
15-451/651: Design & Analysis of Algorithms April 18, 2023
Lecture #22: Sweep-Line and Sweep-Angle last changed: April 17, 2023

1 Preliminaries

The sweep-line paradigm is a very powerful algorithmic design technique. It’s particularly useful for solving
geometric problems, but it has other applications as well. We’ll illustrate this by presenting algorithms for
two problems involving intersecting collections of line segments in 2-D.

Generally speaking sweepline means that you are processing the data in some order (e.g. left to right order).
A data structure is maintained that keeps the information gleened from the part of the data currently to the
left of the sweepline. The sweepline moves across absorbing new pieces of the input and incorporating them
into its data structure.

Obviously this is very vague. So let’s get concrete and solve some problems.

2 Computing all Intersections of a Set of Segments

The input is a set S of line segments in the plane (each defined by a pair of points). The output is a list of
all the places where these line segments intersect.

Line�Segment�Intersection
• 
!#('0 ��!��&�� �!'&��!�B�
• �"��0 ��!��'��� �!'�%&��'�"!&

As usual, we’re going to make our lives easier by making some geometric assumptions. We’re going to assume
that none of the segments is vertical. We’ll also assume that no three segments intersect at the same point.
We’ll also assume that no segment has an endpoint that is part of another segment. (These assumptions can
be avoided by adding some extra cases to the algorithm that do not change the running time bounds.)

There’s a trivial O(n2) algorithm: Just apply segment intersection to all pairs of segments. The solution we
give here will be O((n+ k) log n), where k is the number of segment intersections found by the algorithm.

To get some intuition for what’s going to happen, consider the following figure.

1



Sweep�Line�Events
• ��&�%�'�-���"!'�!("(&� "'�"!�"��&*��#���!�
• Events�*��!��!'�%&��'�"!����!��&
– ��� �!'��!�#"�!'& – 
!'�%&��'�"!&

Here we have six segments, called a, b, c, d, e, f . There are also two segment intersections. The “interesting”
x-coordinates are the ones where something happens: either a segment begins, or a segment ends, or two
segments cross.

The following figure shows a vertical dashed line before each interesting x-coordinate. Above the dashed line
is a list of the segments in the same order they appear in the diagram, along that dashed line.Sweep�Line�Intersections

Between any two neighboring events, the segments (in that range of x) are in some order by y from bottom
to top. This order (and which segments are there) does not change between a pair of neighboring interesting
x coordinates.

We’re going to maintain a data structure that represents the list shown at the top of the diagram. Let’s call
this a “segment list”. Look at how this list changes as we move across the interesting x values. Only one
of three things can happen. (1) A new segment is inserted into the list. (2) A segment is removed from the
list. (3) Two neighboring segments in the list cross.

Our goal is to compute the intersections among these segments. The key observation that leads to a good
algorithm is that right before two segments cross, they must be neighbors in the segment list. So the key

2



idea of the algorithm is that as our segment list evolves (as we process the interesting x coordinates from
left to right), we only need to consider the possible intersections between segments that are neighbors, at
some point in time, in the segment list.

So our algorithm is going to maintain two data structures. A segment list (SL) and an event queue (EQ).
Each event in the EQ will be labeled with its type (“segment start”, “segment end”, “segments cross”), as
well as the x value where this happens. The EQ is initialized with all the segment starts and segment ends.

The EQ data structure must support insert, findmin, and deletemin. It’s just a standard priority queue.

Although a segment is defined by its two endpoints, it’s going to be useful to also use a “slope-intercept”
representation for the line containing the segment. So segment i will have a left and right endpoint as well
as a pair (mi, bi) where mi is the slope of the line and bi is the y-intercept.

Consider what we need for the SL data structure. The items being stored are a set of segments. The
ordering used is the value of mi · x+ bi, where x is the current x value in the ongoing sweep-line algorithm.
Requirements for the SL data structure:

- Insert a new segment into the data structure.
- Delete a segment from the data structure.
- Find the successor of a segment in the data structure.
- Find the predecessor of a segment in the data structure.

All of these operations can be done in O(log n) time using any standard search tree data structure (e.g. splay
trees, or AVL trees).

Note in SL, the keys of the nodes store (mi, bi) — not the y value at the time of insertion. This is so
that when we insert a new segment, we insert it in the right order. An example where this is important is
inserting d in the following situation:

a

b
d

c

a
b
c

a
d
b
c

In the above example, we want to insert d above b even though it is below the y coordinate of b when b was
inserted. Since we store (mi, bi), we can compute the y-coordinate of all the segments at the current point
(here, the start of d). Since the ordering only changes at the interesting points, SL maintains the correct
tree ordering.

Now we can write the complete algorithm. Whenever the algorithm says CheckForIntersection(EQ, a, b),
this means that the pair of segments a and b are tested for intersection. This function will always be called
when a and b are neighbors in the SL. If they do intersect, CheckForIntersection adds the intersection event
to the EQ.

def FindSegmentIntersections(S):
create an empty priority queue EQ
for each segment S, insert its start and end events into EQ
create an empty balanced tree SL

3



while (EQ is not empty)
E := deletemin(EQ)
if E is start of segment s then

insert s into SL
CheckForIntersect(EQ, s, successor of s)
CheckForIntersect(EQ, s, predecessor of s)

else if E is the end of segment s then
CheckForIntersection(EQ, pred of s, succ of s)
delete s from SL

else if E is cross event for segments s1 and s2 then
println "s1 and s2 intersect"
remove s1 and s2 from SL
re−insert s1 and s2 into SL in the opposite order
CheckForIntersection(EQ, s1, new neighbor of s1)
CheckForIntersection(EQ, s2, new neighbor of s2)

It’s easy to see that the running time of the algorithm is O((n+k) log n) using the data structures described.
Because there are O(n + k) events, and each one involves a constant number of operations on the SL and
EQ data structures.

3 Counting Intersections of Circles (optional)

As an exercise, how would you solve the problem of computing all the intersections of a set of n circles in
the plane?

We can again imagine using a plane sweep, walking a vertical line left-to-right across the plane. We have
the following events:

Circle Start. The leftmost point on a circle is reached. We need to start tracking the circle.
Circle End. The rightmost point on a circle has been reached. We should stop tracking the circle.
Circle Intersect. Output the intersection, and modify our data structure to account for the intersection.

As with the line segment intersection problem, two intersecting circles will be adjacent on the sweep line
just before an intersection.

4



1 2

aa
b
b

a

b

ba
a
b

A complication, however, is that unlike in the line segment case, we don’t have a well-defined ordering of the
circles along the sweep line. Parts of circle A can be above parts of circle B and at the same time parts of
circle A can be below parts of circle B. But notice that at any point in time, the sweep line hits each circle
in at most two places: the top semicircle and the bottom semicircle. So, we can represent each circle by 2
semicircles. The sketch of the algorithm is:

1. A priority queue EQ starts with leftmost and rightmost points of the circles sorted by their x coordinate.
As in the point sweep algorithm, intersection points will be added to the queue as we go.

2. When we encounter the start event of circle c, we insert TopHalf(c) and BottomHalf(c) into our
balanced tree SL, keyed by the y coordinate of the start event point. When we encounter the end event
of a circle c, we remove these two semicircles.

3. Otherwise, the algorithm is the same as for segments: whenever we add, remove, or swap a semicircle,
we test its new neighbors for intersection. The intersection test is a bit more complex because we have
to test the intersection of two semicircles (but you can work this out on your own).

4 Balloon Pop

Problem: Suppose you are given n non-intersecting circles (balloons) in the plane, where circle i has radius
ri and center point qi. Find the line that will intersect as many circles as possible.

qi
ri

A first try. Note that we can always find a solution that is tangent to one of the circles: take a solution
line and translate it until it becomes tangent. In fact, we can always find a solution that is tangent to two
circles: take a solution line that is tangent to one circle, and rotate it until it becomes tangent to another
circle.

5



That leads to an O(n3) algorithm: for every pair of circles, compute the four tangent lines that go between
them, and for each of those lines, compute (by iterating through the circles) the number of circles they
intersect. Keep and return the line with the most balloon hits. (This is an example of a general strategy we
have seen before: reduce a problem with a seemingly infinite possible solutions to one with a finite number.)

A better algorithm. We can do better, achieving a running time of O(n2 log n). This algorithm uses
several plane sweeps of a rotating line.

We first use the fact that some optimal line must be tangent to some circle. We guess that it will be circle C
(we’ll try all circles for this role). Every tangent line to C is a candidate, and each tangent line is specified
by some angle α. So the idea is to do a sweep line, but instead of moving the line along the x axis, we rotate
it around as tangents to the circle C. See figure (a):

(a)

C
α1

β1

(b)

As we are sweeping this line, what are the interesting events? They are when the sweep line first intersects
and then leaves (exits) another circle. For a circle i, these occur at angles (αi,1, βi,1) and (αi,2, βi,2), where
the first element in each pair is the “entering” angle and the second element is the corresponding “leaving”
angle. We can compute all of these angles in O(n) time by enumerating through the circles.

These angles define intervals on the border of C (corresponding to the range of sweep lines that will hit each
circle):

C

α1

β1

The angle of greatest depth of coverage by intervals is the tangent line that hit the largest number of circles.
To find this most highly covered angle, we can sort the angles, and visit them in increasing order. This
corresponds to walking around C. We keep a counter depth, which we increment whenever we encounter an
“entering” event, and we decrement whenever we encounter a “leaving” event. We also track the max value
of the counter (and corresponding tangent).

6



One last technicality: when we start walking around the circle C, it may be that some intervals cross the 0
angle. To handle this, we count those explicitly by making a first pass through the intervals (in O(n) time).
We start our depth counter at the number of intervals that cross the 0 angle.

To summarize:

def MostBalloonPoppingLine(S):
for C in S:

for every Q in S \ C: compute αQ,1, βQ,1, αQ,2, βQ,2

depth = max depth = number of (α, β) intervals crossing angle 0
L = sorted list of the α, β angles
for each angle γ in L:

if γ is entering angle: depth++
if γ is leaving angle: depth−−
if depth > max depth

max depth = depth
best line for C = γ

end
if max depth > global max depth:

best line = (C, best line for C)
end

The running time for each C is O(n) to compute the angles + O(n log n) to sort the angles + O(n) to
walk through the angles to find the max. We have to do this all O(n) times, leading to a final run time of
O(n2 log n).

7



4.1 Computing α and β angles

0°
C

Q

α1

d

dQ

A

T

R

There are a few different cases, but they can all be solved with elementary
trigonometry using the fact that a tangent line and the line connecting
the centers of the circles form a part of similar right triangles. Consider
the case at right: the triangle 4CRA is similar to the triangle 4QTA.
We know the lengths of QT and CR segments (they are the circle radii,
rQ and rC) and we know the distance d between the circle centers. We
can therefore solve for dQ:

dQ
d+ dQ

=
rQ
rC

=⇒ dQ =
rQd

rC − rQ

when rC 6= rQ (when the radii are equal, the angle of the tangent line is
just the angle between their centers). The angle QCR can be computed
as:

cos−1 rc
d+ dQ

which can be subtracted from the angle ∠0CQ to obtain α1.

The case where the tangent crosses the CQ line is similar.

8


