
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Linear Programming Duality

In this lecture we discuss the general notion of Linear Programming Duality, a powerful tool
that can allow us to solve some linear programs easier, gain theoretical insights into the proper-
ties of a linear program, and has many more applications that we might see later in the course.
We will show how duality connects to some topics we have already seen, like minimax optimal
strategies in zero-sum games.

Objectives of this lecture

In this lecture, we will

- Motivate and define the idea of the dual of a linear program

- See how to convert a linear program into its dual program

- Learn some powerful theorems that tell us about the behavior of a linear program and
its dual

- See how duality can teach us about minimax optimal strategies for zero-sum games

1 The Dual Program
Consider the following LP which is written in standard form.

maximize 2x1+3x2

s.t. 4x1+8x2 ≤ 12

2x1+ x2 ≤ 3

3x1+2x2 ≤ 4

x1, x2 ≥ 0

(1)

Here it is in a diagram which shows each constraint, the feasible region shaded in gray, and the
objective direction as a red arrow.
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4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

Rather than try to solve the LP using an algorithm directly, we are going to do an experiment.
Lets see if we can figure out some bounds on the objective value, and use those to hone in on
the optimal value. How can we bound the objective? Well the only other information that we
have are the constraints, so lets use them! Lets refer to the optimal objective value as OPT.

- First, since x1, x2 ≥ 0, we can notice that the left-hand equation of the first constraint (4x1+
8x2) must be bigger than the objective (2x1+3x2), in other words, we can write

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 4x1+8x2 ≤ 12
︸ ︷︷ ︸

first constraint

Note that the left-hand side is the objective function and the right hand side is the first con-
straint. So we therefore know that OPT≤ 12. That’s a start. Can we get a tighter bound?

- Yes, the first constraint is more than double the objective function, so we can write a tighter
bound by using just half of the constraint

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 1
2 (4x1+8x2)≤ 6
︸ ︷︷ ︸

half of the
first constraint

This gives us a bound of OPT ≤ 6. Can we do better? Maybe by combining multiple con-
straints!

- We want to combine some constraints such that we get as close to a coefficient of 2 for x1

and a coefficient of 3 for x2. By inspection, we can see that if we add the first and second
constraint, we will have 6x1+9x2, which is exactly three times our objective function, so lets
try one third of that combination.

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 1
3 ((4x1+8x2) + (2x1+ x2))≤ 5
︸ ︷︷ ︸

one third of the
first two constraints
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Note that we get 5 on the right-hand side because we sum the right-hand sides of the original
constraints to get 12+3= 15, then take one third of it. So we know that OPT≤ 5.

In each of these cases we take a positive linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3x2. Why positive? Because if we
multiply by a negative value, the sign of the inequality changes.

1.1 The tightest possible bound
After playing with this experiment for a bit, the natural question that arises is how do we find
the tightest lower bound that can be achieved with this method, i.e., by writing down a a linear
combination of the constraints? This is just another algorithmic problem, and we can system-
atically solve it, by letting y1, y2, y3 be the (unknown) coefficients of our linear combination. So
our goal is to write the combination like so

y1(4x1+8x2) + y2(2x1+ x2) + y3(3x1+2x2)≤ 12y1+3y2+4y3,

such that the value on the right-hand side is as small as possible. This sounds like just another
linear program! To bound the original objective function, we require that the coefficients of x1

add up to at least 2, and the coefficients of x2 add up to at least 3. We can write these require-
ments down as a linear program.

minimize 12y1+3y2+4y3

s.t. 4y1+2y2+3y3 ≥ 2

8y1+ y2+2y3 ≥ 3

y1, y2, y3 ≥ 0

(2)

This is indeed an LP! We refer to this LP (2) as the “dual” and the original LP (1) as the “primal”.
We designed the dual to serve as a method of constructing an upper bound on the optimal
value of the primal, so if y is a feasible solution for the dual and x is a feasible solution for the
primal, then 2x1+3x2 ≤ 12y1+3y2+4y3.

This serves as an upper bound, but what happens if we make it tight? If we can find two feasible
solutions x and y, that make these equal, then we know we have found the provably optimal
values of these LPs. In this case the feasible solutions x1 =

1
2 , x2 =

5
4 and y1 =

5
16 , y2 = 0, y3 =

1
4

give us a value and matching upper bound of 4.75, which therefore must be the optimal value.

1.2 An alternate motivating example – the carpenter
Suppose you are a humble carpenter; you spend your days making tables, chairs, and shelves,
all out of wood, nails, and paint. Each item you make requires a specific amount of each of the
three materials and can be sold at the market for a specific price. Given the amount of material
you have, you would like to determine the best way to use them to make the most money.

Item Wood Nails Paint Sale Price
Table 8 20 5 $50
Chair 4 15 3 $30
Shelf 3 5 3 $20
Stock 100 300 80
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Ignoring rounding issues, since we don’t want to deal with integrality, we can write this problem
as a linear program. This leads us to the following. Lets define the variables x , y , z to be the
number of tables, chairs, and shelves, respectively, that we should make.

maximize 50x +30y +20z

subject to 8x +4y +3z ≤ 100

20x +15y +5z ≤ 300

5x +3y +3z ≤ 80

x , y , z ≥ 0

If we use a computer program to solve this, we will find that an optimal solution is x ≈ 1.82, y ≈
14.55, z ≈ 9.09, with an objective value of $709.09.

Along comes a merchant A merchant approaches you, the humble carpenter, with the prospect
of buying your materials, i.e., all of your wood, nails, and paint. You consider selling them at
a fair price, but what should that be? You’d like to make sure that you sell them for at least as
much as you could make if you turned them into furniture, but you know that the merchant
will try to get the lowest price from you, so you’ll settle for that.

If we denote by w , s , p , the price of wood, nails, and paint, respectively, we can model this
problem as another LP as follows:

minimize 100w +300s +80p

subject to 8w +20s +5p ≥ 50

4w +15s +3p ≥ 30

3w +5s +3p ≥ 20

w , s , p ≥ 0

This LP has an optimal solution of w ≈ 2.73, s ≈ 0.73, p ≈ 2.73, and an objective value of $709.09.
What a coincidence! The objective value is the same as the previous LP. Perhaps that should not
be so surprising... we were not willing to sell the materials for less than we could turn them into
items, so we would expect it to be at least as much, but the fact that they are exactly equal is not
quite so obvious in advance...

The structure of this pair of LPs is very special, and if we look closely at them we will see that
they are made up of the same exact ingredients, just laid out a little differently. Since the first
LP is in standard form, we can write it in matrix form with

A =





8 4 3
20 15 5
5 3 3



 , b=





100
300
80



 , c=





50
30
20



 , x=





x
y
z





This way, the LP can be written as

maximize cT x (3)

subject to Ax≤ b

x≥ 0.
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Looking closely at the pricing LP, we see that if we define the variable vector y= [w s p ]T , then
it can be written as

minimize bT y (4)

subject to AT y≥ c

y≥ 0.

We happened to derive this particular LP by intuition, but in fact, given any LP in standard
form, one could apply this transformation to obtain this second program. It turns out to be a
wildly useful and powerful concept, so it has a name – its called the dual program!

2 A General Formulation of the Dual

Definition 1: The dual of a linear program

The dual of the standard form LP (3) is

minimize bT y

subject to AT y≥ c

y≥ 0.

The original standard form LP (3) is referred to as the primal problem.

And if you take the dual of (4) , what do you think you will get back? You’ll get (3). The dual of
the dual is the primal. Because of this, which program we refer to as the primal and which we
refer to as the dual is just a matter of convention, it is completely symmetric. Think about how
you would actually take the dual of the dual as an exercise. Since the dual as written is not in
standard form, it would need to first be converted to standard form.

2.1 The Theorems
Our intuitive derivation of the dual program as a pricing problem for the carpenter implied that
the value of the dual solutions should be at least as large as the profit the carpenter could make
from turning the materials into furniture, i.e., it should always give at least as large of a value
as the primal problem.

We can formally prove that it indeed always does just that. This fact is called weak duality.

Theorem 1: Weak Duality

If x is a feasible solution to the primal (3) and y is a feasible solution to the dual (4) then

cT x≤ bT y.
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Proof. This follows by applying the constraints of the primal and dual LPs in (3) and (4) and the
fact that x≥ 0 and y≥ 0. Since AT y≥ c, we can plug this into the objective cT x and get

cT x≤ (AT y )T x= (yT A)x

Now we can move the brackets (associativity), and use the fact that Ax≤ b, to get

(yT A)x= yT (Ax)≤ yT b= bT y.

The amazing (and deep) result here is to show that the dual actually gives not just an upper
bound on the primal, but, assuming some mild conditions, it perfectly equals the primal!

Theorem 2: Strong Duality Theorem

Suppose the primal LP (3) is feasible (i.e., it has at least one solution) and bounded (i.e.,
the optimal value is not∞). Then the dual LP (4) is also feasible and bounded. More-
over, if x∗ is the optimal primal solution, and y∗ is the optimal dual solution, then

cT x∗ = bT y∗.

In other words, the maximum of the primal equals the minimum of the dual.

We will not prove Theorem 2 in this course, since the proof is a bit long, though it isn’t too
difficult (feel free to look it up if interested). Why is this useful? If I wanted to prove to you
that x∗ was an optimal solution to the primal, I could give you the solution y∗, and you could
check that x∗ was feasible for the primal, y∗ feasible for the dual, and they have equal objective
function values.

This relationship is like in the case of s -t flows: the max flow equals the minimum cut. Or like
in the case of zero-sum games: the payoff for the optimal strategy of the row player equals the
(negative) of the payoff of the optimal strategy of the column player. Indeed, both these things
are just special cases of strong duality!

2.2 Using duality to determine feasibility and boundedness
In addition to helping us bound feasible solutions to our LPs, duality can also be used as a tool
to determine when certain programs are feasible or infeasible, or perhaps show that they are
bounded or unbounded.

- If the primal is feasible and bounded, strong duality says the dual is also feasible and bounded.

- Suppose the primal (maximization) problem is unbounded. What can duality tell us? Weak
duality says cT x ≤ bT y ... If there existed any feasible y for the dual, this would imply that
the primal is bounded, and hence by the contrapositive, if the primal is unbounded, then the
dual must be infeasible.
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- By the exact same logic (reversed), if the dual is unbounded, since the primal is a lower bound
on the dual, the primal must be infeasible.

- Can both the primal and dual be unbounded? No, because as the two previous points show,
if one of them is unbounded, then the other is infeasible, and if a program is infeasible, it
certainly can not be unbounded.

We can use these facts to represent all of the possible situations in a table like so:

Dual

Inf F&B Unb
P

ri
m

al

Inf ✓ X ✓

F&B X ✓ X

Unb ✓ X X

Here, Inf means infeasible, F&B means feasible and bounded, and Unb means unbounded.
The only scenario that duality does not cover for us is the top-left cell. You can figure that out
as an exercise.

Remark: Usefulness

This table has some very useful implications. If we have an LP for some problem, we
might want to prove conditions on when it is feasible or infeasible. Directly proving that
the LP is infeasible might be too difficult. Instead, if we can write the dual program and
give a proof that the dual is unbounded, then we have indirectly proven that the primal
is infeasible! A useful trick.

3 Example: Zero-Sum Games
Consider a 2-player zero-sum game defined by an n-by-m payoff matrix R for the row player.
To simplify things a bit, let’s assume that all entries in R are positive (this is without loss of
generality since as pre-processing we can always translate values by a constant and this will
just change the game’s value to the row player by that constant). The lower bound for the row
player was defined to be

lb∗ =max
p

min
j

∑

i

pi Ri j ,

We can solve for the lower bound by writing it as an LP.
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Variables: p1, . . . , pn and v .
Objective: Maximize v .
Constraints:

- pi ≥ 0 for all 1≤ i ≤ n ,

-
n
∑

i=1

pi = 1. (the pi form a probability distribution)

-
n
∑

i=1

pi Ri j ≥ v for all columns 1≤ j ≤m

To apply our techniques for duality, we need to put it in standard form. To do so, we can do the
following:

- we can replace
∑

i pi = 1 with
∑

i pi ≤ 1 since we said that all entries in R are positive, so the
maximum will occur with

∑

i pi = 1,

- since all entries in R are positive, we can also safely add in the constraint v ≥ 0,

- we can also rewrite the third set of constraints as v −
∑

i pi Ri j ≤ 0.

This then gives us an LP in the form of (3) with

x=

v
p1

p2

. . .
pn

, c=

1
0
0

. . .
0

, b=

0
0

. . .
0
1

, and A =

1
1 −R T

. . .
1
0 1 . . . 1

.

i.e., maximizing cT x subject to Ax≤ b and x≥ 0.

We can now write the dual, following (4). Let yT = (q1, q2, . . . , qm , v ′). We now are asking to
minimize bT y subject to AT y ≥ c and y ≥ 0. Writing out the objective function, we get b · y =
[0 0 · · · 0 1] · [q1 q2 · · · qm v ′] = v ′, so the objective is just minimizev ′. If we transpose A, we get

AT =

1 · · · 1 0
1

−R
...
1

Now we can write out the constraints, we have

1. q1+ . . .+qm ≥ 1,

2. −q1Ri 1−q2Ri 2− . . .−qm Ri m +qm+1 ≥ 0 for all rows i ,

Since the objective is to minimize, and all R entries are positive, we can make a similar argu-
ment to the primal case that q1 + . . .+ qm = 1, i.e., this constraint must be tight because in-
creasing any of the q values would only further increase the objective. Some algebra turns the
second constraint into q1Ri 1+q2Ri 2+ . . .+qm Ri m ≤ v ′ for all rows i , so we obtain the LP:

8



Variables: q1, . . . , qm and v ′.
Objective: Minimize v ′.
Constraints:

- qi ≥ 0 for all 1≤ i ≤m ,

-
m
∑

i=1

qi = 1.

-
m
∑

j=1

q j Ri j ≤ v ′ for all rows 1≤ i ≤ n

This LP look an awful lot similar to the primal LP, which was computing lb∗ for the row player.
What is this LP saying? We can interpret v ′ as being the value of the game to the row player once
again, and q1, . . . , qm as the randomized strategy of the column player this time, and we want
to find a randomized strategy for the column player that minimizes v ′ subject to the constraint
that the row player gets at most v ′ no matter what row he plays. In other words, we’ve just found
an LP for the upper bound ub∗ to the row player!

Notice that the fact that the maximum value of v in the primal is equal to the minimum value
of v ′ in the dual follows from strong duality. Therefore, the minimax theorem is a corollary to
the strong duality theorem!

Corollary 1: Minimax Theorem

Given a finite 2-player zero-sum game with payoff matrices R =−C ,

lb∗ =max
p

min
q

VR (p, q) =min
q

max
p

VR (p, q) = ub∗.

This common value is called the value of the game.

Proof. Follows from strong duality and the argument above, where we showed that the dual
problem to computing lb∗ is a linear program that computes ub∗.
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4 The Geometric Intuition for Strong Duality
Optional content — Not required knowledge for the exams

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize cT x

subject to Ax≤ b

x≥ 0

For concreteness, let’s take the following 2-dimensional LP:

maximize x2

subject to − x1+2x2 ≤ 3

x1+ x2 ≤ 2

−2x1+ x2 ≤ 4

x1, x2 ≥ 0

If c := (0, 1), then the objective function wants to maximize c·x, i.e., to go as far up in the vertical
direction as possible. As we have already argued before, the optimal point x∗must be obtained
at the intersection of two constraints for this 2-dimensional problem (n tight constraints for n
dimensions). In this case, these happen to be the first two constraints.

If a1 = (−1, 2), b1 = 3 and a2 = (1, 1), b2 = 2, then x∗ is the (unique) point x satisfying both a1 ·x= b1

and a2 · x = b2. Indeed, we’re being held down by these two constraints. Geometrically, this
means that c= (0, 1) lies “between” these the vectors a1 and a2 that are normal (perpendicular)
to these constraints.
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Consequently, c can be written as a positive linear combination of a1 and a2. (It “lies in the
cone formed by a1 and a2.”) I.e., for some positive values y1 and y2,

c= y1a1+ y2a2.

Great. Now, take dot products on both sides with x∗. We get

c ·x∗ = (y1 a1+ y2 a2) ·x∗

= y1(a1 ·x∗) + y2(a2 ·x∗)
= y1b1+ y2b2

Defining y= (y1, y2, 0, . . . , 0), we get

optimal value of primal= c ·x∗ = b ·y≥ value of dual solution y.

The last inequality follows because

- the y we found satisfies c = y1a1 + y2a2 =
∑

i yi ai = AT y, and hence y satisfies the dual
constraints yT A ≥ cT by construction.

In other words, y is a feasible solution to the dual, has value b · y ≤ c · x∗. So the optimal dual
value cannot be less. Combined with weak duality (which says that c · x∗ ≤ b · y), we get strong
duality

c ·x∗ = b ·y.

Above, we used that the optimal point was constrained by two of the inequalities (and that
these were not the non-negativity constraints). The general proof is similar: for n dimensions,
we just use that the optimal point is constrained by n tight inequalities, and hence c can be
written as a positive combination of n of the constraints (possibly some of the non-negativity
constraints too).
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Exercises: Linear Programming Duality

Problem 1. Using the definitions we gave, show that the dual of the dual is the primal problem.

Problem 2. Find an LP that is infeasible such that its dual is also infeasible.

Problem 3. (Hard - optional) Prove the min-cut max-flow theorem using strong duality.
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