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Assume: adding and multiplying two 
values in O(1) time



Polynomials

 

● Addition: O(d)
● Multiplication: O(d log d) using FFT



Polynomials

 

● Addition: O(d)
● Multiplication: O(d log d) using FFT

● Evaluation: ?



Evaluating a Polynomial Quickly

 



Polynomial Degree

 



Roots of Polynomials

 

(Holds for any field)
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Unique Reconstruction Theorem
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Example of Polynomial Reconstruction



Polynomial Reconstruction can be achieved
● in O(d log d) time if roots of unity
● in O(d poly log d) time (for the general case)

see 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.9192&r
ep=rep1&type=pdf

Lecture notes: O(d2) time



Polynomials For Error Correcting Codes



Error Correcting Codes

● Communication channel may be lossy or noisy

● How can we have reliable communication?



Applications of Error Correcting Code

➢ Communication, e.g., satellite, wifi

➢ Storage systems

➢ QR code

➢ Lots of applications in cryptography
○ Proof of retrievability
○ Zero-knowledge proofs



A Deletion Channel

5, 19, 2, 3, 2 *, 19, *, *, 2

• Alice has d+1 numbers and wants to send them to Bob 

• Up to k of the numbers might be replaced with a *

• How can Bob learn Alice’s numbers?



Deletion Channel and Erasure Code

•Alice could repeat each number k+1 times

• If k = 3, she sends: 

5, 5, 5, 5, 19, 19, 19, 19, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2

•This is (d+1)(k+1) words of communication

•Can we get d+k+1 communication?
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Deletion Channel and Erasure Code



Application of Erasure Code: Proof of 
Retrievability

Untrusted ServerUser



Naive idea: randomly check k positions



Amplifying soundness with erasure code



General Error Correction
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General Error Correction

 

Repetition code:  (d+1) (2k+1)



General Error Correction

 

Can we achieve d + 2k + 1?

Repetition code:  (d+1) (2k+1)



General Error Correction

 



General Error Correction

 



Claim: suppose P and Q are consistent with 
all but k points, then P = Q



Naive algorithm for reconstruction: brute 
force search for a set of d + k + 1 points 
that are “internally consistent”



Efficient Algorithm for General Error Correction

 



 

Efficient Algorithm for General Error Correction



Berlekamp-Welch Algorithm

 



Berlekamp-Welch Algorithm

 



Polynomials for Finding Maximum 
Matchings



Multivariate Polynomials

 



Schwartz-Zippel Lemma for Multivariate Polynomials

 



Schwartz-Zippel Lemma for Multivariate Polynomials

 



Tutte Matrix
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Tutte Determinant Theorem

• [Tutte] A graph has a perfect matching if and only if the determinant of M(G) 
is not the zero polynomial (a matching is perfect if all nodes are matched)
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Finding a Perfect Matching



Finding a Perfect Matching



Finding a Perfect Matching



Fall 2023: 
15435 Foundations of Blockchains

● Basic cryptography
● Distributed consensus
● Mechanism design for blockchains

Focuses on mathematical foundations
Not an introductory-level course



Thank you!



Finding a Maximum Matching 

•Can we find a maximum matching if we can find a perfect matching?

•Given a graph G, connect n-2k new nodes to every node in G

• If G has a matching of size at least k, then this new graph has a perfect 
matching 

• If the maximum matching size of G is less than k, then this new graph 
does not have a perfect matching

•Binary search on k 
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