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What is a game?

Chess, checkers, poker, tennis, football



Game theory is everywhere:

● Behavior of people on social networks
● Routing in large networks
● Behavior of miners and users in blockchains
● Complexity theory, cryptography 

……

“Game theory is the study of mathematical 
models of strategic interactions among 
rational agents.”

--- Wikipedia

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Rational_agent


Today: 2-player zero-sum games



Example: shooter-goalie game



Example: rock, paper, scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0



More generally, view a 2-player game as a 
matrix 

● Players
● Actions
● Payoffs

Zero-sum: 



Zero-sum game simplified using row 
player’s matrix



Pure strategy: the player 
deterministically selects a single action 



If shooter always shoots left, the goalie can always move left

Pure strategy: the player 
deterministically selects a single action 



Pure strategy: the player 
deterministically selects a single action 



Mixed strategy: a probability 
distribution of actions

pi: probability of action i for row player 

qi: probability of action i for column player 



Mixed strategy: a probability 
distribution of actions

pi: probability of action i for row player 

qi: probability of action i for column player 



Expected payoff to row player given mixed 
strategies p and q



Expected payoff to row player given mixed 
strategies p and q

Expected payoff to column player given 
mixed strategies p and q



Zero sum:

Expected payoff to row player given mixed 
strategies p and q

Expected payoff to column player given 
mixed strategies p and q



Example of mixed strategy and payoff



Lower bound for the row player



Row player can guarantee this payoff for itself

Lower bound for the row player



Upper bound for the column player



Upper bound for the column player

Column player can guarantee that the row 
player does not get more than this



Claims: 



Example: Shooter-Goalie Game
Suppose p = (p1, p2) for shooter

If goalie plays L, shooter’s expected payoff:

If goalie plays R, shooter’s expected payoff:



Example: Shooter-Goalie Game
Suppose p = (p1, p2) for shooter
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Example: Shooter-Goalie Game
Suppose q = (q1, q2) for goalie

If shooter plays L, goalie’s expected payoff:

If shooter plays R, shooter’s expected payoff:



Maximin strategy p*

Minimax strategy q*



One direction is easy to prove: lb <= ub

What happens if the players play (p*, q*)?

● Row player gets at least lb
● Column player ensures row player gets 

at most ub

● Thus, lb <= ub



Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:
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Called “the value of the game”
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Minimax Theorem (von Neumann, 1928)

Called “the value of the game”

(p*, q*) is one Nash equilibrium

For any finite 2-player 0-sum game:



Minimax Theorem (von Neumann, 1928)

Called “the value of the game”

(p*, q*) is one Nash equilibrium

p* is a best response to q* and vice versa

For any finite 2-player 0-sum game:



General method for solving 2-row games









What is a good strategy for the column 
player?



Application: lower bounds for 
randomized algorithms



Theorem: for any randomized 
comparison-based sorting alg A, there exists an 
input on which A performs ⌈log2 n!⌉ -1 
comparisons in expectation

Want to lower bound: expected cost of rand. alg on worst-case input



Theorem: for any randomized 
comparison-based sorting alg A, there exists an 
input on which A performs ⌈log2 n!⌉ -1 
comparisons in expectation

Each input: one row
Each det. alg: one column
Randomized alg: mixed strategy for 

   column player



For any rand. alg denoted q’



For any rand. alg denoted q’

Construct p* s.t. for any q, VR(p*, q) is large



For any rand. alg denoted q’

Construct a hard distr. p* over inputs, s.t. the best det. alg 
has large running time over a random input from p* 



Construct p* s.t. for any q, VR(p*, q) is large

For any rand. alg denoted q’



Pick p* to be the uniform distribution 
over all inputs

Claim: for any det. alg q, think of the alg 
as a decision tree. The average depth of 
all leaf nodes is at least ⌈log2 n!⌉ -1



Pick p* to be the uniform distribution 
over all inputs

Claim: for any det. alg q, think of the alg 
as a decision tree. The average depth of 
all leaf nodes is at least ⌈log2 n!⌉ -1



Decision tree has n! Leaves.

Mapping between leaves and inputs

Average depth to leaves is maximized 
when the tree is “somewhat balanced”





Yao’s Minimax Principle

expected cost of a randomized algorithm on its 
worst-case input  

cost of the best deterministic algorithm on a 
random input from some distribution

Also used for proving comm. complexity of randomized protocols



Next lectures: 

Linear Programming
(prove the minimax theorem)


