
Elaine Shi

Zero-sum games

15451 Spring 2023

What is a game?

Chess, checkers, poker, tennis, football

Game theory is everywhere:

● Behavior of people on social networks
● Routing in large networks
● Behavior of miners and users in blockchains
● Complexity theory, cryptography

……

“Game theory is the study of mathematical
models of strategic interactions among
rational agents.”

--- Wikipedia

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Rational_agent

Today: 2-player zero-sum games

Example: shooter-goalie game

Example: rock, paper, scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

More generally, view a 2-player game as a
matrix

● Players
● Actions
● Payoffs

Zero-sum:

Zero-sum game simplified using row
player’s matrix

Pure strategy: the player
deterministically selects a single action

If shooter always shoots left, the goalie can always move left

Pure strategy: the player
deterministically selects a single action

Pure strategy: the player
deterministically selects a single action

Mixed strategy: a probability
distribution of actions

pi: probability of action i for row player

qi: probability of action i for column player

Mixed strategy: a probability
distribution of actions

pi: probability of action i for row player

qi: probability of action i for column player

Expected payoff to row player given mixed
strategies p and q

Expected payoff to row player given mixed
strategies p and q

Expected payoff to column player given
mixed strategies p and q

Zero sum:

Expected payoff to row player given mixed
strategies p and q

Expected payoff to column player given
mixed strategies p and q

Example of mixed strategy and payoff

Lower bound for the row player

Row player can guarantee this payoff for itself

Lower bound for the row player

Upper bound for the column player

Upper bound for the column player

Column player can guarantee that the row
player does not get more than this

Claims:

Example: Shooter-Goalie Game
Suppose p = (p1, p2) for shooter

If goalie plays L, shooter’s expected payoff:

If goalie plays R, shooter’s expected payoff:

Example: Shooter-Goalie Game
Suppose p = (p1, p2) for shooter

If goalie plays L, shooter’s expected payoff:

If goalie plays R, shooter’s expected payoff:

Example: Shooter-Goalie Game
Suppose q = (q1, q2) for goalie

If shooter plays L, goalie’s expected payoff:

If shooter plays R, shooter’s expected payoff:

Maximin strategy p*

Minimax strategy q*

One direction is easy to prove: lb <= ub

What happens if the players play (p*, q*)?

● Row player gets at least lb
● Column player ensures row player gets

at most ub

● Thus, lb <= ub

Minimax Theorem (von Neumann, 1928)

For any finite 2-player 0-sum game:

Minimax Theorem (von Neumann, 1928)

Called “the value of the game”

For any finite 2-player 0-sum game:

Minimax Theorem (von Neumann, 1928)

Called “the value of the game”

(p*, q*) is one Nash equilibrium

For any finite 2-player 0-sum game:

Minimax Theorem (von Neumann, 1928)

Called “the value of the game”

(p*, q*) is one Nash equilibrium

p* is a best response to q* and vice versa

For any finite 2-player 0-sum game:

General method for solving 2-row games

What is a good strategy for the column
player?

Application: lower bounds for
randomized algorithms

Theorem: for any randomized
comparison-based sorting alg A, there exists an
input on which A performs ⌈log2 n!⌉ -1
comparisons in expectation

Want to lower bound: expected cost of rand. alg on worst-case input

Theorem: for any randomized
comparison-based sorting alg A, there exists an
input on which A performs ⌈log2 n!⌉ -1
comparisons in expectation

Each input: one row
Each det. alg: one column
Randomized alg: mixed strategy for

 column player

For any rand. alg denoted q’

For any rand. alg denoted q’

Construct p* s.t. for any q, VR(p*, q) is large

For any rand. alg denoted q’

Construct a hard distr. p* over inputs, s.t. the best det. alg
has large running time over a random input from p*

Construct p* s.t. for any q, VR(p*, q) is large

For any rand. alg denoted q’

Pick p* to be the uniform distribution
over all inputs

Claim: for any det. alg q, think of the alg
as a decision tree. The average depth of
all leaf nodes is at least ⌈log2 n!⌉ -1

Pick p* to be the uniform distribution
over all inputs

Claim: for any det. alg q, think of the alg
as a decision tree. The average depth of
all leaf nodes is at least ⌈log2 n!⌉ -1

Decision tree has n! Leaves.

Mapping between leaves and inputs

Average depth to leaves is maximized
when the tree is “somewhat balanced”

Yao’s Minimax Principle

expected cost of a randomized algorithm on its
worst-case input

cost of the best deterministic algorithm on a
random input from some distribution

Also used for proving comm. complexity of randomized protocols

Next lectures:

Linear Programming
(prove the minimax theorem)

