15451 Spring 2023

Mechanism Design

a.k.a inverse game theory

Elaine Shi

to give away

Maximizes social welfare = sum of happiness

Let's do this in class

On a scale of **0-5** how much do you like

Problem:

Everyone is incentivized to report 5

i.e., mechanism incentivizes lying

such that

Mechanism Design a.k.a. inverse game theory

- Everyone bids
- Highest bidder wins
- Winner pays its bid

"1st price auction"

- Everyone bids
- Highest bidder wins
- Winner pays its bid

\n- \n
$$
\mathbf{v}_i
$$
 true value of i-th bidder\n
\n- \n \mathbf{b}_i : i-th bid\n
\n- \n**Allocation rule:**\n $\mathbf{x}(\mathbf{b}) := (\mathbf{x}_1 \dots \mathbf{x}_n) \in \mathbb{S}^{a,1}$ \n
\n- \n**Payment rule:**\n $\mathbf{p}(\mathbf{b}) := (\mathbf{p}_1 \dots \mathbf{p}_n)$ \n $\text{Assume } \mathcal{P} \text{ is a right triangle.}$ \n
\n- \n $\mathcal{P} \text{ is a right triangle.}$ \n
\n

\bullet v_i: true value of *i*-th bidder

- \bullet b_i: i-th bid
- pi : payment of bidder i

$$
\begin{array}{c}\n\bullet \boxed{\text{Utility of bidder i:}} \\
\begin{array}{c}\n\overline{u_i} = \begin{cases}\nV_i - p_i & \text{if } i \text{ wins} \\
0 & \text{ow.} \\
\end{cases}\n\end{array}
$$

1st price auction: anyone who bids honestly has utility 0

Maximize social welfare: give to whoever has the highest true value

Maximize social welfare: give to whoever has the highest true value $u^{\dagger\dagger}$ and the button Social welfare $=(v_{i^*}-p_{i^*})+(p_{i^*})=(v_{i^*}-p_{i^*})$ where i^* = winner

Does 1st price auction incentivize truthful bidding?

- Everyone bids
- Highest bidder wins
- Winner pays its bid

Does 1st price auction incentivize truthful bidding?

Incentivized to underbid

Example:

- \bullet My true value (10)
- I know that the 2nd highest bidder bids 9

What should I do? 9.1

2nd price auction a.k.a. Vickrey auction

● Highest bidder wins

● Winner pays 2nd highest bid $example:~bds:~log7651$

Claim: 2nd price auction is dominant-strategy incentive-compatible^{", i.e.,}

Claim: 2nd price auction is dominant-strategy (DSIC) incentive-compatible , i.e.,

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector $\overline{b_{-i}}$ of all other players, and any v'_i ,
 i' \downarrow i' \downarrow \downarrow when bidding truthfully $\overline{\qquad}$ i' \downarrow \downarrow when bidding
 $u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\text{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v_i'

Even after seeing others' bid, I still want to bid truthfully

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

 $u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \geq u_i(\text{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v_i'

Even after seeing others' bid, I still want to bid truthfully also called an ex-post Nash equilibrium

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

 $u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \geq u_i(\text{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v_i'

Claim: 2nd price auction is dominant-strategy incentive-compatible

Consider an arbitrary use i. let b^{*} be the Proof: highest bid among b-i

Case 1: $0i>0^*$
 $\begin{cases} i+i \text{ bids } -b^* \ i+ibds \ -b^* \ i+ibds \end{cases}$ $\begin{cases} i+i \text{ bids } -b^* \ i+ibds = b^* \ i+ibds = b^* \ i+ibds = b^* \ i+ibds \leq b^* \end{cases}$ Case 2: $v_i = b^* + r_{i} + r_{i} + r_{i} + r_{i}$

bid $> b^* + r_{i} + r_{i} + r_{i} + r_{i}$

bid $> b^* + r_{i} + r_{i} + r_{i}$

bid $< b^* + r_{i} + r_{i} + r_{i}$ Cuse 3: Vi< b*

2nd price auction in the real world

Multiple identical items, say 2 items

-
-
-
-
-
-

Multiple identical items, say 2 items
(10) 8 7 5 2 1 Top 2 bidders are winners. Top bidder pays 2nd price. 2nd top bidder pays 3rd price.

Is this dominant-strategy incentive compatible?

Top 2 bidders are winners. Both winners pay 3rd price.

Is this dominant-strategy incentive compatible?

Vickrey-Clarke-Groves (VCG) Auction

Vickrey-Clarke-Groves (VCG) Auction

set of alternatives (or "allocations") A : example $a \in A$ is a perfect matching

A: set of alternatives (or "allocations")

 $v_i: A \to \mathbb{R}_{\geq 0}$: maps allocations to valuations

A: set of alternatives (or "allocations") $(v_i: A \to \mathbb{R}_{\geq 0}$: maps allocations to valuations $(u_i(a, p):$ utility of user *i*, $u_i(a, p) = v_i(a) (-p)$ $SW(a)$: social welfare $SW(a) = \sum_i v_i(a)$

Direct revelation mechanism

- Everyone reveals their true values $$
- Allocation rule: $f(v) = a^{\nu}$
- Payment rule: $p(\vec{V}) = (p_1, ... p_n)$

A direct revelation (f) p) mechanism is incentive compatible iff

for every
$$
\mathbf{v} = (v_1, \ldots, v_n)
$$
, every (i) every (v_i) , we have

\n
$$
v_i(f(\mathbf{v})) - p_i(\mathbf{v}) \ge v_i(f(v_i', \mathbf{v}_{-i})) - p_i(v_i', \mathbf{v}_{-i})
$$
\nif a \mathbf{u} with \mathbf{v} with \mathbf{v}

A direct revelation (f, p) mechanism is incentive compatible iff

for every
$$
\mathbf{v} = (v_1, \ldots, v_n)
$$
, every *i*, every v'_i , we have

$$
v_i(f(\mathbf{v})) - p_i(\mathbf{v}) \ge v_i(f(v'_i, \mathbf{v}_{-i})) - p_i(v'_i, \mathbf{v}_{-i})
$$

Claim: There is a mechanism that

● Is dominant-strategy incentive compatible

Maximizes social welfare if everyone bids truthfully

Claim: There is a mechanism that

● Is dominant-strategy incentive compatible

Maximizes social welfare if everyone bids truthfully

 $\int_{0}^{\infty} \frac{p^{\alpha}y^{1^{\prime}s}g^{0}a!}{m\alpha x_{i}m\alpha e}$ $v_{i}(\frac{f(v)}{v_{i}+y})+\sum_{i=1}^{n}v_{i}(f(v))$ 1st try \bullet f(\mathbf{v}) = the allocation that maximizes social welfare w.r.t v $\sum_{j} v_j$ \bullet $p_i(v)$ = sum of everyone else's reported valuations i.e., $p_i(\mathbf{v}) = -\sum_{j\neq i} v_j(f(\mathbf{v}))$

 $u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_{a} \sum_j v_j(a)$

$$
u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)
$$

What if player i misreports \mathbf{v}'_i ?

$$
u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)
$$

If planor in interval \mathbf{v}^* , then

If player i misreports v'_i, then

$$
u_i = v_i(f(\mathbf{v}')) + \sum_{j \neq i} v_j(f(\mathbf{v}')) = \sum_j v_j(f(\mathbf{v}')) \le \max_a \sum_j v_j(a)
$$

$$
u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)
$$

If player i misreports v'_i, then

 $u_i = v_i(f(\mathbf{v}')) + \sum_{j \neq i} v_j(f(\mathbf{v}')) = \sum_j v_j(f(\mathbf{v}')) \leq \max_a \sum_j v_j(a)$

Problem: auctioneer to give money to bidders

Add to each p_i(v) something that depends only on $\bm{v}_{\scriptscriptstyle -i}$

The VCG -- general version

\bullet $f(\mathbf{v})$ = the allocation that maximizes social welfare w.r.t v

\bullet $f(v)$ = the allocation that maximizes social welfare w.r.t v

 \bullet $p_i(\mathbf{v}) =$ "externality"

\bullet $f(v)$ = the allocation that maximizes social welfare w.r.t v

Example

2nd price auction is a special case of VCG auction