
15-451/651 Algorithm Design & Analysis

Spring 2023, Recitation #1

Objectives

• Practice writing recurrence relations to analyze the runtime of algorithms

• Understand the concept of a lower bound for the running time of an algorithm

• Understand the different proof techniques that can be used to establish lower bounds

• Practice identifying flawed lower bounds proofs and writing correct ones

Mathematical Preparation

1. (Asymptotic analysis) For each pair 〈f, g〉 of functions below, list which of the
following are true: f(n) = o(g(n)), f(n) = Θ(g(n)), or g(n) = o(f(n)).

(a) f(n) = ln(n), g(n) = log10(n).

(b) f(n) = n1.5, g(n) = n log4(n).

(c) f(n) = 22n, g(n) = 2n.

(d) f(n) = n0.001, g(n) = (log2 n)100.

2. (Solving recurrences) Solve the following recurrences in Θ notation by the tree/brick
method (assume all base cases have T (1) = 0):

(a) T (n) = 1 + 2T (n− 1).

(b) T (n) = n+ T (n/2).

(c) T (n) = n+ 2T (n/2).
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Recitation Problems

1. (Sorting few distinct numbers) Suppose you have a list of n numbers a1, a2, . . . , an,
but there are at most D distinct numbers in this list. You would like to design a
comparison-based algorithm for sorting these n numbers, (i.e., the only operation al-
lowed is to choose two input numbers ai and aj and check whether or not ai ≤ aj, at
a cost of one operation).

(a) Describe an algorithm that can sort a list containing at most D distinct numbers
in O(n logD) comparisons.

(b) Now we would like to prove a lower bound for the problem. Consider the following
attempted proofs. Some of them are correct and some are incorrect. Identify
which are which, and for the incorrect ones, explain why they are incorrect1.

i. In a list of size n consisting of at most D distinct numbers, each number
has at most D possibilities, so the number of possible input lists for this
problem is Dn. Since in the worst case any comparison can rule out half of
the previously compatible inputs, to narrow down to just 1 input takes at
least log(Dn) = n logD comparisons, and so we have an Ω(n logD) lower
bound in the comparison model.

1You should be looking for mistakes in the overall logic of the proof. There are no intentional mistakes
hidden in the math, so don’t overthink the math parts. You can assume they are correct
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ii. Consider the following set of possible sorted outputs to this problem:

1, 1, . . . , 1︸ ︷︷ ︸
x1

, 2, 2, . . . , 2︸ ︷︷ ︸
x2

, . . . , D,D, . . . , D︸ ︷︷ ︸
xD

where x1, x2, . . . , xD ≥ 0 and x1 +x2 + · · ·+xD = n. By the “stars and bars”
combinatorial argument, we can say that the number of such outputs is(

n+D − 1

D − 1

)
and since no possible input can legally produce multiple of these outputs,
any algorithm must correctly distinguish the 1 exact valid output among
them and each must have a distinct leaf a correct decision tree. Therefore,
by an information-theoretic argument we get a lower bound on tree height of

log

(
n+D − 1

D − 1

)
≥ log

(
n+D − 1

D − 1

)D−1

≥ Ω
(
D log

( n
D

))

iii. Consider a set of possible inputs of size n withD distinct elements constructed
as follows. Create n/D contiguous chunks of size D. Each chunk contains
the numbers 1...D in a random order. Since each chunk is size D and is in
a random order, there are D! possible orders for each chunk. Since there are
n/D chunks, the total number of inputs in the set is (D!)

n
D . Now observe

that for each of these input sequences, no two of them are ever sorted by the
same permutation. This is because each permutation selects exactly one item
from each chunk for each element, and the elements of the chunks are unique.
Therefore, we require at least (D!)

n
D different possible permutations to sort

them all, each representing a leaf in a decision tree.

Taking the log of this quantity, we get the minimum height of any decision
tree with that many leaves, and have a lower bound of

log
(
(D!)

n
D

)
=
n

D
log(D!) = Ω

( n
D

(D log(D))
)

= Ω(n logD),

where we have used the fact from lecture that logD! = Θ(D logD).
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iv. Consider the class of input sequences in which each of the D elements occurs
the same number of times, i.e., there are n/D copies of each of the D elements.
Now note that each of our n elements can go in any of at most n locations

in the array. This will create
(
n
D

!
)D

copies of each array due to permuting
the n/D identical elements of all D values. Since each non-duplicate value
among these needs a distinct output (there is only one valid sorted order),
there are

nn(
n
D

!
)D

different permutations required to sort each of the possible input sequences.
This means we have at least this many leaves in the decision tree (intuitively,

each leaf of the tree can correspond to at most
(
n
D

!
)D

inputs), so we can take
the log of this quantity to achieve a lower bound on height of

log
nn(
n
D

!
)D ≥ nn((

n
D

) n
D

)D =
nn(
n
D

)n = Ω(n logD)

v. Consider the class of input sequences in which each of the D elements occurs
the same number of times, i.e., there are n/D copies of each of the D ele-
ments. Recall that for a sequence of n distinct elements, there are n! distinct
permutations. Note that for a sequence with n/D copies of each of the D
elements, permuting any subsequence of equal elements results in an also cor-
rectly sorted sequence. Therefore for each distinct element, there are (n/D)!
ways they could be permuted and still be sorted. Combining all of these
possibilities over the D elements, for any input sequence, there are exactly
((n/D)!)D permutations that all correctly sort it. These sets of permutations
are all disjoint, and hence there are

n!(
n
D

!
)D

different permutations required to sort each of the possible input sequences.
This means we have at least this many leaves in a decision tree for this
problem, which must therefore have height at least

log

(
n!(
n
D

!
)D
)
≥ log

(
D

e

)n

= Ω(n logD).
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2. (Breaking Eggs) Say I choose a number between 1 and N . You want to guess it in
as few questions as possible (each time you make an incorrect guess, I’ll tell you if it is
too high or too low). As we know, the strategy that minimizes the worst-case number
of guesses is to do binary search: it takes dlog2Ne guesses.

But, what if you are only allowed one guess that is too high? Can you still solve the
problem in o(N) guesses? [If you were not allowed any guesses that are too high, the
only option you would have would be to guess 1,2,3,... in order].

(a) Show how to figure out how many centimeters high you can drop an egg without
it breaking, using 2

√
N guesses, when you only have two eggs.

(b) Can you show an Ω(
√
N) lower bound for any deterministic algorithm via an

adversarial argument?

3. (Optional: Quartile of quartiles) Wurzelbrunft is taking 451, but he hates medians,
and so he comes up with a new algorithm for deterministic selection that pivots on
the first quartile of the medians (the element 25% of the way through in order), rather
than the median of the medians:

1. Group the array into n/5 groups of size 5 and find the median of each group. (For
simplicity, we will ignore integrality issues.)

2. Recursively, find the true quartile of the medians. Call this p.

3. Use p as a pivot to split the array into subarrays Less and Greater.

4. Recurse on the appropriate piece.

He tasks you, his group member, with analyzing his new algorithm before the oral.

(a) Write the recurrence relation for Wurzelbrunft’s algorithm and compute its time
complexity.
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(b) Can you improve the time complexity of Wurzelbrunft’s algorithm by changing
only the elements used in the recursive call?
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Further Review

1. (Short answer / multiple choice)

(i) What is the solution of A(n) = 3A(n− 1) + 3n with A(1) = 1

(a) Θ(3n)

(b) Θ(n3n)

(c) Θ(3n2
)

(d) Θ(9n)

(e) Θ(3n log n)

(ii) What is a correct bound on A(n), where

A(n) =

{
8A(n/2) + n2 for n ≥ 2,

1 for 0 ≤ n ≤ 1.

(a) A(n) = Θ(n2 log n)

(b) A(n) = Θ(n3)

(c) A(n) = Θ(n3 log n)

(d) A(n) = Θ(n4)

(e) A(n) = Θ(n4 log n)

(iii) What is a correct bound for T (n), where

T (n) =

{
4T (n/2) +

√
n for n ≥ 2,

1 for 0 ≤ n ≤ 1.

(a) T (n) = Θ(
√
n)

(b) T (n) = Θ(
√
n log n)

(c) T (n) = Θ(n)

(d) T (n) = Θ(n log n)

(e) T (n) = Θ(n2)

(f) T (n) = Θ(n2 log n)

(iv) In the DeterministicSelect algorithm, the median of medians procedure

(a) recursively calls itself

(b) calls DeterministicSelect

(c) Both of the above
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(v) What would be the worst-case running time of the Quicksort algorithm if we
pick an arbitrary (fixed) element as the pivot?

(a) Θ(n)

(b) Θ(n log n)

(c) Θ(n2)

(d) Θ(n2 log n)

(vi) What would be the expected worst-case running time of the Quicksort algo-
rithm if we pick a random element as the pivot?

(a) Θ(n)

(b) Θ(n log n)

(c) Θ(n2)

(d) Θ(n2 log n)

(vii) What would be the worst-case running time of the Quicksort algorithm if we
used DeterministicSelect to select the pivot element?

(a) Θ(n)

(b) Θ(n log n)

(c) Θ(n2)

(d) Θ(n2 log n)

(viii) Regarding lower bounds for problems in the comparison model, which of the
following statements are true and which are false?

(a) ∃M distinct inputs =⇒ lower bound of lgM

(b) ∃M distinct inputs that require distinct outputs =⇒ lower bound of lgM

(c) ∃M distinct outputs, each required by some input =⇒ lower bound of lgM

(d) ∃M distinct outputs, each possible for some input =⇒ lower bound of lgM

(ix) Out of the following choices, what is the largest lower bound on the number of
comparisons required to find the second largest element in an array?

(a) n+ lg n− 2

(b) n

(c) n− 1

(d) 2n− 3

(e) n lg n
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2. (Partition) Rank the following functions by order of growth; that is, find an arrange-
ment g1, g2, . . . , g25 of the functions such that gn = Ω(gn+1) for n = 1, . . . , 24. Partition
your list into equivalence classes such that f(n) and g(n) are in the same class if and
only if f(n) = Θ(g(n)).

(3/2)n (
√

2)lgn lg∗ n n2 (lg n)!

n3 lg2 n lg(n!) 22n n1/ lgn

lg lg n n · 2n nlg lgn lnn 2n

2lgn (lg n)lgn 4lgn (n+ 1)!
√

lg n

n! 2
√
2 lgn n n lg n 1

3. (More recurrences) Solve the following recurrences, assuming a base case of T (0) =
1, T (1) = 1

(a) T (n) = 3T (n/2) + n2.

(b) T (n) = 4T (n/2) + n2.

(c) T (n) = 5T (n/2) + n2.

4. (Probability Facts) Let’s follow the convention of using uppercase letters X, Y, Z to
denote random variables (which we often abbreviate to r.v.s).

Independence Random variables X, Y are independent if for any values a, b, we
have

Pr[X = a, Y = b] = Pr[X = a] · Pr[Y = b].

(a) Consider flipping two fair coins. Let X ∈ {0, 1} be the outcome of the first coin
(where we think of heads as 1 and tails as 0) and let Y ∈ {0, 1} be the outcome
of the second coin. Let Z = X + Y mod 2. Are X and Y independent? What
about X and Z?
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Linearity of expectation Given any two r.v.s X, Y ,

E[X + Y ] = E[X] + E[Y ].

This is true even if X and Y are not independent!

(b) Suppose we take n books numbered 1 to n, and place them on a shelf in a (uni-
formly) random order. What is the expected number of books that end up in
their correct location? (“correct” = location it would be in if they were sorted).

Markov’s inequality given a non-negative random variable X with mean/expecta-
tion µ = E[X],

Pr[X > c · µ] ≤ 1

c
.

(c) Show that if X is allowed to take negative values then the above inequality is no
longer true.

5. (Summations) Prove the following theorem: For x < 1

∞∑
i=0

xi =
1

1− x

6. (Deciding the maximum) In lecture we used an adversary argument to obtain a
lower bound of n− 1 comparisons for finding the maximum element of a list.

(a) Suppose we instead used an information-theoretic argument. What lower bound
would we obtain for the problem? Is it useful?

(b) Suppose we instead use decision trees to analyze the problem

i. How many outputs does the root node of any decision tree for this problem
contain?

ii. How many outputs does each internal node of any decision tree for this prob-
lem contain?

iii. Are the leaves of these decision trees unique?

iv. How many nodes do each of the possible decision tree have?

v. What lower bound is implied by the structure of these decision trees?
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7. (Lower bounds via reductions) In 15-251, you learned how to use reductions to
show that one problem is just “as hard” as another problem. 251 taught you how to
show that a problem is loosely in the same complexity class as another (e.g., NP-hard).
This technique is not only applicable to loose complexity classes, but can also be used
to establish tight lower bounds!

Lets do an example. Recall the partitioning algorithm used as a subroutine of Quick-
sort, which, given an array A and some “pivot” element A[i] of the array, rearranges
the elements of A so that all elements that are ≤ A[i] come before all elements that
are > A[i]. What if we generalize this problem to pick k distinct pivot elements,
A[i1], A[i2], ..., A[ik]? (The pivots do not have to be given in sorted order). The prob-
lem then becomes to rearrange the array so that all elements that are at most as large
as the smallest pivot come first, followed by those that are larger but at most as large
as the second-smallest pivot and so on...

(a) Give an algorithm that solves k-partitioning in Θ(n log k) comparisons.

(b) Show that there can not possibly exist an algorithm that performs k-partitioning
in fewer than Θ(n log k) comparisons. To do so, show that if you assume such
an algorithm exists, then it must be possible to sort in fewer than Θ(n log n)
comparisons.

8. (Breaking Eggs Extended)

(a) Improve the algorithm to have an upper bound of
√

2N guesses.

(b) Show upper/lower bounds of Θ(N1/3) if you’re allowed two guesses that are too
high.
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9. (Sorting nuts and bolts) Consider the following problem. You have a bag of n nuts
and a bag of n bolts. The nuts and bolts are all of different sizes, but for each nut there
is a matching bolt (and vice versa). What you want to do is to find all the matching
pairs. Unfortunately, you can’t compare a nut to a nut, or a bolt to a bolt (your eyes
are too weak). Instead, what you can do is to compare a nut to a bolt and see if the
bolt is too small, too big, or just right (a perfect match). For instance, a strategy that
makes O(n2) comparisons to find the matching pairs is for each nut to go through all
the bolts until you find the matching one, and then continue with the next nut, and
so on.

Find a randomized algorithm for this problem that uses an expected O(n log n) com-
parisons.

10. (Median of two sorted lists) Let X[1 . . . n] and Y [1 . . . n] be two arrays, each con-
taining n numbers already in sorted order. Give an O(log n)-time algorithm to find
the median of all 2n elements in arrays X and Y .

12



13


