15-451/651: Design & Analysis of Algorithms April 27, 2023
Lecture #24: Polynomials in Algorithm Design last changed: April 27, 2023

In this lecture, we will see some of the power of polynomials in algorithm design. In particular,
we'll see the fundamental beautiful ideas behind the error-correction used in QR codes (like this
one):

DifaE2iin
45:%.
Crezhas s

In this lecture, we will

- review some properties of polynomials and the operations that can be performed on them

see the unique reconstruction theorem and learn how to interpolate a set of points to obtain
that unique polynomial

see how polynomials can be used to implement error-correcting codes

see some algebraic algorithms for matchings in graphs that utilize polynomials

1 Introduction

You've probably all seen polynomials before: e.g., 322 — 5x + 17, or 22 — 3, or —a° + 3823 — 1, or
x, or even a constant 3. These are all polynomials over a single variable (here, z). The degree of a
polynomial is the highest exponent of x that appears: hence the degrees of the above polynomials
are 2,1,5,1,0 respectively.

In general, a polynomial over the variable x of degree at most d looks like:

P(x) = cax® + 12PN+ .+ ez + co

Remark: The coefficients completely describe P

Note that the sequence of d + 1 coefficients (¢4, cq—1, ..., co) completely describes P(z).

Hence, if the coefficients were all drawn from the set Z,, then we have exactly p?t1 possible different
polynomials of degree at most d (note that it is at most d and not exactly d because ¢4 could be
zero). This includes the zero polynomial 0 = 0z 4 029~% + .. + 02 4 0.

In this lecture, we will use properties of polynomials to construct error correcting codes, and do
other cool things with them.

2 Operations on Polynomials

Before we study properties of polynomials, recall the following simple operations on polynomials:

- Addition: Given two polynomials P(z) and Q(z), we can add them to get another polynomial
R(z) = P(z) + Q(z). Note that the degree of R(x) is at most the maximum of the degrees of P
and Q. (Q: Why is it not equal to the maximum?)

(% + 22— 1)+ (32 + 7x) = 32° + 2* + 9z — 1

The same holds for the difference of two polynomials P(z) — Q(z), which is the same as P(z) +
(—Q(x)).
- Multiplication: Given two polynomials P(z) and Q(x), we can multiply them to get another
polynomial S(z) = P(z) x Q(z).
(2% + 22 — 1) x (32% + Tx) = 325 + 423 + 62 + 142% — T

The degree of S(x) is equal to the sum of the degrees of P and Q.

- Division: Polynomials can be divided to yield an algebraic expression, but do note that the
result P(z)/Q(x) may not itself be a polynomial. In some situations it will be, and this can turn
out to be useful (we’ll see an example soon).

- Evaluation: We can also evaluate polynomials. Given a polynomial P(x) and a value a, P(a) :=
cqa-a®+cg_1-a 4+ ..+ ¢ a4+ co. For example, if P(x) = 32° 4 423 + 62* + 1422 — 72, then

P(2)=3-2"+4-2°+6-2" +14-2> - 7.2 = 266

Naive evaluation of a polynomial would take O(d?) time, but this can be improved to O(d):

Algorithm: Horner’s Rule

Evaluate the following recurrence for py.

{cd if i = d,
Pi =

Pi+1 - @+ ¢; otherwise

The result is pg = P(a). Each step is one addition and one multiplication, hence this takes

O(d) time.

- Roots: A root of a polynomial P(z) is a value r such that P(r) = 0. For example, P(x) above
has three real roots 0, —1 + v/2, —1 — v/2, and two complex roots.

Here, we were implictly working over R, the field of real numbers. But almost everything today
holds true for any field, say a finite field of integers modulo a prime (I, for prime p).

3 How Many Roots?

Let’s start with the following super-important theorem.

Theorem 1: Few-Roots Theorem

Any non-zero polynomial of degree at most d has at most d roots.

This holds true, regardless of what field we are working over. When we are working over the reals
(i.e., the coeffcients are reals, and we are allowed to plus in arbitrary reals for x), this theorem is
a corollary of the fundamental theorem of Algebra. But it holds even if we are working over some
other field (say Z, for prime p).

Let’s relate this to what we know. Consider polynomials of degree 1, also known as linear polyno-
mials. Say they have real coefficients, this gives a straight line when we plot it. Such a polynomial
has at most one root: it crosses the x-axis at most once. And in fact, any degree-1 polynomial
looks like ¢;x + ¢p, and hence setting x = —cg/c1 gives us a root. So, in fact, a polynomial of degree
exactly 1 has exactly one root.

What about degree 2, the quadratics? Things get a little more tricky now, as you probably
remember from high school. E.g., the polynomial 22 + 1 has no real roots, but it has two complex
roots. However, you might remember that if it has one real root, then both roots are real. But
anyways, a quadratic crosses the xz-axis at most twice. At most two roots.

And in general, Theorem 1 says, any polynomial of degree at most d has at most d roots.

4 A New Representation for degree-d Polynomials

Let’s prove a simple corollary of Theorem 1, which says that if we plot two polynomials of degree
at most d, then they can intersect in at most d points—unless they are the same polynomial (and
hence intersect everywhere)! Remember, two distinct lines intersect at most once, two distinct
quadratics intersect at most twice, etc. Same principle.

Given d + 1 pairs (ag, by), (a1,b1), ..., (aq,bq), where the a;’s are distinct, there is at most
one polynomial P(z) of degree at most d, such that P(a;) =b; for alli =0,1,...,d.

Proof. For a contradiction, suppose there are two distinct polynomials P(z) and Q(z) of degree at
most d such that for all 7,

Then consider the polynomial R(z) = P(z)—Q(x). It has degree at most d, since it is the difference
of two polynomials of degree at most d. Moreover,

R(a;) = P(a;) — Q(a;) =0

for all the d 4 1 settings of ¢ = 0,1, ...,d. Once again, R is a polynomial of degree at most d, with
d + 1 roots. By the contrapositive of Theorem 1, R(xz) must be the zero polynomial. And hence
P(z) = Q(z), which gives us the contradiction. O

To paraphrase the theorem differently, given two (i.e., 1+ 1) points there is at most one linear (i.e.,
degree-1) polynomial that passes through them, given three (i.e., 2+ 1) points there is at most one
quadratic (i.e., degree-2) polynomial that passes through them, etc.

Can it be the case that for some d + 1 pairs (ag, bo), (a1,b1), ..., (aq,bg), there is no polynomial of
degree at most d that passes through them? Well, clearly if a; = a; but b; # b;. But what if all
the a;’s are distinct?

Theorem 2: Unique Reconstruction Theorem

Given d + 1 pairs (ag, bo), (a1,b1), ..., (ag,bq) where the a;’s are distinct, there always exists
a polynomial P(x) of degree at most d, such that P(a;) =b; for alli=0,1,...,d.

We will prove this theorem soon, but before that note some implications. Combining Corollary 1
with Theorem 2, we get that given d + 1 pairs (ag, bo), (a1,b1), ..., (a4, bg) with distinct a’s, this
means there is a unique polynomial of degree at most d that passes through them. Exactly one.

In fact, given d + 1 numbers by, b1, ..., bg, there is a unique polynomial P(z) of degree at most d
such that P(i) = b;. (We're just using the theorem with a; = i.) Earlier we saw how to represent
any polynomial of degree at most d by d + 1 numbers, the coefficients. Now we are saying that
we can represent the polynomial of degree at most d by a different sequence of d + 1 numbers: its
values at 0,1,...d.

Two different representations for the same thing, cool! Surely there must be a use for this new
representation. We will give at least two uses for this, but first let’s see the proof of Theorem 2. (If
you are impatient, you can skip over the proof, but do come back and read it—it is very elegant.)

The Proof of Theorem 2 OK, now the proof. We are given d + 1 pairs (a;, b;), and the a’s are
all distinct. The proof will actually give an algorithm to find this polynomial P(z) with degree at
most d, and where P(a;) = b;.

Let’s start easy: suppose all the d + 1 values b;’s were zero. Then P(x) has d 4+ 1 roots, and now
Theorem 1 tells us that P(x) = 0, the zero polynomial!

OK, next step. Suppose by = 1, but all the d other b;’s are zero. Do we know a degree-d polynomial
which has roots at d places aq, a9, ..., aq. Sure, we do—it is just

Qo(z) = (x —a1)(z — az) -+~ (x — aq).

So are we done? Not necessarily: Qo(ag) might not equal by = 1. But that is easy to fix! Just scale
the polynomial by 1/Qq(ap). Le., what we wanted was

Ro(@) = (2 = a)(w = 02) -+ (2 — aa) s

(x—ar)(x—ag2) - (z — aq)
(ap — a1)(ao — az) -~ (ap — aq)

Again, Ro(r) has degree d by construction, and satisfies what we wanted! (We'll call Ro(x) the 0%
“switch” polynomial.)

Next, what if by was not 1 but some other value. Easy again: just take by X Ro(z). This has value
bo x 1 at ag, and bg x 0 = 0 at all other a;’s.

Similarly, one can define switch polynomials R;(x) of degree d that have R;(a;) = 1 and R;(a;) =0
for all ¢ # j. Indeed, this is

(x —ag) -~ (x—ai—1) - (= aip1) - (¥ — aq)

Rl(x) = (ai _ a()) .. (ai — ai—l) . (ai — ai+1) cee (ai - ad)

So the polynomial we wanted after all is just a linear combination of these switch polynomials:

P(m) = boRo(m) + blRl(I‘) + ...+ bde(x)

Since it is a sum of degree-d polynomials, P(z) has degree at most d. And what is P(a;)? Since
Rj(a;) = 0 for all j # i, we get P(a;) = biR;(a;). Now R;(a;) = 1, so this is b;. All done.

Consider the tuples (5,1),(6,2),(7,9): we want the unique degree-2 polynomial that passes through
these points. So first we find Ry(x), which evaluates to 1 at « = 5, and has roots at 6 and 7. This is

_@=6E-7 1
Ro(x)—m_i(x_@(x_?)
Similarl
y y)7(93 5)(1—7)77(—5)(z —7)
1(@) =15 5(6—7) v !
and Ral)_(xf5)($*6 = Z(z—5)(z—6)
o(z T T=5)(1—-6) v)

Hence, the polynomial we want is
P(z) =1-Ro(x)+2- Ry(x) + 9 Ry(x) = 32> — 322 + 86

Let’s check our answer:
P(B)=1,P(6)=2,P(7) =9.

Running Time: Note that constructing the polynomial P(z) takes O(d?) time. (Can you find
the simplified version in this time as well?)

5 Application: Error Correcting Codes

Consider the situation: I want to send you a sequence of d + 1 numbers (cq, ¢4—1,...,C1,Co) over
a noisy channel. I can’t just send you these numbers in a message, because I know that whatever
message | send you, the channel will corrupt up to k& of the numbers in that message. For the

current example, assume that the corruption is very simple: whenever a number is corrupted, it is
replaced by a x. Hence, if I send the sequence

(5,19,2,3,2)

and the channel decides to corrupt the third and fourth numbers, you would get
(5,19, %,%,2).

On the other hand, if I decided to delete the fourth and fifth elements, you would get

(5,19, 2, %, %).

Since the channel is “erasing” some of the entries and replacing them with x’s, the codes we will
develop will be called erasure codes. The question then is: how can we send d + 1 numbers so that
the receiver can get back these d + 1 numbers even if up to k numbers in the message are erased
(replaced by xs)? (Assume that both you and the receiver know d and k.)

A simple case: if d = 0, then one number is sent. Since the channel can erase k numbers, the best
we can do is to repeat this single number k + 1 times, and send these k + 1 copies across. At least
one of these copies will survive, and the receiver will know the number.

This suggests a strategy: no matter how many numbers you want to send, repeat each number
k + 1 times. So to send the message (5,19,2,3,2) with k£ = 2, you would send

(5,5,5,19,19,19,2,2,2,3,3,3,2,2,2)

This takes (d + 1)(k + 1) numbers, approximately dk. Can we do better?

Indeed we can! We view our sequence (cq4,cq—1,.-..,C1,¢o) as the d + 1 coefficients of a polynomial
of degree at most d, namely P(z) = cqr® + cg12% 1 + ..+ 1z + ¢o. Now we evaluate P at some
d+ k + 1 points, say 0,1,2,...,d + k, and send these d + k + 1 numbers

P(0), P(1),...,P(d+k)

across. The receiver will get back at least d + 1 of these numbers, which by Theorem 2 uniquely
specifies P(x). Moreover, the receiver can also reconstruct P(x) using, say, Langrange interpolation.

Theorem: Erasure codes using polynomials

We can send a sequence of d + 1 numbers across an erasure channel that erases up to k of
them by sending d + k + 1 points of the polynomial P encoded by the sequence.

Here is an example: Suppose we want to send (5,19,2,3,2) with k = 2. Hence P(z) = 52% + 1923 +
222 + 37 + 2. Now we'll evaluate P(z) at 0,1,2,...d + k = 6. This gives

P(0) =2, P(1) = 31, P(2) = 248, P(3) = 947, P(4) = 2542, P(5) = 5567, P(6) = 10676

So we send across the “encoded message”:
(2,31,248,947,2542, 5567, 10676)
Now suppose the third and fifth entries get erased. the receiver gets:
(2,31, %,947, %, 5567, 10676)

So she wants to reconstruct a polynomial R(x) of degree at most 4 such that R(0) = 2,R(1) =
31,R(3) = 947, R(5) = 5567, R(6) = 10676. (That is, she wants to “decode” the message.) By
Langrange interpolation, we get that

R(z) = %(x —1)(z—3)(z—5)(x—6) — %x(m —3)(z —5)(x—6)+ 93i67x(:r —1)(z —5)(z —6)

5567 5338
10 z(x—1)(x —3)(z —6) + pT3 z(x —1)(x — 3)(z —5)

which simplifies to P(x) = 5z* + 1923 + 222 + 3z + 2!

FEzxercise

Take your favorite degree-3 polynomial P(x) over the reals, and evaluate it at any 4 points. Use
Lagrange interpolation to fit a degree-3 polynomial through those points, and check it equals P(z).

Note on the Running Time The numbers can get large, so you may want work in the field
[F), as long as the size of the field is large enough to encode the numbers you want to send across.
(Of course, if you are working modulo a prime p, both the sender and the receiver must know p.)

Example

Since we want to send numbers as large as 19, let’s work in Zs3. Then you’d send the numbers modulo
23, which would be
(2,8,18,4,12,1,4)

Now suppose you get
(2,8, %,4,%,1,4)

Interpolate to get
R(z)=45"Yz - 1)(z —3)(z —5)(x —6) — 5 '2(z — 3)(x — 5)(z — 6) + 9 a(z — 1)(x — 5)(z — 6)
407 'x(z — D)(z —3)(z — 6) +2- 45" Lx(z — 1)(z — 3)(z — 5)

where the multiplicative inverses are modulo 23, of course. Simplifying, we get P(r) = 5% + 1923 +
222 + 3z + 2 again.

Fzxercise

Do the same interpolation exercise as above for a polynomial over Zi7 or Zs51. You will have
to recall how to take additive and multiplicative inverses over finite fields.

5.1 FError Correction

One can imagine that the channel is more malicious: it decides to replace some k of the numbers not
by stars but by other numbers, so the same encoding/decoding strategy cannot be used! Indeed,
the receiver now has no clue which numbers were altered, and which ones were part of the original
message! In fact, even for the d = 0 case of a single number, we need to send 2k + 1 numbers
across, so that the receiver knows that the majority number must be the correct one. And indeed,
if you evaluate P(z) at n = d + 2k + 1 locations and send those values across, even if the channel
alters k of those numbers, there is a unique degree-d polynomial that agrees with d+ k + 1 of these
numbers (and this must be P(x))

Theorem: Error correction code using polynomzials

If we want to send d + 1 numbers across a channel in which & of them could be replaced, we
send d + 2k + 1 points of the polynomial P encoded by the sequence, then for any subset
of d 4+ k + 1 points on the receiving end (which may contain corruptions), if there exists a
polynomial that interpolates these points, it must be P.

Proof. First, there definitely exists some subset of points that interpolates to P, the uncorrupted
d+ k + 1 of them. Now consider some other subset of points and suppose there exists a degree-d
polynomial) that interpolates them. Since there are k corrupted points, P and () must agree at
at least d+ 1 of the points and hence by the unique reconstruction theorem, P and () are the same
polynomial since there is a unique degree-d polynomial that interpolates d 4+ 1 points. O

So we can show that d + 2k 4+ 1 points is good enough that it uniquely determines P even in the
presence of adversarial replacements, but its not clear how to actually reconstruct P. The above
theorem only tells us that it is possible, but by brute force we would have to try exponentially many
subsets of points to find one that works. What is super interesting is that there is an algorithm that
the receiver can use to reconstruct P(z) fast: this is known as the Berlekamp- Welch algorithm.

5.1.1 The Berlekamp-Welch Error-Correction Algorithm

Let [n] :={0,1,...,n — 1}, where n = d + 2k + 1. Suppose we send over the n numbers
80581y -+ Sn—1,

where s; = P(i). We receive numbers
TO Ty« -+ Tno1,

where at most k of these r;s are not the same as the s;s. Define a set Z of size k& such that
Z D {i|si#ri}: ie, Z contains all the error locations.

Now define a degree-j “error” polynomial E(x) such that

Observe that
P(x) -E(z) =71, - E(x) Vz € [n]. (1)

Indeed, E(xz) = 0 for all x € Z (by construction of E()) and P(x) = r; for all z € [n]\ Z (by the
definition of Z). Of course, we just received the 7;s, so we don’t know P(z). Nor do we know E(x),
since we don’t know Z.

But we know that E(x) looks like:

E(w) = xk + €k_1xk71 + ...+ ex + eg.

for some values ej_1, €x_a,...,eo. (So there are k unknown coefficients, since the coefficient of z*
in E(z) is 1.) Moreover, we know that P(z) - E(z) has degree d + k, so looks like

P(z) E(z) = farks™™ + foppoiz®™ 4L+ fiz+ fo.
So the n = d 4 2k 4 1 equalities from (5.1.1) look like

k—1

Farn®™ P 4 frpa®™N 4 L Al fo=r (@ a4+ erm +e),

one for each x € [n]. The unknown are e; and f; values—there are k + (d +k+1) =d+ 2k + 1
unknowns. So we can solve for these unknowns (say using Gaussian elimination), and get F(z) and
P(z) - E(z). Dividing the latter by the former gives back P(z). It’s like magic.

Show there is a unique solution to this system of n equalities in at most n variables.

6 Multivariate Polynomials and Matchings

Optional content — Will not appear on the homeworks or the exams

Here’s a very different application of polynomials in algorithm design. Now we’ll consider multi-
variate polynomials, and use the fact that they also have “few” roots to get an unusual algorithm
for finding matchings in graphs. We need to think carefully about what we mean by “few”, since
for multivariate polynomials, even simple linear polynomials can have many roots, more than any
function related to the degree. For example P(x,y) = x — y has infinitely many roots, one for every
point (x,y) such that = y. This is unlike single variable polynomials where we could just bound
the number of roots by d. So instead of trying to bound the number of roots, we’ll instead try to
show that the fraction of points that can be roots is small. First, let’s review the definition.

Definition: Multivariate polynomial

A multivariate polynomial is a sum of monomials, where a monomial is a product of powers
of the variables (and possibly a constant), e.g.,

2 2 2 2
P(x1,22,%3,T4) = T1T5T4 + T3T5 + T1T5T524

The degree of the monomial a:zf x? x?f’ mff is 41 + 19 + i3+ 14. The degree of P is the maximum

degree of any of its monomials.

Here’s an alternate view of Theorem 1 that is possible to generalize to multivariate polynomials:
suppose we fix a set S of values in the field we are working over (e.g., R, or F,,), and pick a random
x € 5. Given a degree-d polynomial, what is the probability that we picked a root? There are at
most d distinct root, so the probability that P(x) = 0 is at most d/|S|. One can extend this to the
following theorem for multivariate polynomials P(x) = P(z1,Z2,...,Zm).

Theorem 3: Schwartz (1980), Zippel (1979)

For any non-zero degree-d polynomial P(x) and any subset S of values from the underlying
field, if each X, is chosen independently and uniformly at random from S, then

Pr[P(X1,..., Xpm) = 0] < é‘.

This theorem is useful in many contexts. E.g., we get an algorithm for perfect matchings.

6.1 Application: Perfect matchings

Definition: The Tutte matriz

For any graph G = (V, E) with vertices vy, va, ..., vy, the Tutte matriz® is a |V| x |V | matrix

10

z;; if {vj,v;} € Eand i <j
M(G)i; =4 —z;; if{v,v;} € Eandi>j
0 if (Ui,’Uj) 9{ E

“Named after William T. (Bill) Tutte, pioneering graph theorist and algorithm designer. Recently it was
discovered that he was one of the influential code-breakers in WWII, making crucial insights in breaking the
Lorenz cipher.

This is a square matrix of variables x; ;. And like any matrix, we can take its determinant, which
is a (multivariate) polynomial Pg(x) in the variables {z;;}(; j;er- The degree of this polynomial
is at most n = |V, the dimension of the matrix. Here is a surprising and super useful fact:

Theorem 4: Tutte (1947)

A graph G has a perfect matching if and only if Pg(x), the determinant of the Tutte matrix,
is not the zero polynomial.

How do we check if Pg(x) is zero or not? That’s the problem: since we’re taking a determinant
of a matrix of variables, the usual way of computing determinants may lead to n! terms, which
eventually may all cancel out!

However, we can combine Theorems 3 and 4 together: take G, construct M (x), and replace each
variable by an independently uniform random value in some set S, and then compute the deter-
minant of the resulting matrix of random numbers. This is exactly like plugging in the random
numbers into Pg(x). So if Pg(x) was zero, the answer is zero for sure. And else, the answer is
zero with probability at most n/|S|, which we can make as small as we want by choosing S large
enough, or by repeating the process sufficiently many times.

FEzxercise

Think about how you would use this algorithm (which tests for the existence of a perfect
matching), to actually find a perfect matching (with high probability) in a graph, if one
exists. Your PM-finder should perform at most O(m) calls to the PM-existence-checker.

FEzxercise

Given an algorithm to find perfect matchings in a graph (if one exists), use it to find maximum
cardinality matchings in graphs.

https://en.wikipedia.org/wiki/W._T._Tutte
https://www.math.lsu.edu/~oxley/ahjo.pdf
http://www.codesandciphers.org.uk/lorenz/fish.htm

	Introduction
	Operations on Polynomials
	How Many Roots?
	A New Representation for degree-d Polynomials
	Application: Error Correcting Codes
	Error Correction
	The Berlekamp-Welch Error-Correction Algorithm

	Multivariate Polynomials and Matchings
	Application: Perfect matchings

