
451/651 Lecture 21 – Smallest Enclosing Circle

Problem: Given n Ø 2 points in the plane, find the smallest
enclosing circle that contains these points.

Ground Rules:
I The points are pairs of real numbers pi = (xi , yi).
I Arithmetic on reals can be done in O(1) time.

Let SEC(p1, . . . , pn) denote the smallest enclosing circle of points
p1, . . . , pn.

In this lecture we present a randomized incremental algorithm to
compute the SEC(p1, . . . , pn) in expected O(n) time.

15-451 Lecture 23 — Smallest Enclosing Circle



Base Cases

n = 2:
r C P Pa

C

r t P Pal

n = 3 Obtuse triangle: n = 3 Acute triangle:

r C P Pa

C

r t P Pal

(Explain how to find the center,
and why this is optimum.)



Uniqueness of the SEC

Theorem 1: The SEC(p1, . . . , pn) is unique.

Proof: By contradiction. Suppose there are two distinct SECs.

The picture shows that if there are two distinct SECs then there’s
a smaller SEC than the one asserted to be the smallest.



Characterization of the SEC

If we take any pair of points and halve the distance between them,
that’s obviously a lower bound on the radius of the SEC.

If we take any triple of points the form an acute triangle and take
the circumradius of it, that’s also obviously a lower bound on the
radius of the SEC.

It turns out that if we take the maximum of all these lower bounds,
this will in fact equal the radius SEC. We will now prove this.



Characterization of the SEC

Theorem 2: For n Ø 3 the SEC(p1, . . . , pn) is the SEC(pi , pj , pk)
for some set of distinct indices i , j , k.

This means that we can find the SEC of all n points by just
computing the SEC(pi , pj , pk) for all i , j , k, and taking the one of
maximum radius r . Because given that triple of points there is
only one circle of radius r that can contain them. So by the
theorem it must contain all the points.

This immediately gives an O(n3) algorithm for the problem.



Helly’s Theorem

Our proof will make use of this theorem:

Helly’s Theorem: Let X1, . . . , Xn be a finite collection of convex
subsets of Rd , with n Ø d + 1. If the intersection of every d + 1 of
these subsets is non-empty, then the whole collection has a
non-empty intersection; that is,

n‹

j=1
Xj ”= ?.

We only need this for d = 2 so it says that if in a collection of
convex 2D sets every three intersect, then they all intersect.



Proof of Theorem 2
Proof: Compute the radius r which is the maximum of the radii of
all the SECs of the triples of points pi , pj , pk .

Now consider the ball Bi centered at pi of radius r . It must be the
case that Bi

u Bj
u Bk ”= ? for all i , j , k.

Therefore it follows from Helly’s theorem that all the balls
intersect. Pick the circle with radius r whose center is in the
mutual intersection of all the balls. By construction all the points
must be in that circle.

Furthermore let (pi , pj , pk) be three points whose SEC has radius
r . This SEC is the unique circle of radius r containing pi , pj , pk .
Therefore it must also be the circle found by the application of
Helly’s Theorem.



Towards an Incremental Algorithm

Suppose we’ve computed the SEC of points p1, . . . pn≠1. What
happens when we add another point pn to the set?

There are two cases. (1) pn is in the SEC of the previous n ≠ 1
points. (2) It’s not. Here’s an example:

 

It turns out that in case (2) the new point must be on the
boundary of the SEC of all the points.



Towards an Incremental Algorithm

So we have the following theorem:

Theorem 3: For a set of points {p1, . . . , pn}, let
C1 = SEC(p1, . . . , pn≠1) and C2 = SEC(p1, . . . , pn). If C1 ”= C2
then pn is on the boundary of C2.

Proof: By the uniqueness of the SEC (Theorem 1) we know that
radius(C1) < radius(C2). But we know from Theorem 2 that these
radii are just the maximum over all triples of points in their
respective sets. The only way that C2 can have a larger radius
than C1 is if pn is involved in the triple causing that to happen.
Therefore pn must be on C2.



A Randomized Incremental Algorithm

15-451/651: Design & Analysis of Algorithms April 27, 2021
Lecture #21: Smallest Enclosing Circle last changed: November 18, 2021

Here’s a randomized incremental algorithm for computing the smallest enclosing circle of a list of
n points:

SEC([p1, p2, . . . , pn]) = {
Randomly permute the input points, so [p1, . . . , pn]
is a random permutation of the given points.

Let C be the smallest circle enclosing p1 and p2.
(This is just the circle for which p1 and p2 form a diameter.)

for i = 3 to n do
// at this point C is the smallest enclosing circle for [p1, . . . , pi�1]
if pi is not in C then C � SEC1([p1, . . . , pi�1], pi)

done

return C
}

The figure below shows what happens when a point pi, shown in red, is added to the set on the
left, and is not in the circle C. In this case the smallest enclosing circle for [p1, . . . , pi] must pass
through the point pi.

 

At this point in the algorithm, it calls SEC1([p1, p2, . . . , pi�1], pi), which computes the smallest
enclosing circle of [p1, . . . , pi�1] given the information that pi is one of the points on the boundary
of the smallest enclosing circle of [p1, . . . , pi]. The expected time of this call to SEC1 is O(i) as
shown on the next page.

We analyze the running time of SEC() using backward analysis. Imagine we have the circle on the
right above, and we pick a random point to delete. The probability that the circle changes is at
most 3/i. In this case we have to call SEC1(), which has an expected running time of O(i). In the
other case the cost is O(1). Thus the expected time to go once through the loop in SEC() is just
O(1). So the algorithm is expected O(n).

1

Here SEC1([p1, . . . , pi≠1], pi) computes the SEC of {p1, . . . , pi},
and can make use of the fact that pi is on the boundary of the
SEC of {p1, . . . , pi}.



Analyzing the Algorithm

Assuming that SEC1 (called on a set of i points) is O(i) expected
time, then SEC(p1, . . . , pn) is O(n) expected time.

Proof: Backward analysis. Recall from Theorem 2 that there are
two or three points that determine the SEC of all the points.
Unless we choose to delete one of these points the SEC will not
change. So Ci ”= Ci≠1 with probability at most 3

i .

E [Cost of step i ] = O(i) ú 3
i + O(1) ú i ≠ 3

i = O(1)



SEC1
SEC1([p1, p2, . . . , pn], q) = {

// We know that the point q is on the SEC containing p1, . . . pn, q.

Randomly permute the input points, so [p1, . . . , pn]
is a random permutation of the given points.

Let C be the smallest circle enclosing p1 and q.

for i = 2 to n do
// At this point C is the smallest enclosing circle of [p1, . . . , pi�1, q]
// that also passes through q.
if pi is not in C then C � SEC2([p1, . . . , pi�1], pi, q)

done

return C
}

The argument that SEC1() runs in expected O(n) time is very similar. Now the probability, in
the backward analysis, that the deletion of a point causes a call to SEC2() is at most 2/i. And
again, assuming that SEC2() with i points is O(i) time gives the proof that SEC1() is O(n) time
expected.

SEC2([p1, p2, . . . , pn], q1, q2) = {
// The job of SEC2 is to compute the smallest circle containing
// [p1, . . . pn, q1, q2] that passes through q1 and q2.
// We know such a circle exists.

Let C be the smallest circle enclosing q1 and q2.

for i = 1 to n do
// At this point C is the smallest enclosing circle of [p1, . . . , pi�1, q1, q2]
// that also passes through q1 and q2

if pi is not in C then C � Circle through points (pi, q1, q2)
done

return C
}

Finally, it’s very easy to see that each iteration of the loop in SEC2() is O(1) time in the worst,
case so the algorithm is O(n).

2

Here SEC2([p1, . . . , pi≠1], pi , q) computes the smallest circle
through pi and q containing {p1, . . . , pi≠1} It is O(i) time.

Proof that it’s O(i) expected time is the same as that for SEC.



SEC2

SEC1([p1, p2, . . . , pn], q) = {
// We know that the point q is on the SEC containing p1, . . . pn, q.

Randomly permute the input points, so [p1, . . . , pn]
is a random permutation of the given points.

Let C be the smallest circle enclosing p1 and q.

for i = 2 to n do
// At this point C is the smallest enclosing circle of [p1, . . . , pi�1, q]
// that also passes through q.
if pi is not in C then C � SEC2([p1, . . . , pi�1], pi, q)

done

return C
}

The argument that SEC1() runs in expected O(n) time is very similar. Now the probability, in
the backward analysis, that the deletion of a point causes a call to SEC2() is at most 2/i. And
again, assuming that SEC2() with i points is O(i) time gives the proof that SEC1() is O(n) time
expected.

SEC2([p1, p2, . . . , pn], q1, q2) = {
// The job of SEC2 is to compute the smallest circle containing
// [p1, . . . pn, q1, q2] that passes through q1 and q2.
// We know such a circle exists.

Let C be the smallest circle enclosing q1 and q2.

for i = 1 to n do
// At this point C is the smallest enclosing circle of [p1, . . . , pi�1, q1, q2]
// that also passes through q1 and q2

if pi is not in C then C � Circle through points (pi, q1, q2)
done

return C
}

Finally, it’s very easy to see that each iteration of the loop in SEC2() is O(1) time in the worst,
case so the algorithm is O(n).

2

This is a deterministic linear time algorithm.



Final Notes

It can be proven that there is no need to compute a random
permutation inside of SEC1. One random permutation at the
beginning in SEC su�cies.

The code can be consolidated into a single recursive function,
where an additional argument passes the points that must be on
the boundary.

The same algorithm can be easily extended to d dimensions. In
this case, as in Seidel’s algorithm, the bound is O(n d!), so the
dependence on n is linear and the dependence on d is exponential.


