upper bound on the row player’s payoff.

We have two quantities: lb and ub. How do they compare? To figure this out, we first make a simple but
important observation:

4



Claim: A pure response is optimal

Suppose we want to find the row player’s minimax-optimal strategy p?. Then we can assume that
the column player plays a pure strategy (a single column)

Proof. Once the row player fixes a mixed strategy p, the column player then has no reason to randomize:
her payoffs will be some average of the payoffs from playing the individual columns, so she can just pick the
best column for her.

Corollary: Alternate definition for upper and lower bounds

The quantity ub can be equivalently defined as

lb = max
p

min
j

∑
i

piRij .

Similarly, the column player wants to optimize

ub = min
q

max
i

∑
j

qjRij = −max
q

min
i

∑
j

qjCij .

2.3.1 The Shooter-Goalie Game Example

For the shooter-goalie game, we claim that the minimax-optimal strategies for both players is (0.5, 0.5).

Example: Lower and upper bounds for the shooter-goalie game

Row Player: For the row player (shooter), suppose p = (p1, p2) is the mixed strategy. Note that p1 ≥
0, p2 ≥ 0 and p1 + p2 = 1. So it is easier to write the strategy as p = (p, 1− p) with p ∈ [0, 1].

OK. If the column player (goalie) plays L, then this strategy gets the shooter a payoff of

p · (−1) + (1− p) · (1) = 1− 2p.

If the column player (goalie) plays R, then this strategy gets the shooter a payoff of

p · (1) + (1− p) · (−1) = 2p− 1.

So we want to choose some value p ∈ [0, 1] to maximize

lb = min(1− 2p, 2p− 1)

In this case, this maximum is achieved at p = 1/2. (One way to see it is by drawing these two lines.) And
the minimax-optimal expected payoff to the shooter is 0.

Column Player: The calculation for the column player (goalie) is similar in this case. The minimax-optimal
strategy for the goalie is also (0.5, 0.5) and the guarantees that the shooter cannot make more than 0 payoff.

An observation: the shooter can guarantee a payoff of lb = 0, and the goalie can guarantee that the shooter’s
payoff is never more than ub = 0. Since lb = ub, in this case the “value of the game” is said to be lb = ub = 0.

5



2.3.2 An Asymmetric Goalie Example

Let’s change the game slightly. Suppose the goalie is weaker on the left. For example, what happens if the
payoff matrix is now:

goalie

L R

shooter
L (− 1

2 ,
1
2 ) (1,−1)

R (1,−1) (−1, 1)

Example: Asymmetric shooter-goalie game

Row Player: For the row player (shooter), suppose p = (p, 1 − p) is the mixed strategy, with p ∈ [0, 1]. If
the column player (goalie) plays L, then this strategy gets the shooter a payoff of

p · (−1/2) + (1− p) · (1) = 1− (3/2)p.

If the column player (goalie) plays R, then this strategy gets the shooter a payoff of

p · (1) + (1− p) · (−1) = 2p− 1.

So we want to choose some value p ∈ [0, 1] to maximize

lb = min(1− (3/2)p, 2p− 1)

In this case, this maximum is achieved at p = 4/7. And the minimax-optimal expected payoff to the shooter
is 1/7. Note that the goalie being weaker means the shooter’s payoff increases.

Column Player: What about the calculation for the column player (goalie)? If her strategy is q = (q, 1− q)
with q ∈ [0, 1], then if the shooter plays L then the shooter’s payoff is

q · (−1/2) + (1− q) · (1) = 1− (3/2)q.

If she plays R, then it is 2q − 1. So the goalie will try to minimize

ub = max(1− (3/2)q, 2q − 1)

which will again give (4/7, 3/7) and guarantees that the expected loss is never more than 1/7.

Again, the shooter guarantees a payoff of lb = 1/7, and the goalie can guarantee that the shooter’s payoff is
never more than ub = 1/7. In this case the value of the game is said to be lb = ub = 1/7.

Exercise

What if both players have somewhat different weaknesses? What if the payoffs are:(− 1
2 ,

1
2 ) ( 3

4 ,−
3
4 )

(1,−1) (− 3
2 ,

3
2 )


Show that minimax-optimal strategies are p = (2/3, 1/3),q = (3/5, 2/5) and value of game is 0.

6



Exercise

For the game with payoffs: (− 1
2 ,

1
2 ) ( 3

4 ,−
3
4 )

(1,−1) (− 2
3 ,

2
3 )


Show that minimax-optimal strategies are p = ( 4

7 ,
3
7 ),q = ( 17

35 ,
18
35 ) and the value of the game is 1

7 .

Exercise

For the game with payoffs:

(− 1
2 ,

1
2 ) (−1, 1)

(1,−1) (2
3 ,−

2
3 )


Show that minimax-optimal strategies are p = (0, 1),q = (0, 1) and value of game is 2

3 .

3 A General Method for Solving 2-Row Games

In this section we give a general method for solving games with two rows (or, by symmetry, two columns).
We’ll develop the method with the following example:

column player

A B C

row 1 2 6 3

player 2 6 2 4

The game we’ll analyze is shown in the 2 × 3 matrix above with values for the row player. We’ll call the
three options for the column player A,B, and C, and the two options for the row player 1 and 2.

The general mixed strategy for the row player is to choose option 1 with probability p and option 2 with
probability 1 − p. For any choice of p, the column player can respond with A, B, or C. We can plot the
payoff to the row player with respect to every possible choice of p and use this to analyze the game.

7



6

4

2

R
o

w
 p

la
ye

r’
s 

p
ay

o
ff

In the diagram above, the horizontal axis represents p, and the vertical axis represents the payoff to the row
player. The three lines in the diagram correspond to the three options for the column player. For example,
the line labeled B, which is the graph of the function 2 + 4p, is the expected value of the game for the row
player (as a function of p) if the column player chooses column B.

So what does the actual payoff consist of for the row player? Whatever value of p they pick, their opponent,
if playing optimally, will play whichever of A, B and C gives the lowest payoff, so the row player’s payoff at
any point looks like the lowest of the three lines. We can represent this on the diagram as follows. Its called
the lower envelope of the three options for the column player.

6

4

2

R
o

w
 p

la
ye

r’
s 

p
ay

o
ff

This concave function represents the expected payoff for the row player if he chooses option 1 with probability
p, assuming that the column player plays optimally knowing the value of p. Thus, it represents a lower bound
on the value of the game for the row player for each value of p. By inspection of this graph, the concave
function achieves its maximum value at the point of intersection between B and C. This point is p = 2

5 , and
with that choice of p the value of the game is 3 + 3

5 . That’s the lower bound on the game’s value.

What’s a good strategy for the column player? Consider the convex combination of B and C chosen such
that the result is a horizontal line. This is 4

5C + 1
5B, and corresponds to a mixed strategy of picking B with

8



probability 1/5 and C with probability 4/5. With this mixed strategy, the value of the game for the row
player is 3 + 3

5 , no matter what the row player does. So this is an upper bound on the value of the game for
the row player. Since the lower and upper bound are equal, we know that this is the value of the game.

The same technique can be applied to any game with two rows. The value of the game is obtained by
constructing the concave function and finding where it achieves its maximum.

4 Von Neumann’s Minimax Theorem

In all the above examples of 2-player zero-sum games, we saw that the row player has a strategy p? that
guarantees some payoff lb for her, no matter what strategy q the column player plays. And the column
player has a strategy q? that guarantees that the row player cannot get payoff more than ub, no matter what
strategy p the row player plays. The remarkable fact in the examples was that lb = ub in all these cases!
Was this just a coincidence? No: a celebrated result of von Neumann3 shows that we always have lb = ub
in (finite) 2-player zero-sum games.

Theorem 1: Minimax Theorem (von Neumann, 1928)

Given a finite 2-player zero-sum game with payoff matrices R = −C,

lb = max
p

min
q

VR(p,q) = min
q

max
p

VR(p,q) = ub.

This common value is called the value of the game.

The theorem implies that in a zero-sum game, both the row and column players can even “publish” their
minimax-optimal mixed strategies (i.e., tell the strategy to the other player), and it does not hurt their
expected performance as long as they play optimally.4

Von Neumann’s Minimax Theorem is an important result in game theory, but it has beautiful implications
to computer science as well — as we see in the next section.

5 Lower Bounds for Randomized Algorithms

In order to prove lower bounds, we thought of us coming up with algorithms, and the adversary coming with
some inputs on which our algorithm would perform poorly—take a long time, or make many comparisons,
etc. We can encode this as a zero-sum game with row-player payoff matrix R. (Keep sorting as an example
application in your mind.)

- The columns are various algorithms for the problem (for sorting n elements).

- The rows are all the possible inputs (all n! of them).

- The entry Rij is the cost of the algorithm j on the input i (say the number of comparisons).

This may be a huge matrix, but we’ll never write it down. It’s just a conceptual guide. But what does the
matrix tell us? A lot, as it turns out:

- A deterministic algorithm with good worst-case guarantee is a column that does well against all rows: all
entries in this column are small.

3John von Neumann, mathematician, physicist, and polymath.
4It’s like telling your rock-paper-scissors opponent that you will play each action with equal probability, it does not buy

them anything to know your strategy. This is not true in general non-zero-sum games; there if you tell your opponent the
mixed-strategy you’re playing, she may be able to do better. Note carefully that you are not telling them the actual random
choice you will make, just the distribution from which you will choose.

9

http://en.wikipedia.org/wiki/John_von_Neumann


- A randomized algorithm with good expected guarantee is a probability distribution q over columns, such
that the expected cost for each row i is small. This is a mixed strategy for the column player. It gives an
upper bound.

- Ideally we want to find the minimax-optimal distribution q? achieving the value of this game. This would
be the best randomized algorithm.

- What is a lower bound for randomized algorithms? It is a mixed-strategy over rows (a probability distri-
bution p over the inputs) such that for every column (i.e., deterministic algorithm j), the expected cost
of j (under distribution p) is high.

So to prove a lower bound for randomized algorithms, if suffices to show that lb is high for this
game. I.e., give a strategy for the row player (a distribution over inputs) such that every column
(deterministic algorithm) incurs a high cost on it.

5.1 A Lower Bound for Sorting Algorithms

Recall from Lecture 2 we showed that any deterministic comparison-based sorting algorithm must perform
log2 n! = n log2 n−O(n) comparisons in the worst case. The next theorem extends this result to randomized
algorithms.

Theorem 2: Lower bound for randomized sorting

Let A be any randomized comparison-based sorting algorithm (that always outputs the correct an-
swer). Then there exist inputs on which A performs dlog2 n!e − 1 comparisons in expectation.

Proof. Suppose we construct a matrix R as above, where the columns are possible (deterministic) sorting
algorithms for n elements, the rows are the n! possible inputs, and entry Rij is the number of comparisons
algorithm j makes on input i. We claim that the value of this game is at least dlog2 n!e − 1: this implies
that the best distribution over columns (i.e., the best randomized algorithm) must suffer at least this much
cost on some row (i.e., input).

To show the value of the game is large, we show a probability distribution over the rows (i.e., inputs) such
that the expected cost of every column (i.e., every deterministic algorithm) is at least dlog2 n!e − 1.

This probability distribution is the uniform distribution: each of the n! inputs is equally likely. Now consider
any deterministic algorithm: as in Lecture 2, it can be transformed into a decision tree with n! leaves. No
two distinct input permutations go to the same leaf. We will now show that the average depth of a leaf in
this tree is at least dlog2 n!e − 1.

Consider such a decision tree T . Each node x in T has has a depth D(x), which is defined as the number
of nodes (not counting x) on the path from the root to x. Suppose there were two leaves `1 and `2 where
D(`2) ≥ D(`1) + 2. That is, leaf `2 is at least two deeper than leaf `1. Let p be the parent of `2 in T . So
D(p) ≥ D(`1) + 1.

If we were to modify T by swapping `1 with p in T , the resulting tree T ′ has average leaf depth less than that
of T . This is because the swap moves `1 deeper but moves p shallower by the same amount. The subtree
rooted at p has at least two leaves in it. So the average depth decreases as a result of this swap.

We can continue this process (always decreasing the average leaf depth) until there is no pair of leaves whose
depth differs by two or more. So all leaves are at neighboring depths. Call these depths K − 1 and K. In
order for there to be n! leaves, we know that 2K ≥ n!. Thus K ≥ dlog2 n!e. And all leaves are of depth at
least K − 1. This proves the result.

10



6 General-Sum Two-Player Games

Optional content — Will not appear on the homeworks or the exams

In general-sum games, we don’t deal with purely competitive situations, but cases where there are win-win
and lose-lose situations as well. For instance, the coordination game of “chicken”, a.k.a. what side of the
street to drive on? It has the payoff matrix:

Bob

L R

Alice
L (1, 1) (−1,−1)

R (−1,−1) (1, 1)

Note that we are now using the convention that a player choosing L is driving on their left. Note that if
both players choose the same side, then both win. And if they choose opposite sides, both crash and lose.
(Both players can choose to drive on the left—like Britain, India, etc.—or both on the right, like the rest of
the world, but they must coordinate. Both these are stable solutions and give a payoff of 1 to both parties.)

Consider another coordination game that we call “which movie?” Two friends are deciding what to do in
the evening. One wants to see Citizen Kane, and the other Dumb and Dumber. They’d rather go to a movie
together than separately (so the strategy profiles C,D and D,C have payoffs zero to both), but C,C has
payoffs (8, 2) and D,D has payoffs (2, 8).

Bob

C D

Alice
C (8, 2) (0, 0)

D (0, 0) (2, 8)

Finally, yet another game is “Prisoner’s Dilemma” (or “to pollute or not?”) with the payoff matrix:

Bob

C D

Alice
C (2, 2) (−1, 3)

D (3,−1) (0, 0)

6.1 Nash Equilibria

In this case, a good notion is to look for a Nash Equilibrium5 which is a stable set of (mixed) strategies for
the players. Stable here means that given strategies (p,q), neither player has any incentive to unilaterally
switch to a different strategy. I.e., for any other mixed strategy p′ for the row player

row player’s new payoff =
∑
ij

p′iqjRij ≤
∑
ij

piqjRij = row player’s old payoff

5Named after John Nash: CMU graduate, mathematician, and Nobel prize winner.

11

http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.


and for any other possible mixed strategy q′ for the column player

column player’s new payoff =
∑
ij

piq
′
jCij ≤

∑
ij

piqjCij = column player’s old payoff.

Here are some examples of Nash equilibria:

- In the chicken game, both {p = (1, 0),q = (1, 0)} and {p = (0, 1),q = (0, 1)} are Nash equilibria, as is
{p = ( 1

2 ,
1
2 ),q = ( 1

2 ,
1
2 )}.

- In the movie game, the only Nash equilibria are {p = (1, 0),q = (1, 0)} and {p = (0, 1),q = (0, 1)}.

- In prisoner’s dilemma, the only Nash equilibrium is to defect (or pollute). So we need extra incentives for
overall good behavior.

It is easy to come up with games where there are no stable pure strategies—this is even true for zero-sum
games. But what about mixed-strategies? The main result in this area was proved by Nash in 1950 (which
led to his name being attached to this concept)

Theorem 3: Existence of Stable Strategies

Every finite player game (with each player having a finite number of strategies) has at least one
(mixed-strategy) Nash equilibrium.

This theorem implies the Minimax Theorem (Theorem ??) as a corollary: indeed, take any two-player zero-
sum game and consider any Nash equilibrium (p,q), with value V =

∑
ij piqjRij = −

∑
ij piqjCij . Since

this is stable, neither player can do better by deviating, even knowing the other player’s strategy. So they
must be playing minimax-optimal.

12


