
15-451/651: Design & Analysis of Algorithms April 3, 2022
Lecture #19: Online Algorithms last changed: April 4, 2023

Today we’ll be looking at finding approximately-optimal solutions for problems where the difficulty is not
that the problem is necessarily computationally hard but rather that the algorithm doesn’t have all the
information it needs to solve the problem up front.

Specifically, we will be looking at online algorithms, which are algorithms for settings where inputs or data
is arriving over time, and we need to make decisions on the fly, without knowing what will happen in the
future. This is as opposed to standard problems like sorting where you have all inputs at the start. Data
structures are one example of online algorithms (they need to handle sequences of requests, and to do well
without knowing in advance which requests will be arriving in the future).

Objectives of this lecture

In this lecture, we will

- define and motivate online algorithms

- solve the rent-or-buy problem with an online algorithm and analyze its performance

- analyze various strategies for the list update problem. In particular, we will see how potential
functions are key ingredients in the analysis of online algorithms.

- analyzing online paging algorithms

1 Framework and Definition

We are given a problem in which the input arrives over time, very much like the streaming model that we
studied earlier. At each point in time, we have to make some decision, and each such decision is irrevocable,
i.e., we can not change our mind later. Depending on the choices we make, we incur some cost, depending
on the cost model of the problem. The goal is to perform well relative to an optimal omniscient algorithm,
i.e., one that can predict the future and see the entire input in advance.

This is similar to the way in which we analyze approximation algorithms, by comparing the performance of
our algorithm to that of the best possible algorithm (except that in this case, our definition of “best” is that
it can cheat and see the future). We define the competitive ratio of an online algorithm very similarly to the
approximation ratio.

Definition: Competitive Ratio

An online algorithm is called c-competitive if for all possible inputs σ

ALG(σ) ≤ c ·OPT(σ),

where ALG(σ) is the cost incurred by the online algorithm on the input σ (which it does not know
in advance) and OPT(σ) is the cost of an optimal omnipotent algorithm that can see σ in advance.
The factor c is called the competitive ratio of the algorithm.

2 Rent or buy?

Here is a simple online problem that captures a common issue in online decision-making, called the rent-or-
buy problem.

1

Problem: Rent or buy

Its the middle of the snow season and you are planning on going skiing. You can rent a pair of skis
at $r per day, or buy a pair for $b and keep them forever. You would like to ski for as many days
as possible, however, you do not know how many more days of the season will be viable weather for
skiing. Each day you find out whether the weather is still good. At some point, you discover that
the ski season is over. Your choice is to decide whether to rent or buy skis on each day, with the goal
of minimizing the total amount of money that you spend.

Lets walk through a concrete example. You can either rent skis for $50 or buy them for $500. If we know
the future in advance, the solution is to buy immediately if we know that there are at least 10 days of viable
skiing weather, and if not, just always rent. The tricky part is designing an online algorithm that doesn’t
know the future. It has no idea how many days of viable whether there will be. Lets start with some simple
but sub-optimal strategies to illustrate:

- Always immediately buy: One valid online strategy is to immediate buy on the first day if the weather
is good. The worst case input for the this strategy is when we only get to go skiing once, so we could have
just paid $50, so the competitive ratio is 500/50 = 10, we paid 10× more than we could have.

Rent forever: Another strategy is to never buy skis and just always rent. In this strategy, the worst case
input is that the ski season goes on arbitrarily long, and we end up paying an arbitrarily high amount of
money, when the optimal choice would have been to buy immediately, so the competitive ratio is actually
∞ (or unbounded).

In general, since after buying the skis the algorithm has no more decisions to make, we can characterize any
online algorithm for the rent-or-buy problem by the day on which it decides to buy. Now observe that in
general, the worst-case input for such an algorithm is that the weather is bad on the day after it buys the
skis. With this in mind, here is one more bad strategy before we hone in on the optimal one.

- Rent five times then buy: How about we rent five times, then decide that it is time to buy. The
worst-case input is that the weather is good for six days, then bad. In this case, our algorithm pays
5× 50 + 500 = 750, but the optimal algorithm would just always rent, which costs 5× 60 = 300, so this is
2.5-competitive.

Well that’s certainly a lot better than 10. It seems like if we hedge our bets by renting longer, we get a better
competitive ratio. At some point, this will stop being true, though. In particular, it never makes sense to
plan to rent for more than 10 days, because then we should have just bought the skis for sure. So the most
hedging we can do is to rent for 10 days then buy. This is called the better-late-than-never algorithm.

Algorithm: Better-late-than-never

We rent for b/r − 1 daysa, then we buy. In other words, we buy on day b/r.

aIf r does not divide b, then we should rent for db/re−1 days, but we will just assume that r divides b for simplicity

Theorem: Better-late-than-never is 2-competitive

Better-late-than-never is a 2-competitive algorithm for the rent-or-buy problem.

Proof. Suppose the weather is good for n days. We have to consider two cases:

1. If nr < b (i.e., n < b/r), then the optimal solution is to always rent, but in this case, our algorithm
doesn’t buy either, so it is optimal.

2

2. If nr ≥ b, the optimal solution buys immediately, but our algorithm first rents for b/r − 1 days before
buying, so the ratio is (

b
r − 1

)
r + b

b
=
b− r + b

b
= 2− r

b
≤ 2

Now as we will naturally want to ask: can we do better?

Exercise

Show that better-late-than-never has the best possible competitive ratio for the rent-or-buy problem
for deterministic algorithms when b is a multiple of r.

3 List Update

This is a nice problem that illustrates some of the ideas one can use to analyze online algorithms. Here are
the ground rules for the problem:

Problem: List Update

- We begin with a list of n items 1, 2, . . . , n. Imagine a linked list starting with 1 and ending with n.

- An item x can be accessed. The operation is called Access(x). The cost is the position of x.

- The algorithm can rearrange the list by swapping adjacent elements. The cost of a swap is 1.

So an on-line algorithm is specified by describing which swaps are done and when. The goal is to devise and
analyze an on-line algorithm for doing all the accesses Access(σ1), Access(σ2), Access(σ3), . . . with a small
competitive factor. Here are several algorithms to consider.

Exercise: Do no swaps

Consider an online algorithm that does no swaps. What is a worst-case input for this algorithm?
What is the resulting competitive ratio?

Exercise: Single exchange

Consider an online algorithm that, for each accessed element, swaps it one position closer to the front
of the list. What is a worst-case input for this algorithm? What is the resulting competitive ratio?

Exercise: Frequency count

Consider an online algorithm that remembers the frequency of each element being accessed, and keeps
the list sorted by frequency (largest to smallest). What is a worst-case input for this algorithm? What
is the resulting competitive ratio?

Okay, those were warm-ups, now its time for the real algorithm.

3

Algorithm: Move-to-front

After an access to an element x, do a series of swaps to move x to the front of the list.

Theorem 1: Competitive ratio of MTF

MTF is a 4-competitive algorithm for the list-update problem.

Proof. We’ll use the potential function method. There will be a potential function that depends on the state
of the MTF algorithm and the state of the “opponent” algorithm B, which can be any algorithm, even one
which can see the future. Using this potential, we’ll show that the amortized cost to MTF of an access is at
most 4 times the cost of that access to B.

What is the potential function Φ? Define

Φt = 2 · (The number of inversions between B’s list and MTF’s list at time t)

Recall that an inversion is a pair of distinct elements (x, y) that appear in one order in B’s list and in a
different order in MTF’s list. It’s a measure of the similarity of the lists.

We can first analyze the amortized cost to MTF of Access(x) (where it pays for the list traversal and its
swaps, but B only does its access). Then we separately analyze the amortized cost to MTF that is incurred
when B does any swaps. (Note that in the latter case MTF incurs zero cost, but it will have a non-zero
amortized cost, since the potential function may change. To be complete the analysis must take this into
account.). In each case we’ll show that the amortized cost to MTF (which is the actual cost, plus the increase
in the potential) is at most 4 times the cost to B.

For any particular step, let CMTF and CB be the actual costs of MTF and B on this step, and ACMTF =
CMTF + ∆Φ be the amortized cost. Here ∆Φ = Φnew − Φold is the increase in Φ. Hence observe that ∆Φ
may be negative, and the amortized cost may be less than the actual cost. We want to show that

ACMTF ≤ 4 · CB

We can then sum the amortized costs, which would equal the actual cost of the entire sequence of accesses
to MTF plus the final potential (non-negative) minus the initial potential (zero). This would be the four
times total cost of B, which would give the result.

Analysis of Access(x). First look at what happens when MTF accesses x and brings it to the front of its
list. Say the picture looks like this:

B

I
MTF

MTF I

Look at the elements that lie before x in MTF’s list, and partition them as follows:

S = {y | y is before x in MTF and y is before x in B}
T = {y | y is before x in MTF and y is after x in B}

What is the cost of the access to MTF in terms of these sets?

CMTF = 1 + |S|+ |T |︸ ︷︷ ︸
find cost

+ |S|+ |T |︸ ︷︷ ︸
swap cost

= 1 + 2(|S|+ |T |).

4

On the other hand, since all of S lies before x in B, the cost of the algorithm B is at least

CB ≥ |S|+ 1.

What happens to the potential as a result of this operation? Well, here’s MTF after the operation:

B

I
MTF

MTF I
The only changes in the inversions involve element x, because all other pairs stay in the same relative order.
Hence, for every element of S the the number of inversions increases by 1, and for every element of T the
number of inversions decreases by 1. Hence the increase in Φ is precisely:

∆(Φ) = 2× (|S| − |T |)

Now the amortized cost is

ACMTF = CMTF + ∆(Φ) = 2(|S| − |T |) + 1 + 2(|S|+ |T |)
= 1 + 4|S| ≤ 4(1 + |S|) ≤ 4CB

This completes the amortized analysis of Access(x).

Analysis of B swapping. As explained above, we view B doing a swap as an event in its own right,
not associated with any of the access events. For each such swap, observe that CMTF = 0 and CB = 1.
Moreover, ∆(Φ) ≤ 2, since the swap may introduce at most one new inversion. Hence,

ACMTF ≤ 2CB ≤ 4CB

Putting the parts together. Summing the amortized costs we get:

Total Cost to MTF + ≤ 4(Total Cost to B) + Φinit − Φfinal

But Φinit = 0, since we start off with the same list as B. And Φfinal ≥ 0. Hence Φinit −Φfinal ≤ 0. Hence,

Total Cost to MTF ≤ 4× (Total Cost to B).

Hence the MTF algorithm is 4-competitive.

Key Idea: Using a potential function to analyze online algorithms

We saw potential functions earlier in the course for coming up with amortized cost bounds. Another
powerful use of them is to analyze online algorithms. They help us relate the cost of our algorithm
to the cost of the optimal omniscient algorithm, which is often very tricky to figure out without a
potential function.

5

4 Paging

In paging, we have a disk with N pages, and fast memory with space for k < N pages. When a memory
request is made, if the page isn’t in the fast memory, we have a page fault. We then need to bring the page
into the fast memory and throw something else out if our space is full. Our goal is to minimize the number
of misses. The algorithmic question is: what should we throw out? E.g., say k = 3 and the request sequence
is 1,2,3,2,4,3,4,1,2,3,4. What would be the right thing to do in this case if we knew the future? Answer:
throw out the thing whose next request is farthest in the future.

A standard online algorithm is LRU: “throw out the least recently used page”. E.g., what would it do on
above case? What’s a bad case for LRU? 1,2,3,4,1,2,3,4,1,2,3,4... Notice that in this case, the algorithm
makes a page fault every time and yet if we knew the future we could have thrown out a page whose next
request was 3 time steps ahead. More generally, this type of example shows that the competitive ratio of
LRU is at least k.

In fact, it’s not hard to show that you can’t do better than a competitive ratio of k with any deterministic
algorithm.

Theorem 2

Any deterministic algorithm cannot have a competitive ratio better than k.

Proof. Set N = k + 1 and consider a request sequence that always requests whichever page the algorithm
doesn’t have in its fast memory. By design, this will cause the algorithm to have a page fault every time.
However, if we knew the future, every time we had a page fault we could always throw out the item whose
next request is farthest in the future. Since there are k pages in our fast memory, for one of them, this next
request has to be at least k time steps in the future, and since N = k + 1, this means we won’t have a page
fault for at least k− 1 more steps (until that one is requested). So, the algorithm that knows the future has
a page fault at most once every k steps, and the ratio is k.

We can also show that LRU can indeed achieve a competitive ratio of k. In other words, it is (one of) the
optimal deterministic algorithm(s).

Theorem 3

LRU achieves a competitive ratio of k.

Proof. Define a phase to contain k distinct requests, and moreover, the next request is distinct from all
requests in the phase. First, it is not hard to see that LRU incurs at most k page faults in each phase, and
thus the total number of page faults is at most k ·m where m is the number of phases.

Now, it suffices to argue that any algorithm must pay a cost of m for m phases, which we prove below.

Claim 1

Any algorithm must incur a cost of m for m phases.

Proof. If you pick an arbitrary phase i, and look at the second request of phase i to the first request of phase
i + 1, the claim is that any algorithm must pay incur at least one page fault for this group of requests. In
particular, either the first request of phase i+ 1 incurs a page fault, or if it doesn’t, then the first request of

6

phase i + 1 must reside in the cache throughout phase i. When the first request of phase i is served, that
page is fetched into the cache. Now, for the remaining k − 1 distinct requests, one of them must be a cache
miss. There are m− 1 such groups (from the second request of some phase i to the first request of the next
phase i+ 1). Additionally, the very first request of the entire sequence incurs a page swap. Thus, the total
number of page swaps of any algorithm is at least m.

Here is a neat randomized algorithm with a competitive ratio of O(log k).

Marking Algorithm:

- The initial state is pages 1, . . . , k in fast memory. Start with these pages all marked.

- When a page is requested,

– if it’s in fast memory already, mark it.

– if it’s not, then throw out a random unmarked page. (If all pages in fast memory are marked,
unmark everything first. For analysis purposes, call this the start of a “phase”). Then bring
in the page and mark it.

We can think of this as a 1-bit randomized LRU, where marks represent “recently used” vs “not recently
used”.

The figure below illustrates a phase of the algorithm for N = 5, k = 4. Each page (shown as a box) contains
the probability that that page is in fast memory. A blue dot indicates that that page is marked. The column
on the left shows requested page, and the column on the right shows the expected cost of that access. The
phase is comprised of accesses to k distinct pages. (Access to pages that are in the cache with probability
1, i.e., that have probability 0 of incurring a page fault, are not shown.) At the end of the phase, all marks
are erased, and the next phase begins.

O
ne

N
ot

e
O

nl
in

e
ht

tp
s:/

/o
ne

no
te

.o
ffi

ce
ap

ps
.li

ve
.c

om
/o

/o
ne

no
te

fra
m

e.
as

px
?F

i=
SD

...

1
of

 1
11

/3
0/

16
, 1

1:
47

 A
M

7

Theorem 4

When the marking algorithm is run on a sequence σ of accesses, we have:

E[MARKING(σ)]

OPT(σ)
≤
{
Hk if N = k + 1
2Hk if N > k + 1

Note that Hk := 1 + 1/2 + . . .+ 1/k is the kth harmonic number. Recall that Hk ≤ 1 + ln k.

Proof. We will only show the proof for the special case of N = k+1. For general N , the proof follows similar
lines but just is a bit more complicated.

More formally, we define a phase as having k distinct pages requested and the probabilities of them being in
the cache is not 1; moreover, we want that the immediate next request is a (k + 1)-th distinct request. The
figure above shows that the expected cost of each phase is at most Hk ≤ 1 + ln k. For m phases, the total
cost is at most m ·Hk.

It suffices to show that any algorithm must incur at least m cost for m phases. This was proven in Claim 1.

 W
ed

ne
sd
ay
,)N

ov
em

be
r)3

0,
)2
01
6

12
:0
8)
PM

O
ne

N
ot

e
O

nl
in

e
ht

tp
s:/

/o
ne

no
te

.o
ffi

ce
ap

ps
.li

ve
.c

om
/o

/o
ne

no
te

fra
m

e.
as

px
?F

i=
SD

...

1
of

 1
11

/3
0/

16
, 2

:4
6

PM

o o a

8

	Framework and Definition
	Rent or buy?
	List Update
	Paging

