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Stock Market
Every day the stock goes up or down

You discover it at the end of the day

You have to predict at the beginning of the day

There are n experts to help you, each of them 
makes a prediction at the beginning of day



Goal

Design an algorithm whose performance 
is close to the best expert in hindsight 
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Warmup: promised that the best 
expert makes at most M mistakes

Claim: there is an algorithm that 
makes at most (M+1) (log2 n + 1) 
mistakes







Warmup: promised that the best 
expert makes at most M mistakes

Claim: there is an algorithm that 
makes at most  2.41 (M + log2 n) 
mistakes



Deterministic Weighted Majority

● Initially, every expert has weight 1. 

● When an expert makes a mistake, half its 
weight. 

● Output the prediction of the weighted 
majority.
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Let



Analysis

Let

Claim: If our alg makes a mistake, then 

Intuition: if alg makes many mistakes, then final 
sum of weights is small



Analysis

Let

Claim: If our alg makes a mistake, then 

Note: Φ can never increase



Claim: If our alg makes a mistake, then 

Proof: 



Claim: If our alg makes a mistake, then 

Proof: if we make a mistake, at least half of the 
weight will get halved



Intuition: if alg makes many mistakes, then final 
sum of weights is small

Formally, if we make m mistakes, then 



OTOH: if best expert makes few mistakes, final 
sum of weights must be high

Formally, if i* makes M mistakes, then 





Claim: can improve the constant 2.41 to

Idea: instead of halving, multiply by 1-ε



Claim: can improve the constant 2.41 to

Claim: 2 is optimal for any deterministic algorithm!

Why?



How can we overcome this 2 barrier?



How can we overcome this 2 barrier?

Use randomization!

     (recall online paging in the last lecture)



Randomized weighted majority

● Initially, every expert has weight 1. 

● When an expert makes a mistake, multiply its 
weight by 1-ε

● Predict “up” with probability 

Assume: ε ≤ 1/2



Randomized weighted majority

● Initially, every expert has weight 1. 

● When an expert makes a mistake, multiply its 
weight by 1-ε

● Go with each expert i with prob 



Theorem: suppose ε ≤ ½ and best expert 
makes M mistakes. Then the expected 
number of mistakes we make is at most 



Theorem: suppose ε ≤ ½ and best expert 
makes M mistakes. Then the expected 
number of mistakes we make is at most 

ε : learning rate
ε large: punish wrong expert more 



Corollary: 

Our expected # errors ≤ OPT + 

Proof:



Proof: 
Ft: fraction of the total weight on the t th day 
on experts who make a mistake
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Proof: 
Ft: fraction of the total weight on the t th day 
on experts who make a mistake

Claim: on the t-th day, 

Intuition: if alg makes many mistakes in 
expectation, then final sum of weights is small



Proof:

Proof: 
Ft: fraction of the total weight on the t th day 
on experts who make a mistake

Claim: on the t-th day, 



Intuition: if alg makes many mistakes in 
expectation, then final sum of weights is small

Formally, 

Recall: 1 + x ≤ ex





OTOH: if best expert makes few mistakes, final 
sum of weights must be high









Fact: 





Fact: 



Extension: fractional rewards

In each time step, each expert predicts some 
action, and at the end of the day, a reward ∈ [-1, 1] 
is revealed for each action

Performance of expert: sum of rewards over time



● Machine learning: AdaBoost, Winnow, Hedge
● Optimization (solving LP)
● Game theory 

○ see another proof of mini-max theorem in lecture notes
● Operations research and online statistical 

decision-making
● Computational geometry
● Complexity theory
● Approximation algorithms
● Differential privacy

Applications of multiplicative weights


