15451 Spring 2023

Mechanism Design

a.k.a inverse game theory

Elaine Shi

to give away

Maximizes social welfare = sum of happiness

Let's do this in class

On a scale of **0-5** how much do you like

Problem:

Everyone is incentivized to report 5

i.e., mechanism incentivizes lying

such that

Mechanism Design a.k.a. inverse game theory

- Everyone bids
- Highest bidder wins
- Winner pays its bid

"1st price auction"

- Everyone bids
- Highest bidder wins
- Winner pays its bid

•
$$\mathbf{v}_i$$
 true value of i-th bidder $\mathbf{v}_i^{(boldfoce)}$
• \mathbf{b}_i : i-th bid
• Allocation rule: $\mathbf{x}(\mathbf{b}) := (\mathbf{x}_1 \dots \mathbf{x}_n) \in S_{0,1}^n$
• Payment rule: $\mathbf{p}(\mathbf{b}) := (\mathbf{p}_1 \dots \mathbf{p}_n)$
 $ussume$ $p_{i \ge 0}$ $\forall i$

• v_i : true value of i-th bidder

- b_i : i-th bid
- p_i: payment of bidder i

• Utility of bidder i:
$$u_i = \begin{cases} v_i - p_i & \text{if } i \text{ wins} \\ 0 & 0.W. \end{cases}$$

1st price auction: a<u>nyone who b</u>ids honestly has utility 0

Maximize <u>social welfare:</u> give to whoever has the highest true value

Maximize social welfare: give to whoever has the highest true value Utility a unctioneer Social welfare $= v_{i^*} - p_{i^*} + w_{i^*} - p_{i^*} + w_{i^*} - w_{i^*}$

Does 1st price auction incentivize truthful bidding?

- Everyone bids
- Highest bidder wins
- Winner pays its bid

Does 1st price auction incentivize truthful bidding?

Incentivized to underbid

Example:

- My true value = (10)
- I know that the 2nd highest bidder bids 9

What should I do?

2nd price auction a.k.a. Vickrey auction

• Highest bidder wins

• Winner pays 2nd highest bid example : bids : 10765 winner: 7 payment : 7

Claim: 2nd price auction is **'dominant-strategy incentive-compatible**, i.e.,

Claim: 2nd price auction is dominant-strategy (DSIC) incentive-compatible , i.e.,

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i , i''s util when bidding +rothfully i''s util when bidding $u_i(\operatorname{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\operatorname{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Even after seeing others' bid, I still want to bid truthfully

for any valuations v_1, v_2, \ldots, v_n , for any player *i*, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

 $u_i(\operatorname{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\operatorname{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Even after seeing others' bid, I still want to bid truthfully also called an <u>ex-post</u> Nash equilibrium

for any valuations v_1, v_2, \ldots, v_n , for any player *i*, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

 $u_i(\operatorname{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\operatorname{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Claim: 2nd price auction is dominant-strategy incentive-compatible consider un arbitrary use i. let b* be the Proof: highest bid among b-i Case I: $Ui > b^*$ if i bids truthfully i's util = $Ui - b^*$ if i bids $> b^*$ i's util = $Ui - b^*$ if i bids $= b^*$ i's util = $Vi - b^*$ if i bids $= b^*$ is util $\leq Vi - b^*$ if i bids $\leq b^*$ is util $\leq Vi - b^*$ Case 2: $U_i = b^*$ truthful: $u_i = 0$ bid b^* : $u_i = 0$ Case 3: Viz b*

2nd price auction in the real world

Multiple identical items, say 2 items

Multiple identical items, say 2 items (10) 87 521 Top 2 bidders are winners. Top bidder pays 2nd price. 2nd top bidder pays 3rd price.

Is this dominant-strategy incentive compatible?

Top 2 bidders are winners. Both winners pay 3rd price.

Is this dominant-strategy incentive compatible?

Vickrey-Clarke-Groves (VCG) Auction

Vickrey-Clarke-Groves (VCG) Auction

set of alternatives (or "allocations") A: example a EA is a perfect matching btw. profs and offices

A: set of alternatives (or "allocations")

 $v_i: A \to \mathbb{R}_{\geq 0}$: maps allocations to valuations

A: set of alternatives (or "allocations") $v_i: A \to \mathbb{R}_{>0}$: maps allocations to valuations $u_i(a, p)$: utility of user i, $u_i(a, p) = v_i(a) - p$ SW(a): social welfare $SW(a) = \sum_i v_i(a)$

Direct revelation mechanism

- Everyone reveals their true values
 V = (V₁, V₂, ... V_n)
- Allocation rule: f(v) = a⁴
- Payment rule: $p(v) = (p_1, \dots, p_n)$

A direct revelation (f p) mechanism is incentive compatible iff

for every
$$\mathbf{v} = (v_1, \dots, v_n)$$
, every i , every v'_i , we have
 $v_i(f(\mathbf{v})) - p_i(\mathbf{v}) \ge v_i(f(v'_i, \mathbf{v}_{-i})) - p_i(v'_i, \mathbf{v}_{-i})$
 i 's util when bidding
truthfully
 i 's util when bidding
 i 's util when i 's util when
 i 's util when i 's util when
 i 's util when i 's util when i

A direct revelation (f, p) mechanism is incentive compatible iff

for every
$$\mathbf{v} = (v_1, \ldots, v_n)$$
, every *i*, every v'_i , we have

$$v_i(f(\mathbf{v})) - p_i(\mathbf{v}) \ge v_i(f(v'_i, \mathbf{v}_{-i})) - p_i(v'_i, \mathbf{v}_{-i})$$

Claim: There is a mechanism that

• Is dominant-strategy incentive compatible

 Maximizes social welfare if everyone bids truthfully

<u>Claim:</u> There is a mechanism that

- Is dominant-strategy incentive compatible
- Maximizes social welfare if everyone bids truthfully

play i's goal: $\int \max[mize V:(f(v))+ZV_j(fv))$ 1st try • f(v) = the allocation that maximizes social welfare w.r.t v $\sum_{j} v_{j}(f\omega)$ • p(v) = sum of everyone else's reported valuations i.e., $p_i(\mathbf{v}) = -\sum_{j \neq i} v_j(f(\mathbf{v}))$

 $\underbrace{u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)}_{a \neq i}$

$$u_{i} = v_{i}(f(\mathbf{v})) + \sum_{j \neq i} v_{j}(f(\mathbf{v})) = \sum_{j} v_{j}(f(\mathbf{v})) = \max_{a} \sum_{j} v_{j}(a)$$

What if player i misreports v'_{i} ?

$$u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)$$

If player I misreports V_i, then

$$u_i = v_i(f(\mathbf{v}')) + \sum_{j \neq i} v_j(f(\mathbf{v}')) = \sum_j v_j(f(\mathbf{v}')) \le \max_a \sum_j v_j(a)$$

$$u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)$$

If player i misreports v'_i, then

$$u_i = v_i(f(\mathbf{v}')) + \sum_{j \neq i} v_j(f(\mathbf{v}')) = \sum_j v_j(f(\mathbf{v}')) \le \max_a \sum_j v_j(a)$$

Problem: auctioneer to give money to bidders

 $\begin{array}{ccc} - & \text{Add to each } p_i(v) \text{ something that} \\ \text{depends only on } \mathbf{v}_{_i} \end{array}$

VCG -- general version

• f(v) = the allocation that maximizes social welfare w.r.t v

f(v) = the allocation that maximizes social welfare w.r.t v

• $p_i(\mathbf{v}) = \max_a \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(f(\mathbf{v}))$ the cost I bring to the rest of the individual of the rest of the individual of the solution o

f(v) = the allocation that maximizes social welfare w.r.t v

• $p_{i}(\mathbf{v}) = \max_{a} \sum_{j \neq i} v_{j}(a) - \sum_{j \neq i} v_{j}(f(\mathbf{v}))$ = $\sum_{i} - \left(\sum_{j} v_{j}(f(\mathbf{v})) - \max_{a} \sum_{j \neq i} v_{j}(a) \right)$ $\neq \sum_{j} v_{j}(a^{*})$

Example

2nd price auction is a special case of VCG auction