
Elaine Shi

Multiplicative Weights
Algorithm

15451 Spring 2023

Stock Market

Stock Market
Every day the stock goes up or down

You discover it at the end of the day

You have to predict at the beginning of the day

Stock Market
Every day the stock goes up or down

You discover it at the end of the day

You have to predict at the beginning of the day

There are n experts to help you, each of them
makes a prediction at the beginning of day

Goal

Design an algorithm whose performance
is close to the best expert in hindsight

Discussion: why not compare with
the best algorithm in hindsight

Goal

Design an algorithm whose performance
is close to the best expert in hindsight

Warmup: you’re promised that there
exists an expert who is always right

Warmup: you’re promised that there
exists an expert who is always right

Claim: there is an algorithm that
makes at most log2 n mistakes

Warmup: promised that the best
expert makes at most M mistakes

Claim: there is an algorithm that
makes at most (M+1) (log2 n + 1)
mistakes

Warmup: promised that the best
expert makes at most M mistakes

Claim: there is an algorithm that
makes at most 2.41 (M + log2 n)
mistakes

Deterministic Weighted Majority

● Initially, every expert has weight 1.

● When an expert makes a mistake, half its
weight.

● Output the prediction of the weighted
majority.

Analysis

Let

Analysis

Let

Claim: If our alg makes a mistake, then

Intuition: if alg makes many mistakes, then final
sum of weights is small

Analysis

Let

Claim: If our alg makes a mistake, then

Note: Φ can never increase

Claim: If our alg makes a mistake, then

Proof:

Claim: If our alg makes a mistake, then

Proof: if we make a mistake, at least half of the
weight will get halved

Intuition: if alg makes many mistakes, then final
sum of weights is small

Formally, if we make m mistakes, then

OTOH: if best expert makes few mistakes, final
sum of weights must be high

Formally, if i* makes M mistakes, then

Claim: can improve the constant 2.41 to

Idea: instead of halving, multiply by 1-ε

Claim: can improve the constant 2.41 to

Claim: 2 is optimal for any deterministic algorithm!

Why?

How can we overcome this 2 barrier?

How can we overcome this 2 barrier?

Use randomization!

 (recall online paging in the last lecture)

Randomized weighted majority

● Initially, every expert has weight 1.

● When an expert makes a mistake, multiply its
weight by 1-ε

● Predict “up” with probability

Assume: ε ≤ 1/2

Randomized weighted majority

● Initially, every expert has weight 1.

● When an expert makes a mistake, multiply its
weight by 1-ε

● Go with each expert i with prob

Theorem: suppose ε ≤ ½ and best expert
makes M mistakes. Then the expected
number of mistakes we make is at most

Theorem: suppose ε ≤ ½ and best expert
makes M mistakes. Then the expected
number of mistakes we make is at most

ε : learning rate
ε large: punish wrong expert more

Corollary:

Our expected # errors ≤ OPT +

Proof:

Proof:
Ft: fraction of the total weight on the t th day
on experts who make a mistake

Proof:
Ft: fraction of the total weight on the t th day
on experts who make a mistake

Q: What is the expected # total mistakes we make?

A:

Proof:
Ft: fraction of the total weight on the t th day
on experts who make a mistake

Q: What is the expected # total mistakes we make?

Proof:
Ft: fraction of the total weight on the t th day
on experts who make a mistake

Claim: on the t-th day,

Intuition: if alg makes many mistakes in
expectation, then final sum of weights is small

Proof:

Proof:
Ft: fraction of the total weight on the t th day
on experts who make a mistake

Claim: on the t-th day,

Intuition: if alg makes many mistakes in
expectation, then final sum of weights is small

Formally,

Recall: 1 + x ≤ ex

OTOH: if best expert makes few mistakes, final
sum of weights must be high

Fact:

Fact:

Extension: fractional rewards

In each time step, each expert predicts some
action, and at the end of the day, a reward ∈ [-1, 1]
is revealed for each action

Performance of expert: sum of rewards over time

● Machine learning: AdaBoost, Winnow, Hedge
● Optimization (solving LP)
● Game theory

○ see another proof of mini-max theorem in lecture notes
● Operations research and online statistical

decision-making
● Computational geometry
● Complexity theory
● Approximation algorithms
● Differential privacy

Applications of multiplicative weights

