15451 Spring 2023

Multiplicative Weights Algorithm

Elaine Shi

Stock Market

Stock Market

Every day the stock goes up or down

You discover it at the end of the day

You have to predict at the beginning of the day

Stock Market

Every day the stock goes up or down

You discover it at the end of the day

You have to predict at the beginning of the day

There are **n** experts to help you, each of them makes a prediction at the beginning of day

Design an algorithm whose performance is close to the **best expert in hindsight**

"minimize regret"

Discussion: why not compare with the best **algorithm** in hindsight

Design an algorithm whose performance is close to the **best expert in hindsight**

Warmup: you're promised that there exists an expert who is always right

Warmup: you're promised that there exists an expert who is always right

Claim: there is an algorithm that makes at most log n mistakes Algorithm: take majority vote among experts kick out who ever is wrong If we make a mistake, then at least half of the remaining experts will be kicked out

Warmup: promised that the best expert makes at most M mistakes

Claim: there is an algorithm that makes at most (M+1) (log₂ n + 1) mistakes

Algorithm: run the previous algorithm once you have kicked our everyone, restart phage: start -> kicked out everyone. claim: in each phase, alg makes at most log_n+1 mistakes total mistakes $\leq M \cdot (\log_2 n + 1) + \log_2 n \leq (M + 1) (\log_2 n + 1)$

Warmup: promised that the best expert makes at most M mistakes

Claim: there is an algorithm that makes at most 2.41 (M + log₂ n) mistakes

Deterministic Weighted Majority

- Initially, every expert has weight 1.
- When an expert makes a mistake, half its weight.
- Output the prediction of the weighted majority.

Let $\Phi := \sum_{i=1}^n w_i$

Claim: If our alg makes a mistake, then

$$\Phi_{new} \leq \frac{3}{4} \Phi_{old}.$$

Intuition: if alg makes many mistakes, then final sum of weights is small

Let
$$\Phi := \sum_{i=1}^{n} w_i$$

Claim: If our alg makes a mistake, then

$$\Phi_{new} \leq \frac{3}{4} \Phi_{old}.$$

Note: Φ can never increase

Claim: If our alg makes a mistake, then

$$\Phi_{new} \leq \frac{3}{4} \Phi_{old}.$$

12 31.0

Proof:

Claim: If our alg makes a mistake, then

$$\Phi_{new} \le \frac{3}{4} \Phi_{old}.$$

Proof: if we make a mistake, at least half of the weight will get halved

Intuition: if alg makes many mistakes, then final sum of weights is small "

Formally, if we make m mistakes, then

$$\Phi_{final} \leq (3/4)^m \cdot \Phi_{init} = (3/4)^m \cdot n.$$

OTOH: if best expert makes few mistakes, final sum of weights must be high

Formally, if i* makes M mistakes, then

$$\Phi_{final} \ge w_{i^*} = (1/2)^M.$$

 $\Phi_{final} \leq (3/4)^m \cdot \Phi_{init} = (3/4)^m \cdot n.$ $\Phi_{final} \ge w_{i^*} = (1/2)^M.$ $(1/2)^{M} \leq (3/4)^{m} \cdot n \quad \Rightarrow \quad (4/3)^{m} \leq n2^{M}.$ $(1/2)^{M} \leq (3/4)^{m} \cdot n \quad \Rightarrow \quad (4/3)^{m} \leq n2^{M}.$ $(1/2)^{M} \leq (3/4)^{m} \cdot n \quad \Rightarrow \quad (4/3)^{m} \leq n2^{M}.$

Claim: can improve the constant 2.41 to

 $(2(1+\epsilon)M+O(\frac{\log n}{\epsilon})).$

Idea: instead of halving, multiply by 1- ϵ Assume $\xi \in \frac{1}{2}$

Claim: can improve the constant 2.41 to

$$2(1+\epsilon)M + O(\frac{\log n}{\epsilon}).$$

Claim: 2 is optimal for any deterministic algorithm! T: total * time steps Construct an adversarial input that makes the det. alg. wring every time. Consider two experts, one always UP, one always Down at least one of them makes < 1T mistakes

How can we overcome this 2 barrier?

How can we overcome this 2 barrier?

Use randomization!

(recall online paging in the last lecture)

Randomized weighted majority (Multiplicative Weights Algorithm)

- Initially, every expert has weight 1.
- When an expert makes a mistake, multiply its weight by 1- ϵ
- Predict "up" with probability

$$\frac{\sum_{j \text{ says Up}} w_j}{\sum_j w_j},$$

Assume: $\varepsilon \le 1/2$

Randomized weighted majority

- Initially, every expert has weight 1.
- When an expert makes a mistake, multiply its weight by 1- ϵ

Theorem: suppose $\varepsilon \leq \frac{1}{2}$ and best expert makes M mistakes. Then the expected number of mistakes we make is at most T: +0tal # INN $\ln n$ $= 2\sqrt{T \cdot \ln n}$ E[OUR # mistakes] - OPT $\leq \Sigma M + \frac{(n \pi)}{S} \leq \Sigma T +$ in hind sight $ZT = \frac{\ln n}{c}$

Theorem: suppose $\varepsilon \le \frac{1}{2}$ and best expert makes M mistakes. Then the expected number of mistakes we make is at most

Our expected # errors \leq OPT + $2\sqrt{\frac{\ln n}{6}}$

Proof:

Proof: $\Phi := \sum_{i=1}^{n} w_i$

F_t: fraction of the total weight on the t th day on experts who make a mistake

Proof: $\Phi := \sum_{i=1}^{n} w_i$

F_t: fraction of the total weight on the t th day on experts who make a mistake

Q: What is the expected # total mistakes we make?

Proof: $\Phi := \sum_{i=1}^{n} w_i$

F_t: fraction of the total weight on the t th day on experts who make a mistake

Q: What is the expected # total mistakes we make? A: $\sum_{t} F_{t}$. E[=t] mistakes on day +)=Pr[mistake] I inearity of expectation = Ft

Proof:
$$\Phi := \sum_{i=1}^{n} w_i$$
 day $F_{t} \cdot \phi_{old} \cdot (I - E)$ $(I - F_{t}) \cdot \phi_{old}$
 F_{t} : fraction of the total weight on the t th day
on experts who make a mistake

Claim: on the t-th day, $\Phi_{new} = \Phi_{old} \cdot (1 - \epsilon F_t)$. $\Psi_{new} = F_t \Psi_{old} (F_t) + (I - F_t) \cdot \Phi_{old} = \Psi_{old} (F_t - \epsilon F_t + I - F_t)$

Intuition: if alg makes many mistakes in expectation, then final sum of weights is small

Proof: $\Phi := \sum_{i=1}^{n} w_i$

F_t: fraction of the total weight on the t th day on experts who make a mistake

Claim: on the t-th day, $\Phi_{new} = \Phi_{old} \cdot (1 - \epsilon F_t)$. Proof:

X=-2++

Graph for 1+x, e^x

OTOH: if be<u>st expert makes few mistakes</u>, final sum of weights must be high

$$\Phi_{final} \ge (1-\epsilon)^M$$

$$\Phi_{final} \leq n \cdot e^{-\epsilon \sum_{t} F_{t}}$$

 $\Phi_{final} \geq (1 - \epsilon)^{M}$

 $\Phi_{final} \leq n \cdot e^{-\epsilon \sum_t F_t}$

$$\Phi_{final} \ge (1-\epsilon)^M$$

 $(1-\epsilon)^M \leq n \cdot e^{-\epsilon \sum_t F_t}$

$$\Phi_{final} \leq n \cdot e^{-\epsilon \sum_{t} F_{t}}$$

$$\Phi_{final} \geq (1 - \epsilon)^{M}$$

$$M \ln(t - \epsilon) \leq \ln n - \epsilon \sum_{t} F_{t}$$

$$(1 - \epsilon)^{M} \leq n \cdot e^{-\epsilon \sum_{t} F_{t}} \Rightarrow \epsilon \sum_{t} F_{t} \leq M \ln \frac{1}{(1 - \epsilon)} + \ln n.$$

$$\Phi_{final} \leq n \cdot e^{-\epsilon \sum_t F_t}$$

$$\Phi_{final} \ge (1-\epsilon)^M$$

$$(1-\epsilon)^M \leq n \cdot e^{-\epsilon \sum_t F_t} \Rightarrow \epsilon \sum_t F_t \leq M \ln \frac{1}{(1-\epsilon)} + \ln n.$$

Fact:
$$\ln \frac{1}{(1-\epsilon)} = -\ln(1-\epsilon) \le \epsilon + \epsilon^2$$

Graph for In(1/(1-x)), x+x*x

Feedback

$$\begin{split} \Phi_{final} &\leq n \cdot e^{-\epsilon \sum_{t} F_{t}} \underbrace{\xi \cdot \sum_{t} F_{t} \leq M(\xi t \xi^{2})}_{t + \ln n} \\ \Phi_{final} \geq (1 - \epsilon)^{M} \\ & (1 - \epsilon)^{M} \leq n \cdot e^{-\epsilon \sum_{t} F_{t}} \Rightarrow \epsilon \sum_{t} F_{t} \leq M \underbrace{\ln \frac{1}{(1 - \epsilon)}}_{t + \ln n} + \ln n. \end{split}$$
Fact:
$$\ln \frac{1}{(1 - \epsilon)} = -\ln(1 - \epsilon) \leq \epsilon + \epsilon^{2} \\ \text{for } \xi \in [0, \frac{1}{2}) \\ \end{split}$$

Extension: fractional rewards rewards

In each time step, each expert predicts some action, and at the end of the day, a reward \in [-1, 1] is revealed for each action

Performance of expert: sum of rewards over time

Applications of multiplicative weights

- Machine learning: AdaBoost, Winnow, Hedge
- Optimization (solving LP)
- Game theory
 - see another proof of mini-max theorem in lecture notes
- Operations research and online statistical decision-making
- Computational geometry
- Complexity theory
- Approximation algorithms
- Differential privacy