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Multiplicative Weights
Algorithm

Elaine Shi



Stock Market

R

S rrrrrr s rr L

L

= .
f s e ] f—
=3

| — % e S <

D s
Mnun =3 32 =
o £ oo

sssenad oy




Stock Market

Every day the stock goes up or down
You discover it at the end of the day

You have to predict at the beginning of the day



Stock Market

Every day the stock goes up or down
You discover it at the end of the day

You have to predict at the beginning of the day

There are n experts to help you, each of them
makes a prediction at the beginning of day



Goal

Design an algorithm whose performance
S close to the best expert in hindsight
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Discussion: why not compare with
the best algorithm in hindsight



Goal

Design an algorithm whose performance
s close to the best expert in hindsight




Warmup: youre promised that there
exists an expert who is always right
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Warmup: youre promised that there

exists an expert who is always right

Claim: there Is an algorithm that

makes at most log_ n mistakes
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Warmup: promised that the best
expert makes at most M mistakes

Claim: there is an algorithm that
makes at most (M+1) (log, n + 1)
mistakes
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Warmup: promised that the best
expert makes at most M mistakes

Claim: there is an algorithm that
makes at most 2.41 (M + log_ n)
mistakes




Deterministic Weighted Majority

e Initially, every expert has weight 1.

e \When an expert makes a mistake, half its
weight.

e Output the prediction of the weighted
majority.



Analysis

n
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let @ = > .




Analysis

let @ := >0 ,w;

Claim: If our alg makes a mistake, then

3
0 < _(I)O. ‘

Intuition: if alg makes many
sum of weights is small

iIstakes, then final




Analysis
let @ := > w;

Claim: If our alg makes a mistake, then

3
(I)'new 5 = (I)old .

Note: ® can never increase



Claim: If our alg makes a mistake, then

3
(I)ne-w 5 Z (I)old .

Proof:



Claim: If our alg makes a mistake, then
3
(I)ne-w < —(I)old-

Proof: if we make a mistake, at least half of the
welight will get halved




'Intuition: If alg makes many mistakes, then final
sum of weights is small

Formally, if we make m mistakes, then

D final < (3/4)™ - Pinit = (3/4)"™ - n.



OTOH: if best expert makes few mistakes. final
sum of weights must be high

Formally, if " makes M mistakes, then

D finat > wix = (1/2)M.
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Claim: can improve the constant 2.41 to

(2(1+ €)M +O(*en).

ldea: instead of halving, multiply by 1-¢

Asoume € Si



Claim: can improve the constant 2.41 to

2(1+ €)M + O(=&2).

Claim: 2 is optimal for any deterministic algorithm!
T: tolal & time Steps
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How can we overcome this 2 barrier?



How can we overcome this 2 barrier?

Use randomization!

(recall online paging in the last lecture)



Randomized weighted ma) orltx
( Muliplicative Weighss jDﬁﬂm)

e Initially, every expert has weight 1.

e \When an expert makes a mistake, multiply its
welight by 1-€

Z 7 says Up Wy

e Predict "up’ with probability > w;

Assume: £ <1/2



Randomized weighted majority

e Initially, every expert has weight 1.

e \When an expert makes a mistake, multiply its
welight by 1-€

w;
LGO with each expert | with prob Z w;

_



Theorem: suppose € < 72 and best expert
make@nistakes. Then the expected
number of mistakes we make is at most
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Theorem: suppose € < 2 and best expert
makes M mistakes. Then the expected
number of mistakes we make is at most

Inn

(1+¢)M +

€

(learnin@

¢ large: punish wrong expert more




Corollary:

Our expected # errors < OPT + 2 1%”’7

Proof:



T

Proof: ® == 2 iciwi

F. fraction of the total weight on the t th day
on experts who make a mistake



T

Proof: € == 2isawi

F. fraction of the total weight on the t th day
on experts who make a mistake

Q: What is the expected # total mistakes we make?



Proof: ® = 2ic Wi

F. fraction of the total weight on the t th day
on experts who make a mistake

Q: What is the expected # total mistakes we make?

A: Zt F;. E)::ﬂ' mistakeg on da.?/ +)= P[’#ohnsf;;l’]




| Wroa right
Proof: ® := > ic; wi W Gj@ q‘
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F.: fraction of the total \ngfg%e tt el

on experts who make a mistake

Claim:onthet-thday, ®, ., = &, (1 — €F}).

Pred = FtPod (FO+(1-Ft)Pou = %M(%'i':ﬁl??f/)

Intuition: if alg makes many mistakes in
expectation, then final sum of weights is small



T

Proof: ® = 2imiwi

F. fraction of the total weight on the t th day
on experts who make a mistake

Claim:onthet-thday, ®,. ., = &, (1 — €F}).

Proof:



Intuition: if alg makes many mistakes in

expectation, then final sum of weights is small
. ¢
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Graph for 1+x, e”x
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OTOH: if best expert makes few mistakes, final
sum of weights must be hiah

(I)fz'nal = (1 — E)M-
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(I)final <n- e—ezt Ky

(I)final > (1 — G)M
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Graph for In(1/(1-x)), X+x*x
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_ _ 2 ¢ go, 1l
Extension: fractional rewards ewure 55_( .

In each time step, each expert predicts some
action, and at the end of the day, a reward € [-1, 1l
IS revealed for each action

Performance of expert: sum of rewards over time



Applications of multiplicative weights

e Machine learning: AdaBoost, Winnow, Hedge
e Optimization (solving LP)

e Game theory
o see another proof of mini-max theorem in lecture notes

e Operations research and online statistical
decision-making

Computational geometry

Complexity theory

Approximation algorithms

Differential privacy



