
Elaine Shi

Approximation Algorithms

15451 Spring 2023

What can we do for NPC problems?

What can we do for NPC problems?

Design poly-time
approximation algorithms

Consider the solution version (rather than the decision version)

m machines, n jobs, j-th job takes time pj

 partition jobs to the machines to
minimize the makespan, defined as

where Si is the set of jobs assigned to
machine i

m machines, n jobs, j-th job takes time pj

 partition jobs to the machines to
minimize the makespan, defined as

where Si is the set of jobs assigned to
machine i

m = 3Example

Claim:
The job assignment problem is NPC

Claim:
The job assignment problem is NPC
Proof: reduce subset sum to job assignment
Subset sum:
given a1, a2, … an, is there a subset that sum up
to ½ * (a1 + a2 + … + an) ?

Greedy:
Take any unassigned job, give it to the
machine with current minimum load

Claim:
Greedy achieves 2-approximation, i.e.,
achieves a makespan at most 2 times the optimal

Claim:
Greedy achieves 2-approximation, i.e.,
achieves a makespan at most 2 times the optimal

Let i* be the most loaded machine, let j* be the
last job assigned to it, let L be the load on i*
before we assign j* to it

Claim:
Greedy achieves 2-approximation, i.e.,
achieves a makespan at most 2 times the optimal

Let i* be the most loaded machine, let j* be the
last job assigned to it, let L be the load on i*
before we assign j* to it

ALG = pj* + L

Claim:
Greedy achieves 2-approximation, i.e.,
achieves a makespan at most 2 times the optimal

Let i* be the most loaded machine, let j* be the
last job assigned to it, let L be the load on i*
before we assign j* to it

ALG = pj* + L
Observe that OPT ≥ pj* , OPT ≥ L

Can we do better?

What is a bad case?

Can we do better?

What is a bad case?

Can we do better?

What is a bad case?

m(m-1) jobs of size 1,
1 job of size m

m(m-1) jobs of size 1,
1 job of size m

Sorted Greedy:
Run greedy largest unassigned job first

Let i* be the most loaded machine, let j* be the
last job assigned to it

Want to show:

Suffices to show:

We may assume L > 0 (why?)

Every machine has at least one job
assigned before, and its size is at least pj*

We may assume L > 0 (why?)

Every machine has at least one job
assigned before, and its size is at least pj*

Vertex-Cover:
Given a graph G, find the smallest set of
vertices such that every edge is incident
to at least one of them.

Decision problem: Given G and k, does G
contain a vertex cover of size ≤ k?

Pick an arbitrary vertex with at least one
uncovered edge incident to it, put it into
the cover, and repeat.

Pick an arbitrary vertex with at least one
uncovered edge incident to it, put it into
the cover, and repeat.

Does this give a good approximation?

Pick the vertex that covers the
most uncovered edges

Pick the vertex that covers the
most uncovered edges

Achieves only O(log n) approximation

A 2-approximation algorithm
Pick an arbitrary edge. Add both endpoints.
Throw out all edges covered and repeat.
Continue until no uncovered edges left.

Proof:

Alg finds a matching M, with |M| edges

Observe that

|M| ≤ OPT
Alg = 2 |M|

Another 2-approximation algorithm

● Find an LP solution (possibly fractional)
0 <= xi <= 1, for each edge (i, j), xi + xj >= 1
Minimize ∑i xi

● Round the LP solution:
If xi >= ½ , set to 1, else set to 0

Example

Proof:

LP ≤ OPT

Rounded solution ≤ 2 LP

Known Results

Best known approximation:

7/6 approximation is NP hard [Hastad]
Improved to 1.361 [Dinur and Safra]

Metric Traveling Salesman Problem

Find the shortest path to visit n cities, each
exactly once, returning to where you started.

Metric: distances are symmetric and obey
triangle inequality

Compute MST

Output a pre-order traversal of the MST

This algorithm achieves 2 approximation.

Christofide’s algorithm
Compute the MST T.

Compute a minimum weight perfect
matching M between the vertices of odd
degree in T.

G = T ∪ M. Return the TSP tour constructed
from shortcutting an Eulerian tour on G.

Karlin, Klein, and Oveis Gharan improves it to
1.49999999999999999999999999999999999
approximation.

(Not an April fools joke.
See https://arxiv.org/abs/2007.01409.)

