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Polynomials
* Polynomial: p(x) = cgx? + cg_1x47 1 + -+« + ;X + ¢

* (cq,C4-1, ---» Co) completely describes p

e Addition: O(d)
e Multiplication: O(d log d) using FFT

e FEvaluation: ?



Evaluating a Polynomial Quickly
* Polynomial: p(x) = cgx? + cg_1x4™ 1 + -+ + c1x +
* Evaluate at a point b in time O(d) using Horner’s Rule:

* Compute: cq4
Cd_1 + Cd ' b
Cq-2 + Cq-1 b + Cq - bz

* Each step has O(1) operations — multiply by and add coefficient



Polynomial Degree
* Polynomial: p(x) = cgx? + cg_1x4™ 1 + -+ + c1x +
* If cq # 0, the degree is d

* If A(x) has degree d and B(x) has degree d, then A(x) + B(x) has
degree at most d

Why is the degree at most d?



Roots of Polynomials

* A root of a polynomial is a number r for which A(r) =0

* Fundamental theorem of algebra: a non-zero degree-d polynomial has at most d roots

(Holds for any field)
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Roots of Polynomials

* A root of a polynomial is a number r for which A(r) =0

* Fundamental theorem of algebra: a non-zero degree-d polynomial has at most d roots

* Implies any distinct degree d polynomials A(x) and B(x) can evaluate to the same value
on at most d different values x. Why?

* A(x) —B(x) has degree at most d, so can have at most d roots
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Unique Reconstruction Theorem

* Given (Xq,Vo), -+, (Xgq, Vg) for distinct x,, ..., Xgq, there exists a
polynomial of degree at most d for which p(x;) = y; for each i

* Define R{(x) = Hjii(x — xj) /Hjii(xi — x]-), which has degree d
¢ RI(X]) = ( forj * 1
* Ri(x;) =1

* p(X) = Xi=o,..a Yi - Ri(®)



Example of Polynomial Reconstruction

* Given pairs (5,1), (6,2), and (7,9), we would like to find a degree-2
polynomial that passes through these points

. _ x-6)x-7) _ 1 _ _
Ro(0) = S8 = 2 (x~ 6)(x — 7)

. _ x-5)x-7) _ _ _ _
Ri() = B = —(x = 5)(x = 7)

. _ (x-5)(x-6) _ 1 _ _
Ry(x) = o2 = 2 (x — 5)(x — 6)

cp(x) =1-Ry(x) +2-R;(xX) +9-R,(x) = 3x* —32x + 86



Polynomial Reconstruction can be achieved
e in O(d log d) time if roots of unity
e in O(d poly log d) time (for the general case)

see
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.9192&r
ep=repl&type=pdf

Lecture notes: O(d?) time



Polynomials For Error Correcting Codes



Error Correcting Codes

e Communication channel may be lossy or noisy

® How can we have reliable communication?



Applications of Error Correcting Code

> Communication, e.g., satellite, wifi

EA S
> Storage systems d 5 E
j‘t:?f;‘:,ﬁz

> QR code

> Lots of applications in cryptography
o Proof of retrievability
o Zero-knowledge proofs



A Deletion Channel

5,19, 2,3,2 *,19, %, *, 2

* Alice has d+1 numbers and wants to send them to Bob
e Up to k of the numbers might be replaced with a *

e How can Bob learn Alice’s numbers?



Deletion Channel and Erasure Code

* Alice could repeat each number k+1 times
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Deletion Channel and Erasure Code

* Alice could repeat each number k+1 times

°If k =3, she sends:
55,5,5,19,19,19,19,2,2,2,2,3,3,3,3,2,2,2,2

*This is (d+1)(k+1) words of communication

*Can we get d+k+1 communication?



Deletion Channel and Erasure Code

* Suppose Alice has ¢4, €q—1,C4-2,... Co

* She interprets these as the coefficients of a polynomial P(x):

P(x) = Z C;ix!
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 Alice sends P(0), P(1), P(2), ..., P(d+k)



Deletion Channel and Erasure Code

* Suppose Alice has ¢4, €q—1,C4-2,... Co

* She interprets these as the coefficients of a polynomial P(x):

P(x) = Z c;ix!

i=0,....d
 Alice sends P(0), P(1), P(2), ..., P(d+k)

* Bob gets at least d+1 of these numbers. By the unique reconstruction
theorem, he recovers P(x), and hence cq, c4—1, C4-2.... Co



Application of Erasure Code: Proof of
Retrievability

User Untrusted Server



Naive idea: randomly check k positions



Amplifying soundness with erasure code
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General Error Correction

* Now the adversary can replace up to k numbers with other numbers

* If Alice wants to send Bob a single number x, how many times does she need to copy it?
e 2k+1, to ensure the majority symbol is correct

Repetition code: (d+1) (2k+1)

Can we achieved + 2k + 1?
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General Error Correction

* Now the adversary can replace up to k numbers with other numbers

* Now Alice has cg, €4_1,Cq—2,.., Co, Which she writes as a polynomial P(x) = X;_q 4 ;X!

* Suppose Alice sends P(0), P(1), ..., P(r). How large does r need to be?
e d+2k+1 points is enough, so r = d+2k



Claim: suppose P and Q are consistent with
all but k points, then P=Q



Naive algorithm for reconstruction: brute
force search for a set of d + k + 1 points

that are “internally consistent”



Efficient Algorithm for General Error Correction

* But how to find P(x) given k corruptions to P(0), P(1), ..., P(d+2k)?



Efficient Algorithm for General Error Correction

* But how to find P(x) given k corruptions to P(0), P(1), ..., P(d+2k)?
* Suppose Bob receives ry, Iy, ..., Fg+2k
« Z={isuch thatr; # P(i)}, and so |Z| <k

* E®) = [liez(x— 1)

* P(x) -E(x) =ry - E(x) forallx=0, 1, 2, ..., d+2k



Berlekamp-Welch Algorithm
* P(x)-E(x) =1, -E(x)forallx=0,1, 2, .., d+2k (*)
e E(x) = xX 4 ep_1 XK1 + ep_,xK72 + -« + ¢, if degree(E(x)) = k

¢ P(X) . E(X) = fd+kXd+k + fd+k—1 Xd-l_k_1 + o+ fO



Berlekamp-Welch Algorithm

* P(x)-E(x) =1, -E(x)forallx=0,1, 2, .., d+2k (*)
e E(x) = xX 4 e _1 XK1 + ep_,x572 + - + e, if degree(E(x)) = k
* P(X) . E(X) = fd+kXd+k + fd+k—1 Xd-l_k_1 + o+ fO

e Pluggingeachx=0,1, 2, ..., d+2k into (*), we get a linear equation relating
fd+k, fd+k—1' 1F fO' €k-1,€k-2, -+, €p

e d+2k+1 unknowns and d+2k+1 equations

(P(x)-E(x))
E(x)

* Equations are linearly independent, so get (P(x) - E(x)) and E(x), output



Polynomials for Finding Maximum
Matchings



Multivariate Polynomials

— oy 2 2 22
* P(Xq,X9,X3,Xs) = X1X5X4 + X3X + X{X5X5X,

» Degree of monomial x; X2 X3 x4 isiy +1, +1i3 + 1,

* Degree of p is the maximum degree of any of its monomials



Schwartz-Zippel Lemma for Multivariate Polynomials

* [Schwartz-Zippel] Let P(X4, ..., X,,) be a non-zero, m-variable, degree at most d
polynomial, and let S be a subset from the field F. If each X is chosen independently in S

Pr[P(Xq, ..., X,,) = 0] < S

* Sanity check: if m =1, a non-zero degree-d polynomial has at most d roots

* |If |F| > 3d, how can we tell if P is the all zeros polynomial w.pr. 2/3?



Schwartz-Zippel Lemma for Multivariate Polynomials

* [Schwartz-Zippel] Let P(X4, ..., X,,) be a non-zero, m-variable, degree at most d
polynomial, and let S be a subset from the field F. If each X is chosen independently in S

Pr[P(Xq, ..., X,,) = 0] < S

* Sanity check: if m =1, a non-zero degree-d polynomial has at most d roots
* |If |F| > 3d, how can we tell if P is the all zeros polynomial w.pr. 2/3?

* Choose X4, ..., X, independently from F, and evaluate P(X4, ..., X\,)



Tutte Matrix

* If Gis a graph on vertices v, ..., vy, the Tutte matrixisa |V| x |V|
matrix M(G) with
zi; if{vi,v;} €EE andi< j
M (G)i,j = —Tj if {’l)i,’l)j} el andi>j
0 if (vi,v;) € E




Tutte Determinant Theorem

* [Tutte] A graph has a perfect matching if and only if the determinant of M(G)
is not the zero polynomial (a matching is perfect if all nodes are matched)

det(M(G)) = x%, det(M(G)) =0
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Tutte Determinant Theorem

* [Tutte] A graph has a perfect matching if and only if the determinant of M(G) is not the zero polynomial (a matching is
perfect if all nodes are matched)

det(M(G)) = x%, det(M(G)) =0

* det(M(G)) is a polynomial of degree at most n, and could have n! terms
* How can we determine if G has a perfect matching with probability at least 2/3?
* Choose afield F with |F| > 3n, randomly fill in the X; ; values, and compute determinant!



Finding a Perfect Matching

* We can quickly determine if G has a perfect matching

e Can reduce the error probability to 1/n3, say, by choosing |F| = n*
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Finding a Perfect Matching

* We can quickly determine if G has a perfect matching
e Can reduce the error probability to 1/n3, say, by choosing |F| = n*
* But how to output the edges in the perfect matching?

* For each edge e,
* Remove e and see if there is still a perfect matching
 |f there is no perfect matching, put e back in G, otherwise discard e

At the end, will be left with exactly n/2 edges in a perfect matching



Fall 2023:
15435 Foundations of Blockchains

e Basic cryptography
e Distributed consensus
e Mechanism design for blockchains

Focuses on mathematical foundations
Not an introductory-level course



Thank you!



Finding a Maximum Matching

* Can we find a maximum matching if we can find a perfect matching?



Finding a Maximum Matching

* Can we find a maximum matching if we can find a perfect matching?
* Given a graph G, connect n-2k new nodes to every node in G

* If G has a matching of size at least k, then this new graph has a perfect
matching

* If the maximum matching size of G is less than k, then this new graph does
not have a perfect matching

* Binary search on k



