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Zero-sum games
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What is a game?

Chess, checkers, poker, tennis, football



Game theory is everywhere:

Behavior of people on social networks
Routing in large networks

Behavior of miners and users in blockchains
Complexity theory, cryptography

“Game theory is the study of mathematical
models of strategic interactions among

rational agents.
--- Wikipedia


https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Rational_agent

Today: 2-player zero-sum games



Example: shooter-goalie game
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Example: $ock, paper, scissprs
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More generally, view a 2-player game as
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e Players
e Actions?

e Payoffs g




Zero-sum game simplified using row
player's matrix
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Pure strategy: the player
deterministically selects a single action




Pure strategy: the player
deterministically selects a single action
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If shooter always shoots left, the goalie can always move left



Pure strategy: the player
deterministically selects a single action
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Mixed strategy: a probability
distribution of actions

probability of action i for row player

@robability of action i for column player




Mixed strategy: a probability
distribution of actions

o probability of action i for row player

q.. probability of action i for column player
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Expected payoff to row player given mixed
strategies p and ¢

:: Z Pr[row player plays ¢ and column player plays j| - R;; = Z piq; Rij,
uj )
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Expected payoff to row player given mixed
strategies p and ¢

Vr(p,q) := Z Pr[row player plays ¢ and column player plays j| - R;; = Z pigi Rij,
] ij

O Expected payoff to column player given
mixed strategies p and g

@(p, qQ) == Y pig;Ci;




Expected payoff to row player given mixed
strategies p and ¢

Vr(p,q) := Z Pr[row player plays ¢ and column player plays j| - R;; = Z pigi Rij,
] ij

O Expected payoff to column player given
mixed strategies p and g

VC pa sz% 17

O Zero sum: yc(P,qz = jVR(PaQ)
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Example of mixed strategy and payoff
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Lower bound for the row player

maximin SHreeyy
mixed strategy that maximizes
the minimum expected payoft

b ::@3 @%@wp, a)

ob* " ayvoff when opponent
plays the optimal response
against our choice p




Lower bound for the row player

b :: mcin Vr(p,q)
@

Row player can guarantee this payoff for itself




Upper bound for the column player
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girateqy

ub := min max Vi (p, q)
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Upper bound for the column player

:: min max Vg (p, q)
a p

Column player can guarantee that the row
player does not get more than this
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Example: Shooter-Goalie Game

- -
Suppose p - (b, S;) for shooter N1l =]

O It goalie plays L, shooters expected payoff:
)P+ I-(HP) = I-2p
O If goalie plays R, shooter's expected payoft:

|+ p+ENP) = P-Itp =2p-

I/"(g" min( F2p, Z‘H) p= é



Example: Shooter-Goalie Game
Suppose p = (p,, p,) for shooter

O If goalie plays L, shooter's expected payoft:

O If goalie plays R, shooter's expected payoft:



Example: Shooter-Goalie Game

Suppose q - (q,, q.) for goalie M- i
(£.3)
O If shooter plays L, goalie's expected payoff:

O If shooter plays R, shooter's expected payoff:



lb = max min Vi (p, q) L' i :ME (

p 9

Maximin strategg p

min max Vg (p, q) = ub.
a P

N\

Minimax strategy q°




One direction is easy to prove: lb <= ub

*

What happens if the players play (p*, q)?

e
e Row player gets at leas

e Column player ensures row player gets

at mos

e Thus, lb <=ub s it also frue

that  pub< (b 2



Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:

lb = max min Vg(p, q) = min max Vi (p,q) = ub.
— P 9 a P —



Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:

lb = maxmin Vg (p,q) = min max Vg(p, q) = ub.
P g a P

O Called “the value of the game”




Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:

V=

lb = maxmin Vg (p,q) = min max Vg(p, q) = ub.
P g a P

O Called "the value of the game’
O (p", ) is one Nash equilibrium



Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:

lb = max min Vg(p, q) = min max Vi (p,q) = ub.
P 4 a P

O Called "the value of the game’
O (p’, g% is one Nash equilibrium

O p’isabestresponseto q®and vice versa



General method for solving 2-row games

column player

A B C

row 1 2 § 3

player 2 6 2 4



column player ZP_‘— 6.( P )= é— LP
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rowP 1 2 6 3

player Hp 2 6 2 4

Row player’s payoff




columpplay 6P+ 2(|-P> ‘:Z’, +)
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row ¥ 1 2 6 3

player (——P 2 6 2 4

Row player’s payoff
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Row player’s payoff




What is a good strategy for the column
player?
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Row player’s payoff




Application: lower bounds for
randomized algorithms



Theorem: for any randomized

comparison-based sorting alg A, there exists an
input on which A performs [log, n!1 -1
comparisons in expectation

Want to lower bound: expected cost of rand. alg on worst-case input



Theorem: for any randomized

comparison-based sorting alg A, there exists an
input on which A performs llog, n!ill-w N (ﬁ?
comparisons in expectation ] —

5
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Each input: one row
7 Each det. alg: one column™
> Randomized alg: mixed strateqgy for

column player @
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expected e of r
For any rand. alg denote Hhe pest Tondow i
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For any rand. alg denoted g’

max VR(p, q,) > min max VR(P> Q)
p qQ p

= max min Vz(p, q)

| & q
Z min VR(p*v q)
q

- hérd (‘Jf;’rr der
\/ Construcs.t. for any q V(P qis large




For any rand. alg denoted g’

max VR(IL ql) > min max VR(P> Q)
P qQ P

= max min Vz(p, q)

| & q
Z min VR(p*v q)
q

\*“7 Construct a hard distr. p* over inputs, s.t. the best det. alg
- has large running time over a random input from p*
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For any rand. alg denoted g’

max VR(p, ql) > min max VR(p7 (l)
P qQ P

= max min Vz(p, q)

| & q
Z min VR(I)*) q)
q

\/ Construct p” s.t. forany q, V (p”, q) is large



v Pick p” to be the uniform distribution
= overallinputs i 1z = n'!

Claim: for anz/d@q; think of the alg
as a decision tree. The average depth of

all leaf nodes is at least [log, n!1 -1




v Pick p* to be the distribution
5 = overallinputs

Claim: for any det. alg q, think of the alg
as a decision tree. The average depth of
all leaf nodes is at least [log, n!1 -1



» Decision tree has n! Leaves.

» Mapping between leaves and inputs@

Average depth to leaves is maximized
when the tree is "somewhat balanced”
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Yao's Minimax Principle

expected cost of a randomized algorithm on its

worst-case input

cost of the best deterministic algorithm on a
random input from some distribution

Also used for proving comm. complexity of randomized protocols



Next lectures:

Linear Programming

(prove the minimax theorem)



