15451 Spring 2023

Zero-sum games

Elaine Shi

What is a game?

Chess, checkers, poker, tennis, football

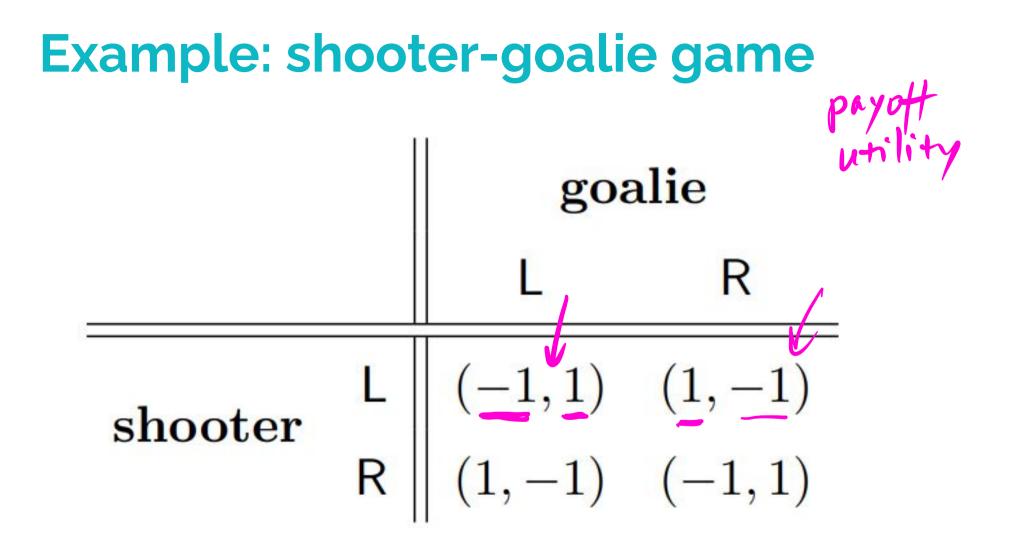
Game theory is everywhere:

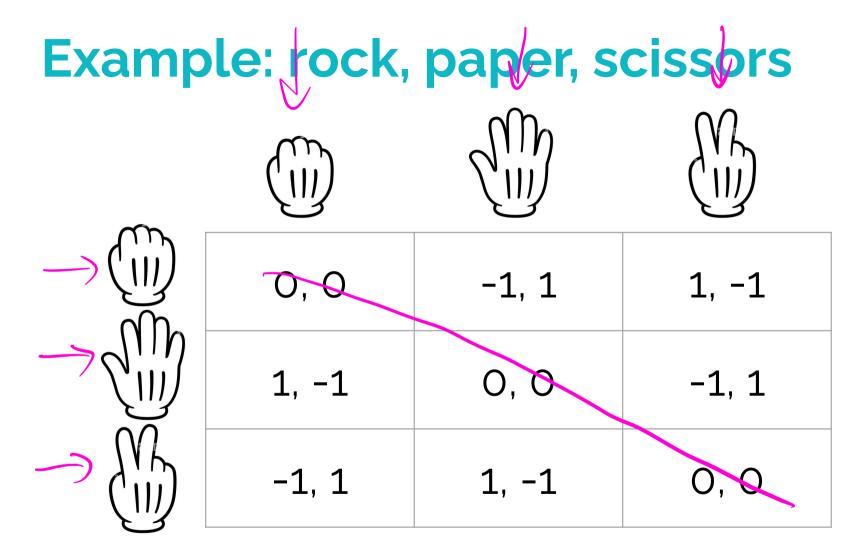
- Behavior of people on social networks
- Routing in large networks
- Behavior of miners and users in blockchains
- Complexity theory, cryptography

.....

"Game theory is the study of mathematical models of strategic interactions among rational agents."

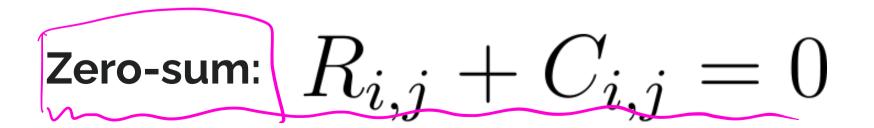
Today: 2-player zero-sum games



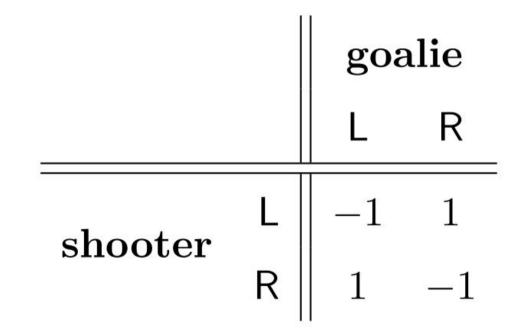


More generally, view a 2-player game as matrix $M_{i,j} = (R_{i,j}, C_{i,j})_{i,j}$

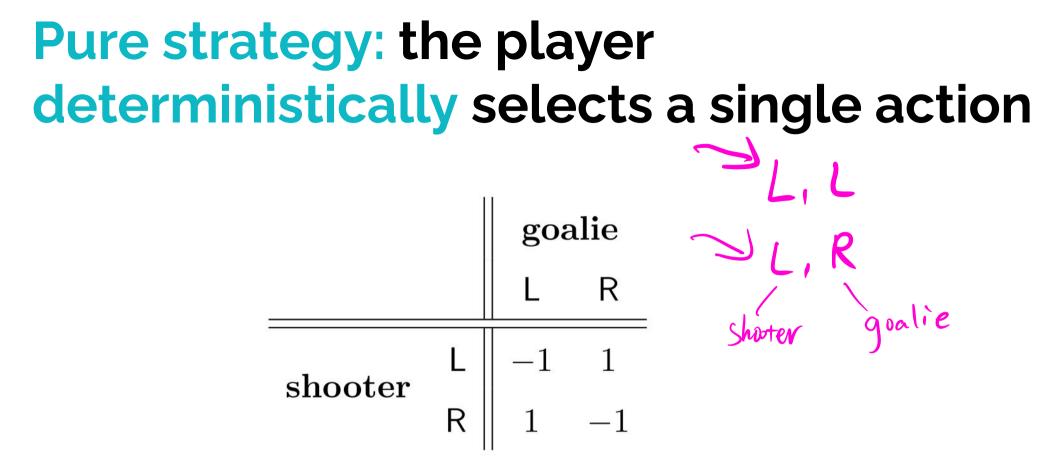
- Players
- Actions
- Payoffs [↓]



Zero-sum game simplified using row player's matrix



Pure strategy: the player deterministically selects a single action



If shooter always shoots left, the goalie can always move left

Pure strategy: the player deterministically selects a single action

MP.

nh

ά τ	(\underline{w})	V.W	Ŵ
	0, 0	-1, 1	1, -1
	1, -1	Ο, Ο	-1, 1
	-1, 1	1, -1	0, 0

m

Mixed strategy: a probability distribution of actions

p; probability of action i for row player q; probability of action i for column player

$$\sum_{i} p_i = 1, \quad \sum_{i} q_i = 1$$

Mixed strategy: a probability distribution of actions

p: probability of action i for row player

q: probability of action i for column player

 $\mathbf{p} := (p_i)_i, \quad \mathbf{q} := (q_i)_i$

Expected payoff to row player given mixed strategies p and q

 $V_R(\mathbf{p}, \mathbf{q}) := \sum_{i,j} \Pr[\text{row player plays } i \text{ and column player plays } j] \cdot R_{ij} = \sum_{ij} p_i q_j R_{ij},$

Expected payoff to row player given mixed strategies p and q

 $V_R(\mathbf{p}, \mathbf{q}) := \sum_{i,j} \Pr[\text{row player plays } i \text{ and column player plays } j] \cdot R_{ij} = \sum_{ij} p_i q_j R_{ij},$

• Expected payoff to column player given mixed strategies **p** and **q** $V_C(\mathbf{p}, \mathbf{q}) := \sum_{i,j} p_i q_j C_{ij}$

Expected payoff to row player given mixed strategies p and q

 $V_R(\mathbf{p}, \mathbf{q}) := \sum_{i,j} \Pr[\text{row player plays } i \text{ and column player plays } j] \cdot R_{ij} = \sum_{ij} p_i q_j R_{ij},$

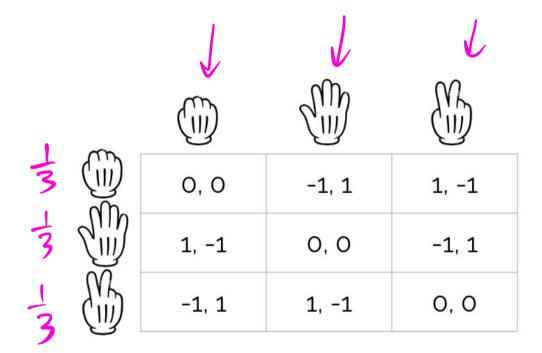
Expected payoff to column player given mixed strategies p and q

Zero

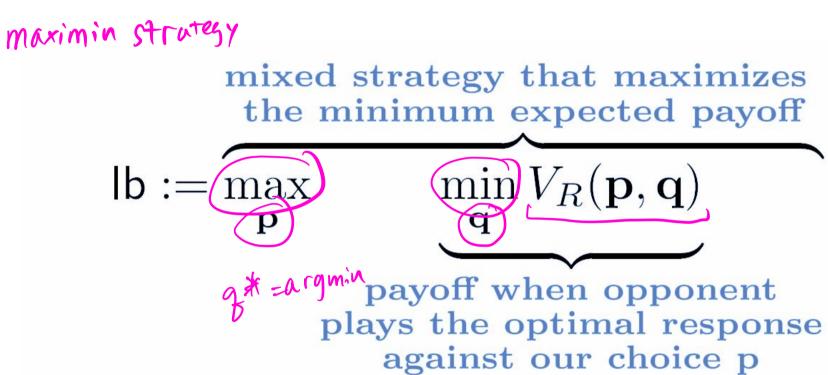
$$V_C(\mathbf{p}, \mathbf{q}) := \sum_{i,j} p_i q_j C_{ij}$$

sum: $V_C(\mathbf{p}, \mathbf{q}) = -V_R(\mathbf{p}, \mathbf{q})$

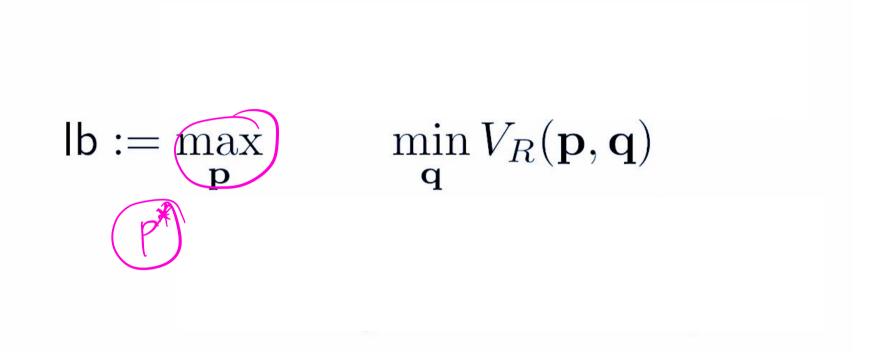
Example of mixed strategy and payoff



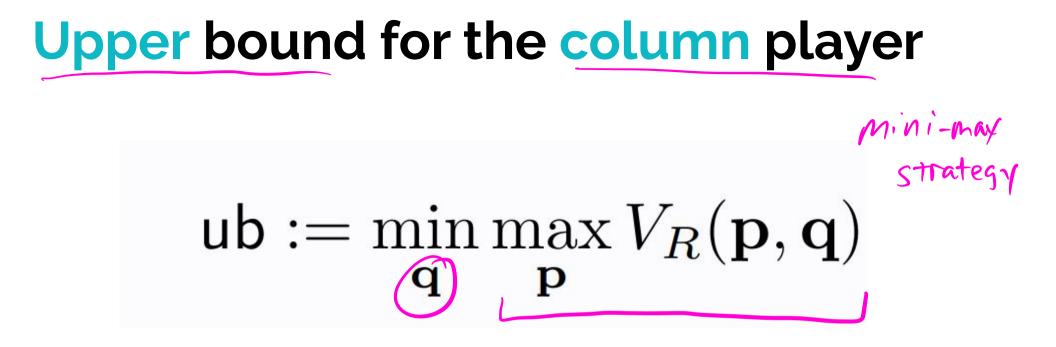
Lower bound for the row player



Lower bound for the row player



Row player can guarantee this payoff for itself



Upper bound for the column player

$\mathbf{ub} := \min_{\mathbf{q}} \max_{\mathbf{p}} V_{\mathbf{R}}(\mathbf{p}, \mathbf{q})$

Column player can guarantee that the row player does not get more than this

Example: Shooter-Goalie Game Suppose $\mathbf{p} = (p_1, p_2)$ for shooter $p_1 + p_2 = 1$

If goalie plays L, shooter's expected payoff: $(-1)\cdot P + 1\cdot (+p) = 1-2p$

• If goalie plays R, shooter's expected payoff: p + (-1)(p) = p - 1 + p = 2p - 1 $p = \frac{1}{2}$

Example: Shooter-Goalie Game

Suppose $\mathbf{p} = (p_1, p_2)$ for shooter

If goalie plays L, shooter's expected payoff:

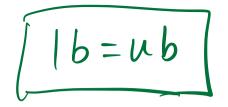
If goalie plays R, shooter's expected payoff:

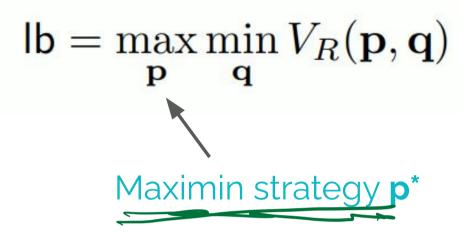
Example: Shooter-Goalie Game

Suppose
$$\mathbf{q} = (q_1, q_2)$$
 for goalie
 $(\frac{1}{2}, \frac{1}{2})$

If shooter plays L, goalie's expected payoff:

If shooter plays R, shooter's expected payoff:





 $\min\max V_R(\mathbf{p},\mathbf{q}) = \mathsf{ub}.$ q p Minimax strategy **q***

One direction is easy to prove: lb <= ub

What happens if the players play (**p***, **q***)?

- Row player gets at least lb
- Column player ensures row player gets at most **ub**
- Thus, lb <= ub

is it also true that ub < 16?

For any finite 2-player 0-sum game:

$\underbrace{\mathsf{lb}}_{\mathbf{p}} = \max_{\mathbf{q}} \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}) = \underbrace{\mathsf{ub}}_{\mathbf{q}}.$

For any finite 2-player 0-sum game:

$\mathsf{lb} = \max_{\mathbf{p}} \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}) = \mathsf{ub}.$

Called "the value of the game"

For any finite 2-player 0-sum game:

$V = \lim_{\mathbf{p} \to \mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q} \to \mathbf{p}} V_R(\mathbf{p}, \mathbf{q}) = \mathsf{ub}.$

Called "the value of the game"

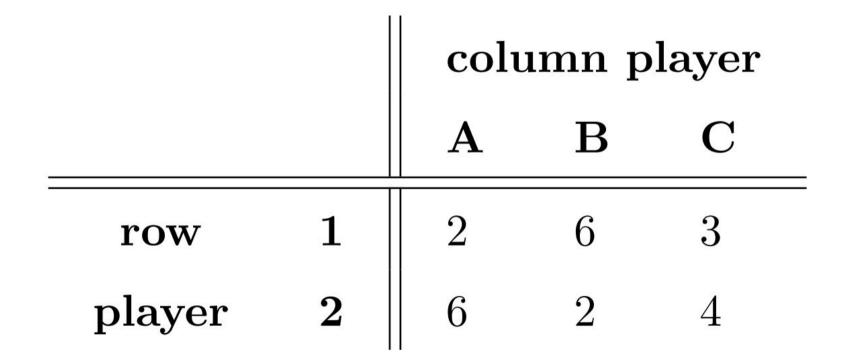
(p*, q*) is one Nash equilibrium

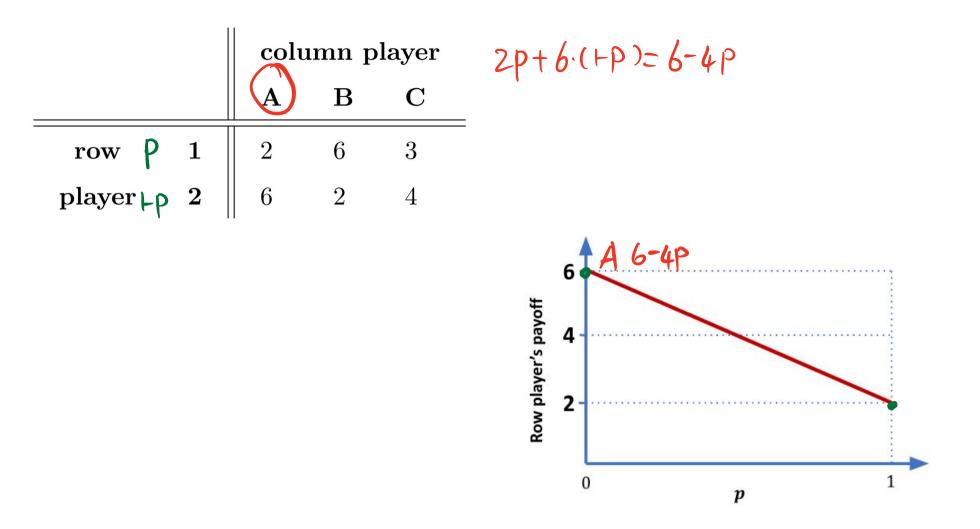
For any finite 2-player 0-sum game:

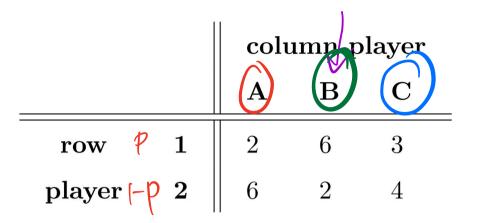
$\mathsf{lb} = \max_{\mathbf{p}} \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}) = \mathsf{ub}.$

- Called "the value of the game"
- (p*, q*) is one Nash equilibrium
 - p* is a best response to q* and vice versa

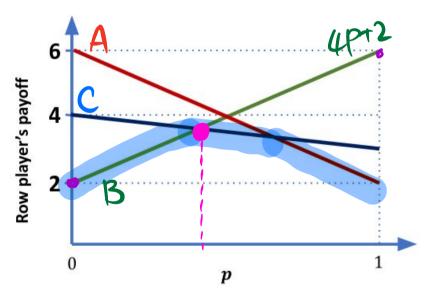
General method for solving 2-row games

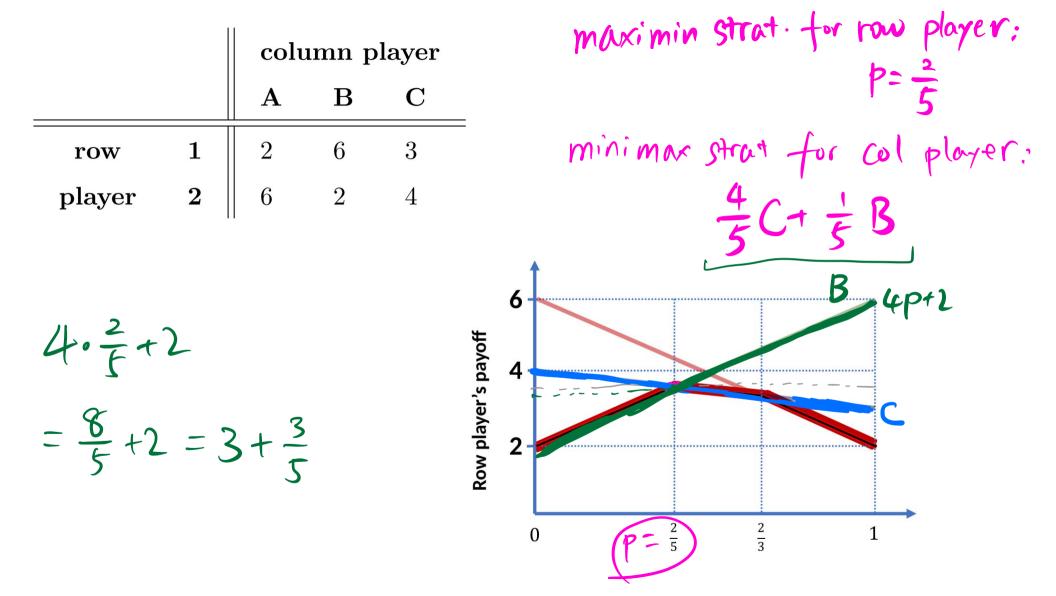




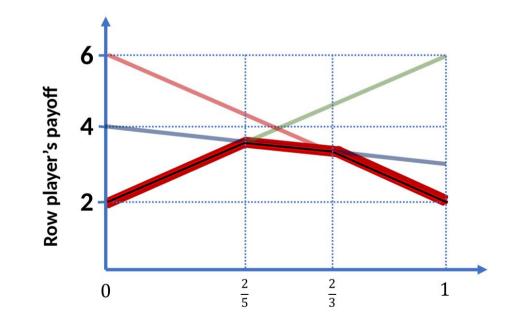


 $6 \cdot p + 2(1 - p) = 4p + 2$





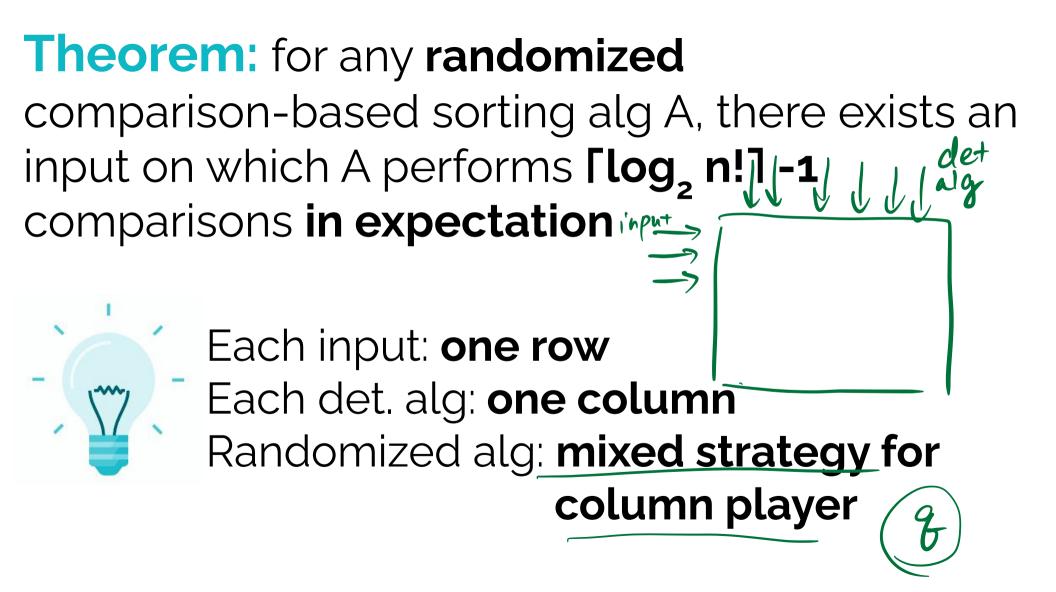
What is a good strategy for the column player?



Application: lower bounds for randomized algorithms

Theorem: for any **randomized** comparison-based sorting alg A, there exists an input on which A performs **[log₂ n!] -1** comparisons **in expectation**

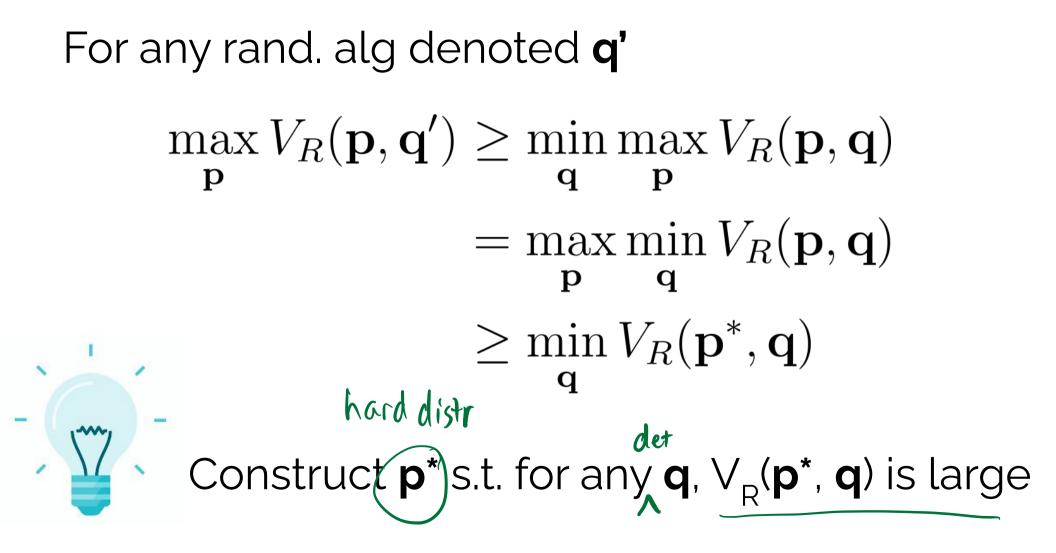
Want to lower bound: expected cost of rand. alg on worst-case input



For any rand. alg denoted
$$\mathbf{q}'$$
 the best randomized

$$\max V_R(\mathbf{p}, \mathbf{q}') \geq \min \max V_R(\mathbf{p}, \mathbf{q}) \quad \text{input}$$

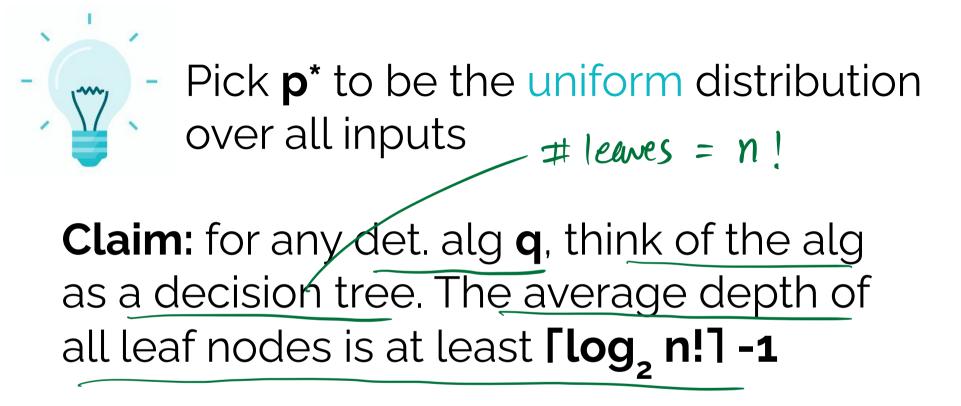
$$\exp cted \quad time \quad of \quad the best randomized \quad olg \quad over \quad its \quad worst-case \quad input \quad expected \quad time \quad expected \quad tim$$



For any rand. alg denoted **q'** $\max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}') \geq \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q})$ $= \max \min V_R(\mathbf{p}, \mathbf{q})$ р $\geq \min_{\mathbf{q}} V_R(\mathbf{p}^*, \mathbf{q})$

Construct a hard distr. p* over inputs, s.t. the best det. alg
 has large running time over a random input from p*

For any rand, alg denoted **q'** $\max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}') \geq \min_{\mathbf{p}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q})$ $= \max \min V_R(\mathbf{p}, \mathbf{q})$ р $\geq \min_{\mathbf{q}} V_R(\mathbf{p}^*, \mathbf{q})$ Construct \mathbf{p}^* s.t. for any \mathbf{q} , $V_R(\mathbf{p}^*, \mathbf{q})$ is large

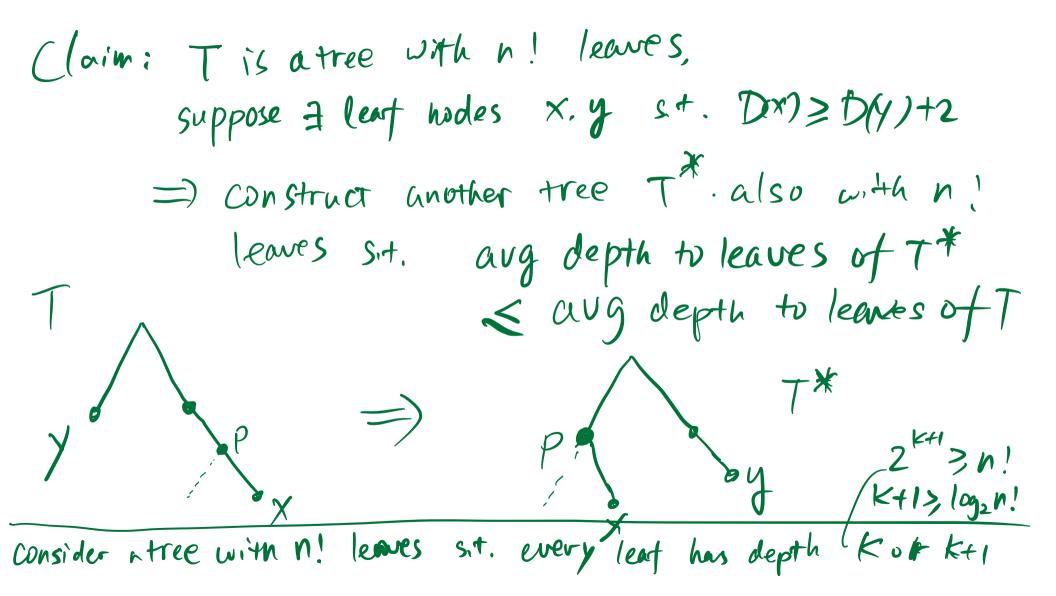


Pick p* to be the uniform distribution over all inputs

Claim: for any det. alg **q**, think of the alg as a decision tree. The average depth of all leaf nodes is at least **[log, n!] -1**

Mapping between leaves and inputs

Average depth to leaves is maximized when the tree is "somewhat balanced"



Yao's Minimax Principle

expected cost of a randomized algorithm on its worst-case input

cost of the best deterministic algorithm on a random input from some distribution

Also used for proving comm. complexity of randomized protocols

Next lectures:

Linear Programming

(prove the minimax theorem)