
Elaine Shi

Online Algorithms

15451 Spring 2023

Online Algorithm
“one that can process its input piece-by-piece in a
serial fashion, i.e., in the order that the input is fed to
the algorithm, without having the entire input
available from the start.” --- Wikipedia

Online Algorithm
“one that can process its input piece-by-piece in a
serial fashion, i.e., in the order that the input is fed to
the algorithm, without having the entire input
available from the start.” --- Wikipedia

Offline Algorithm
“given the whole problem data from the
beginning and is required to output an answer
which solves the problem at hand” --- Wikipedia

Competitive Ratio

An online algorithm ALG is called
c-competitive if for all possible inputs σ

ALG(σ) ≤ c · OPT(σ)

Rent or Buy
Rent ski: $50
Buy ski: $500

Problem:
● should you rent or buy?
● you don’t know how many times you

will go skiing in advance

Example

Always buy upfront: c = $500/$50 = 10

Always rent: c = ∞

Example

Rent 5 times and then buy

Example

Rent 5 times and then buy

n < 6:

n = 6:

Example

Rent 5 times and then buy

n < 6: ALG = OPT = n * $50

n = 6: ALG = 5 * $50 + $500 = $750
 OPT = 6 * $50 = $300

Rent 9 times and then buy?

n < 10:

n >= 10:

Rent 9 times and then buy?

n < 10: OPT = ALG = $50 * n

n >= 10: OPT = $500
ALG = $50 * 9 + $500 = $950

c = ALG/OPT = 1.9

More generally
Rent ski: r
Buy ski: b

Assume: b/r is integral

“Better late than never” algorithm

Rent b/r - 1 times and then buy

Thm: BLTN achieves competitive
ratio 2-r/b

n < b/r:

n >= b/r:

Thm: BLTN achieves competitive
ratio 2-r/b

n < b/r: OPT = BLTN = r * n

n >= b/r: OPT = b
BLTN = (b/r - 1) * r + b = 2b-r

Thm: BLTN achieves competitive
ratio 2-r/b

Thm: BLTN is optimal

Won Nobel for helping found
modern portfolio theory:
“Efficient frontier”

Harry Markowitz

But, how he invested his own money:
half in bonds and half in stock

List update problem

List of n items, initial ordering fixed

Access(x) pays position of x

Algorithm can rearrange by swapping
neighboring elems, each swap costs 1

Example Algorithms
Never swap

Single exchange: After accessing x, if x is not at the
front of the list, swap it with its neighbor toward the front.

Frequency count: Keep the list ordered by access
frequency (large to small)

Move to front algorithm

After accessing x, do a series of swaps to
move x to the front

Thm [Sleator-Tarjan’85]:
MTF is 4 competitive

Proof:

Compare MTF and an arbitrary alg B

Potential function

Φ(MTF, B) = 2 * # inversions

Φinit(MTF, B) = 0
Φfinal(MTF, B) >= 0

Given any input config and access seq,
want to show

cost(MTF) + Φfinal - Φinit < cost(B)

Given any input config and access seq,
want to show

cost(MTF) + Φfinal - Φinit < cost(B)

Suffices to show

Δcost(MTF) + ΔΦ < Δcost(B)

Δcost(MTF) =

ΔΦ =

Δcost(B) =

Consider some step, suppose B performs y swaps

Online paging

N slow RAM pages, cache has k < N pages

On access page:
● if not in cache, fetch from memory, put

it in cache
● need a cache replacement policy

Used in practice: LRU

Theorem: LRU is k-competitive

Used in practice: LRU

Theorem: LRU is k-competitive

Proof:

Theorem: any deterministic algorithm
can’t have competitive ratio c < k

Proof:
Phase: k distinct pages, 1st page of next
phase distinct from all these k

MARK: a randomized algorithm

● Initially, pages 1, . . . , k in cache, all marked

● When a page is requested,
○ if in cache, mark it.
○ if not, evict a random unmarked page.
○ if all pages in cache marked, unmark

everything first.

Theorem: MARK is O(lg k)-competitive

Proof for the special case N = k + 1

Phase

