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Lecture 1

Introduction and Linear-time Selection

The purpose of this lecture is to give a brief overview of the topic of algorithm analysis and
the kind of thinking it involves. As a motivating problem, we consider the famous Quicksort
algorithm and the problem of selecting a pivot. We review the complexity of Quicksort under
various assumptions and use it to motivate the selection problem. This allows us to improve
the Quicksort algorithm by deterministically finding the optimal pivot element (the median
element) in linear worst-case complexity.

These problems illustrate some of the ideas and tools we will be using (and building upon) in
this course. We will also practice writing and solving recurrence relations, which is a key tool
for the analysis of algorithms.

Objectives of this lecture

In this lecture, we cover:

- Formal analysis of algorithms, models of computation,

- The analysis and complexity of the Quicksort algorithm,

- Finding the median: A randomized algorithm in expected linear time,

- Analyzing a randomized recursive algorithm,

- A deterministic linear-time algorithm for medians.

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 9, Medians and Order Statistics

- DPV, Algorithms, Chapter 2.4, Medians
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Lecture 1. Introduction and Linear-time Selection

1.1 Goals of the Course
This course is about the design and analysis of algorithms — how to design correct, efficient
algorithms, and how to think clearly about analyzing correctness and running time. What is an
algorithm? At its most basic, an algorithm is a method for solving a computational problem. A
recipe. Along with an algorithm comes a specification that says what the algorithm’s guarantees
are. For example, we might be able to say that our algorithm correctly solves the problem in
question and runs in time at most f (n ) on any input of size n . This course is about the whole
package: the design of efficient algorithms, and proving that they meet desired specifications.
For each of these parts, we will examine important techniques that have been developed, and
with practice we will build up our ability to think clearly about the key issues that arise.

The main goal of this course is to provide the intellectual tools for designing and analyzing your
own algorithms for problems you need to solve in the future. Some tools we will discuss are
Dynamic Programming, Divide-and-Conquer, Hashing and other Data Structures, Random-
ization, Network Flows, and Linear Programming. Some analytical tools we will discuss and
use are Recurrences, Probabilistic Analysis, Amortized Analysis, and Potential Functions. We
will additionally discuss some approaches for dealing with NP-complete problems, including
the notion of approximation algorithms.

Another goal will be to discuss models that go beyond the traditional input-output model. In
the traditional model we consider the algorithm to be given the entire input in advance and it
just has to perform the computation and give the output. This model is great when it applies,
but it is not always the right model. For instance, some problems may be challenging because
they require decisions to be made without having full information. Algorithms that solve such
problems are called online algorithms, which we will also discuss. In other settings, we may
have to deal with computing quantities of a “stream” of input data where the space we have
is much smaller than the data. In yet other settings, the input is being held by a set of selfish
agents who may or may not tell us the correct values.

1.1.1 On guarantees and specifications
One focus of this course is on proving correctness and running-time guarantees for algorithms.
Why is having such a guarantee useful? Suppose we are talking about the problem of sorting a
list of n numbers. It is pretty clear why we at least want to know that our algorithm is correct,
so we don’t have to worry about whether it has given us the right answer all the time. But, why
analyze running time? Why not just code up our algorithm and test it on 100 random inputs
and see what happens? Here are a few reasons that motivate our concern with this kind of
analysis — you can probably think of more reasons too:

Composability A guarantee on running time gives a “clean interface”. It means that we can
use the algorithm as a subroutine in another algorithm, without needing to worry whether the
inputs on which it is being used now match the kinds of inputs on which it was originally tested.

Scaling The types of guarantees we will examine will tell us how the running time scales with
the size of the problem instance. This is useful to know for a variety of reasons. For instance,

2



1.1. Goals of the Course

it tells us roughly how large a problem size we can reasonably expect to handle given some
amount of resources.

Designing better algorithms Analyzing the asymptotic running time of algorithms is a useful
way of thinking about algorithms that often leads to non-obvious improvements.

Understanding An analysis can tell us what parts of an algorithm are crucial for what kinds
of inputs, and why. If we later get a different but related task, we can often use our analysis to
quickly tell us if a small modification to our existing algorithm can be expected to give similar
performance to the new problem.

Complexity-theoretic motivation In Complexity Theory, we want to know: “how hard is fun-
damental problem X really?” For instance, we might know that for a given problem, no algo-
rithm can possibly run in time o (n log n ) (growing more slowly than n log n in the limit) and we
have an algorithm that runs in time O (n 3/2). This tells us how well we understand the problem,
and also how much room for improvement we have.

It is often helpful when thinking about algorithms to imagine a game where one player is the al-
gorithm designer trying to find an algorithm for the problem, and its opponent, the “adversary”,
is trying to find an input that will cause the algorithm to run slowly. An algorithm with good
worst-case guarantees is one that performs well no matter what input the adversary chooses.

1.1.2 Formal analysis of algorithms
In this course we are interested in the formal analysis of algorithms. In your previous courses
on algorithms and programming, you have hopefully studied the notion of the complexity of an
algorithm, but you might have done it less formally. Most commonly when first learning about
algorithm analysis, you learn to “count the number of operations” done by an algorithm. This
is a bit vague and underspecified, but it does the job most of the time.

Our goal is to make this more precise to get a more rigorous view on what constitutes the com-
plexity of an algorithm. To do this, we need the notion of a model of computation.

Definition: Model of computation

A model of computation consists of:

1. A set of allowed operations that an algorithm may perform, and

2. A cost for each operation, sometimes separately called the cost model.

To analyze the complexity of an algorithm, we consider it in a particular model of computation
and add up the total costs of all the operations of that algorithm. Sometimes costs will be spec-
ified concretely, e.g., operation X costs 1 and operation Y costs 2. Other times we will only be
interested in asymptotic bounds, so we may specify that an operation costs O (1) time but be
uninterested in constant factors in the analysis. We will see many examples in the first lectures.

3



Lecture 1. Introduction and Linear-time Selection

1.2 Sorting and selection in the comparison model
For the first lecture we will consider algorithm in the comparison model. In the comparison
model we assume that the input consists of some comparable elements (i.e., we can ask is x < y
for two elements x and y ) but we can not assume anything else about their type. For example,
we can not assume that they are integers or numbers at all, we can not assume that they are
strings, or that we can hash them, etc. Comparing the elements is the only information we have
about their values. We define the comparison model as follows.

Definition: Comparison Model

In the comparison model, we have an input consisting of n elements in some initial or-
der. An algorithm may compare two elements (asking is ai < a j ?) at a cost of 1. Moving
the items, copying them, swapping them, etc., is free. No other operations on the items
are allowed (using them as indices, adding them, hashing them, etc).

The comparison model is widely used to analyze sorting and selection (e.g., find the max, the
second-max, the k th largest element, etc.) algorithms. On a practical level, sorting and selec-
tion algorithms designed for the comparison model are widely applicable because they make
no assumptions about the types of the inputs, so they can be used to sort any types for which
the problem of sorting makes sense (the elements must of course be comparable to define what
sorting even means!) Conversely however, algorithms designed for the comparison model may
be less efficient than algorithms which are specialized for specific types, so we get a tradeoff be-
tween generality and performance. We will see an example of this in a couple of lectures.

Since the problems of sorting and selection are fundamentally about ordering, defining the
cost of the algorithms in terms of the number of comparisons performed is a natural metric.
This number also usually (but not always) matches asymptotically the number of operations
performed in a less concrete model of computation, so it provides a reasonable prediction of
the algorithms’ performance. The comparison model is also widely used for studying lower
bounds on the complexity of sorting and selection problems, which we will study next lecture.

1.2.1 Revisiting a classic: The Quicksort algorithm
Quicksort is one of the most famous and well known algorithms in all of computer science.

Algorithm 1.1: Quicksort

Given array A of size n ,

1. Pick an arbitrary pivot element p from A.

2. LESS←{ai such that ai < p}

3. GREATER←{ai such that ai > p}

4. return Quicksort(LESS) +{p}+Quicksort(GREATER)

4



1.2. Sorting and selection in the comparison model

The step of splitting A into LESS and GREATER is called partitioning. The pseudocode given
above gives the simplest version of the algorithm which copies/moves the elements into a new
array rather than partitioning in place, which is more complicated, but the fundamental idea
of the algorithm and its cost is the same.

We will use Quicksort as a starting point to review what we know about complexity analysis and
to ensure that we do so rigorously. Then, we will spend the rest of the lecture figuring out how
to improve the algorithm and make its complexity better! First, we need to make sure we re-
member how to measure complexity. Remember that there isn’t a single measure of complexity,
there are multiple, so we will review a bunch of them and see how they apply to Quicksort. Note
that measures of complexity are orthogonal to the model of computation. We can consider any
combination of both to obtain different ways of analyzing the same algorithm!

1.2.2 Worst-case complexity

Definition: Worst-case Cost

The worst-case complexity of an algorithm in a given model of computation is the largest
cost that the algorithm could incur on any possible input, usually parameterized by the
size of the input.

You might remember from your earlier classes that the worst-case cost of Quicksort occurs
when the pivot selected happens to always be the smallest or largest element in the array.

Theorem: Worst-case cost of Quicksort

The worst-case cost of Quicksort is O (n 2) comparisons.

1.2.3 Average-case complexity
The worst-case cost of Quicksort is bad, but it seems to perform well most of the time. This is
not rigorous, but fortunately there is a formal way to state this using average-case complexity.

Definition: Average-case Cost

The average-case complexity of an algorithm in a given model of computation is the
average of the costs of all possible inputs to the algorithm, usually parameterized by the
size of the input.

Remark: Random interpretation of average-case cost

By definition, the average-case cost of an algorithm is equivalent to the expected value
of its cost over a uniform distribution of possible inputs. You can therefore think of the
average cost as the cost of the algorithm on a random input.
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Computing average-case complexity tends to be quite a lot more work than computing worst-
case complexity since we need a way to enumerate all possible inputs. This can be done for
Quicksort using recurrence relations, and you may have seen this in a previous class. We won’t
repeat the analysis here.

Theorem: Average-case cost of Quicksort

The average-case cost of Quicksort is O (n log n ) comparisons.

1.2.4 Randomized complexity
One interpretation of the average-case cost of Quicksort is that if we run it on a random input
then the expected cost is just O (n log n ). This is great... if the input to the algorithm is random.
However, real life data is almost never random so it is a bad idea to design your algorithms
with the assumption that the input is random! Thankfully, there is a simple yet powerful way
to overcome this foolish assumption: put the randomess in the algorithm instead! This leads
to randomized Quicksort, a variant of the algorithm that does not perform horribly for any par-
ticular input! The difference is just a single word compared to the vanilla variant.

Algorithm 1.2: RandomQuicksort

Given array A of size n ,

1. Pick a random pivot element p from A.

2. LESS←{ai such that ai < p}

3. GREATER←{ai such that ai > p}

4. return RandomQuicksort(LESS) +{p}+ RandomQuicksort(GREATER)

Unlike the previous algorithms, this one now includes randomness, which means that its cost
on a particular input is not fixed, it could vary from one run to the next! More formally, the
runtime of the algorithm is now a probability distribution rather than a fixed number. When
describing the complexity of a randomized algorithm, we usually give some property of the
probability distribution, most commonly, we use the expected value. By default, unless other-
wise specified, we still consider the worst-case input, i.e., we want to compute the maximum
over all possible inputs, of the expected value of the cost of the algorithm over the random
choices made by the algorithm. We refer to this as the expected complexity or expected cost of
the algorithm.

Definition: Expected Cost

The expected complexity of a randomized algorithm in a given model of computation
is the maximum cost over of all possible inputs to the algorithm, of the expected value
of the cost of that input, where the expected value is over the distribution of random
choices made by the algorithm.

6



1.3. The Median and Selection Problems

Remark: Misconceptions of expected cost

The definition of expected complexity is a bit tricky, so it is important to not have mis-
conceptions about it. Here are some important things to keep in mind:

1. Expected complexity by default considers worst-case inputs. We are not analyzing the
algorithm for a random/average-case input.

2. We are also not considering worst-case random numbers. The input is worst case,
and the randomness is well... random. The expected value is computed over the dis-
tribution of the random choices of the algorithm.

Theorem: Expected cost of Randomized Quicksort

The expected cost of Randomized Quicksort is O (n log n ) comparisons.

The proof is almost identical to that of the average-case cost of (non-randomized) Quicksort
since there is essentially a one-to-one mapping between random inputs and randomly select-
ing pivots. You have probably run across the proof previously so we again won’t repeat it here.

1.2.5 Can we do better?
We have watched the analysis of Quicksort go from O (n 2)worst-case to O (n log n )average-case,
to expected O (n log n ) by mixing randomization into the algorithm. Can we (theoretically at
least) improve the algorithm even further or is this the end of the journey? Well, we know several
other comparison-based sorting algorithms that run in O (n log n ) comparisons, like Mergesort
and Heapsort, and both of them are deterministic! It would be very cool if Quicksort could also
be made to take just O (n log n ) comparisons and still be deterministic too. To achieve this, we
would need to find a balanced partition (i.e., pick a good pivot that splits the input into similarly
sized halves). That motivates us to consider the median-finding problem. If we could find the
median of an unsorted array in linear time, we could use that as the pivot and all of our dreams
would come true! That will be the remainder of this lecture.

1.3 The Median and Selection Problems
One thing that makes algorithm design “Computer Science” is that solving a problem in the
most obvious way from its definitions is often not the best way to get a solution. An example of
this is median finding. Recall the concept of the median of a set. For a set of n elements, this is
the “middle” element in the set, i.e., there are exactly ⌊n/2⌋ elements larger than it. In computer
sciencey terms, if the elements are zero-indexed, the median is the ⌊(n −1)/2⌋th element of the
set when represented in sorted order.

Given an unsorted array, how quickly can one find the median element? Perhaps the simplest
solution, one that can be described in a single sentence and implemented with one or two
lines of code in your favorite programming language, is to sort the array and then read off the

7
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element in position ⌊(n −1)/2⌋, which takes O (n log n ) comparisons using your favorite sorting
algorithm, such as MergeSort or HeapSort (deterministic) or QuickSort (randomized).1

Can one do it more quickly than by sorting? In the remainder of this lecture we describe two
linear-time algorithms for this problem: first a simpler randomized algorithm, and then an
improvement that makes it deterministic! More generally, we solve the problem of finding the
k t h smallest out of an unsorted array of n elements.

1.3.1 The problem and a randomized solution
Let’s consider a problem that is slightly more general than median-finding:

Problem: Select-k / k th Smallest

Find the k th smallest element in an unsorted array of size n.

To remove ambiguity, we will assume that our array is zero indexed, so the k th smallest element
is the element that would be in position k if the array were sorted. Alternatively, it is the element
such that exactly k other elements are smaller than it. Additionally, let’s say all elements are
distinct to avoid the question of what we mean by the k th smallest when we have duplicates.

The key idea to obtaining a linear time algorithm is to identify and eliminate redundant/wasted
work in the “naive” algorithm that just sorts the input and outputs the k th element. Note that
by sorting the array, we are not just finding the k th smallest element for the given value of k ,
we are actually finding the answer for every possible value of k . So instead of completely sort-
ing the array, it would suffice to “partially sort” the array such that element k ends up in the
correct position, but the remaining elements might still not be perfectly sorted. This descrip-
tion sounds suspiciously similar to Quicksort, which partitions the array by putting the pivot
element into its correctly sorted position in the array (without guaranteeing yet that the rest
of the array is sorted). In essence, this is partially sorting the array with respect to the pivot.
Recursively sorting both sides then sorts the entire array.

So, what if we were to just run Quicksort, but skip some of the steps that do not matter? Specif-
ically, note that if we run Quicksort and our goal is to output the k th element at the end, that
after partitioning the array around the pivot, we know which of the two sides must contain
the answer. Therefore instead of recursively sorting both sides, we ignore the side that can not
contain the answer and recurse just once. That’s it!

More specifically, the algorithm chooses a random pivot and then partitions the array into two
sets LESS and GREATER consisting of those elements less than and greater than the pivot re-
spectively. After the partitioning step we can tell which of LESS or GREATER has the item we are
looking for, just by looking at their sizes. For instance, if we are looking for the 87th-smallest
element in our array, and suppose that after choosing the pivot and partitioning we find that
LESS has 200 elements, then we just need to find the 87th smallest element in LESS. On the other

1Of course using a sorting algorithm to find the pivot for Quicksort would be rather useless, but it is a good start
to get some intuition on the complexity of the median problem. We know that the problem is solvable in O (n log n ),
so our goal remains to bring this down to O (n ).
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hand, if we find LESS has 40 elements, then we just need to find the 87−40−1= 46th smallest
element in GREATER. (And if LESS has size exactly 86 then we can just return the pivot). One
might at first think that allowing the algorithm to only recurse on one subset rather than both
would just cut down time by a factor of 2. However, since this is occuring recursively, it com-
pounds the savings and we end up withΘ(n ) rather thanΘ(n log n ) time. This algorithm is often
called Randomized-Select, or QuickSelect.

Algorithm 1.3: QuickSelect

Given array A of size n and integer 0≤ k ≤ n −1,

1. Pick a pivot element p at random from A.

2. Split A into subarrays LESS and GREATER by comparing each element to p .

3. (a) If |LESS|> k , then return QuickSelect(LESS, k ).

(b) If |LESS|< k , then return QuickSelect(GREATER, k − |LESS| −1)

(c) If |LESS|= k , then return p . [always happens when n = 1]

Theorem 1.1

The expected number of comparisons for QuickSelect is at most 8n .

Formally, let T (n ) denote the expected number of comparisons performed by QuickSelect on
any (worst-case) input of size n . What we want is a recurrence relation that looks like

T (n )≤ n −1+E[T (X )],

where n − 1 comparisons come from comparing the pivot to every other element and placing
them into LESS and GREATER, and X is a random variable corresponding to the size of the
subproblem that is solved recursively. We can’t just go and solve this recurrence because we
don’t yet know what X or E[T (X )] look like yet.

Before giving a formal proof, here’s some intuition. First of all, how large is X , the the size of the
array given to the recursive call? It depends on two things: the value of k and the randomly-
chosen pivot. After partitioning the input into LESS and GREATER, whose size adds up to n−1,
the algorithm recurively calls QuickSelect on one of them, but which one? Since we are inter-
ested in the behavior for a worst-case input, we can assume pessimistically that the value of k
will always make us choose the bigger of LESS and GREATER. Therefore the question becomes:
if we choose a random pivot and split the input into LESS and GREATER, how large is the larger
of the two of them? Well, possible sizes of the splits (ignoring rounding) are

(0, n −1), (1, n −2), (2, n −3), . . . , (n/2−2, n/2+1), (n/2−1, n/2),

so we can see that the larger of the two is a random number from

n −1, n −2, n −3, . . . , n/2+1, n/2.

9
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So, the expected size of the larger half is about 3n/4, again, ignoring rounding errors.

Another way to say this is that if we split a candy bar at random into two pieces, the expected
size of the larger piece is 3/4 of the bar. Using this, we might be tempted to write the following
recurrence relation, which is almost correct, but not quite.

T (n )≤ n −1+T (3n/4).

If we go through the motions of solving this recurrence, we get T (n ) =O (n ), but unfortunately,
this derrivation is not quite valid. The reasoning is that 3n/4 is only the expected size of the
larger piece. That is, if X is the size of the larger piece, we have written a recurrence where the
cost of the recursive call is T (E[X ]), but it was supposed to be E[T (X )], and these are not the
same thing! (The exercise below shows the two could differ by a lot.)2 Let’s now see this a bit
more formally.

Proof Theorem 1.1. To correct the proof, we need to correctly analyze the expected value of
T (X ), rather than the value of T for the expected value of X . To do so, we can consider with what
probabilities does X take on certain values and analyze the corresponding behavior of T . So,
with what probability is X at most 3/4? This happens when the smaller of LESS and GREATER
is at least one quarter of the elements, i.e., when the pivot is not in the bottom quarter or top
quarter3. This means the pivot needs to be in the middle half of the data, which happens with
probability 1/2. The other half the time, the size of X will be larger, at most n−1. Although this
might sound rather loose, this is good enough to write down a good upper bound recurrence!

E[T (X )]≤
1

2
T
�

3n

4

�

+
1

2
T (n )

This sounds like too loose of a bound, but we will see that it is good enough. Returning to our
original recurrence, we can now correctly assert that

T (n )≤ n −1+
�

1

2
T
�

3n

4

�

+
1

2
T (n )

�

,

and multiplying both sides by 2 then subtracting T (n ), we obtain

T (n )≤ 2(n −1) +T
�

3n

4

�

.

We can now use induction to prove that this recurrence relation satisfies T (n ) ≤ 8n . The base
case is simple, when n = 1 there are no comparisons, so T (1) = 0. Now assume for the sake of

2It turns out that these two quantities are equal if T is linear, which it is in this particular case. However, we can
not make this assumption in the proof, because that is we are trying to prove in the first place! Assuming that T is
linear to prove that T is linear would be circular logic.

3Note that we are picking 3/4 here purely for convenience. You could use any constant and still prove a linear
bound on the number of comparisons.
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induction that T (i )≤ 8i for all i < k . We want to show that T (k )≤ 8k . We have

T (k )≤ 2(n −1) +T
�

3n

4

�

,

≤ 2(n −1) +8
�

3n

4

�

, Use the inductive hypothesis

≤ 2n +6n ,

= 8n ,

which proves our desired bound.

1.3.2 A deterministic linear-time selection algorithm
What about a deterministic linear-time algorithm? For a long time it was thought this was im-
possible, and that there was no method faster than first sorting the array. In the process of
trying to prove this formally, it was discovered that this thinking was incorrect, and in 1972 a
deterministic linear time algorithm was developed by Manuel Blum, Bob Floyd, Vaughan Pratt,
Ron Rivest, and Bob Tarjan.4

The idea of the algorithm is that one would like to pick a pivot deterministically in a way that
produces a good split. Ideally, we would like the pivot to be the median element so that the
two sides are the same size. But, this is the same problem we are trying to solve in the first
place! So, instead, we will give ourselves leeway by allowing the pivot to be any element that
is “roughly” in the middle (i.e., some kind of “approximate median”). We will use a technique
called the median of medians which takes the medians of a bunch of small groups of elements,
and then finds the median of those medians. It has the wonderful guarantee that the selected
element is greater than at least 30% of the elements of the array, and smaller than at least 30%
of the elements of the array. This makes it work great as an approximate median and therefore
a good pivot choice! The algorithm is as follows:

Algorithm 1.4: DeterministicSelect

Given array A of size n and integer k ≤ n ,

1. Group the array into n/5 groups of size 5 and find the median of each group. (For
simplicity, we will ignore integrality issues.)

2. Recursively, find the true median of the medians. Call this p .

3. Use p as a pivot to split the array into subarrays LESS and GREATER.

4. Recurse on the appropriate piece in the same way as Quickselect.

4That’s 4 Turing Award winners on that one paper!
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Theorem 1.2

DeterministicSelect makes O (n ) comparisons to find the k th smallest element in an ar-
ray of size n .

Proof of Theorem 1.2. Let T (n ) denote the worst-case number of comparisons performed by
the DeterministicSelect algorithm on inputs of size n .

Step 1 takes time O (n ), since it takes just constant time to find the median of 5 elements. Step
2 takes time at most T (n/5). Step 3 again takes time O (n ). Now, we claim that at least 3/10 of
the array is ≤ p , and at least 3/10 of the array is ≥ p . Assuming for the moment that this claim
is true, Step 4 takes time at most T (7n/10), and we have the recurrence:

T (n ) ≤ c n +T (n/5) +T (7n/10),

for some constant c . Before solving this recurrence, lets prove the claim we made that the
pivot will be roughly near the middle of the array. So, the question is: how bad can the median
of medians be? But first, let’s do an example. Suppose the array has 15 elements and breaks
down into three groups of 5 like this:

{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7, 8, 9, 14, 15}.

In this case, the medians are 3, 6, and 9, and the median of the medians p is 6. There are five
elements less than p and nine elements greater.

In general, what is the worst case? If there are g = n/5 groups, then we know that in at least ⌈g /2⌉
of them (those groups whose median is ≤ p ) at least three of the five elements are ≤ p . There-
fore, the total number of elements ≤ p is at least 3⌈g /2⌉ ≥ 3n/10. Similarly, the total number of
elements ≥ p is also at least 3⌈g /2⌉ ≥ 3n/10.

Now, finally, let’s solve the recurrence. We have been solving a lot of recurrences by the “guess
and check” method, which works here too, but how could we just stare at this and know that
the answer is linear in n? One way to do that is to consider the “stack of bricks” view of the
recursion tree that you might have discussed in your previous classes.

In particular, let’s build the recursion tree for the recurrence (1.1), making each node as wide
as the quantity inside it:

cn

cn/5 7cn/10 Total: 9cn/10

Total: cn

Total: 81cn/100

Notice that even if this stack-of-bricks continues downward forever, the total sum is at most

c n (1+ (9/10) + (9/10)2+ (9/10)3+ . . .),

which is at most 10c n . This proves the theorem.
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Notice that in our analysis of the recurrence (1.1) the key property we used was that n/5 +
7n/10< n . More generally, we see here that if we have a problem of size n that we can solve by
performing recursive calls on pieces whose total size is at most (1−ε)n for some constant ε> 0
(plus some additional O (n )work), then the total time spent will be just linear in n .

Lemma 1.1

For constants c and a1, . . . , ak such that a1+ . . . ak < 1, the recurrence

T (n )≤ T (a1n ) +T (a2n ) + . . . T (ak n ) + c n

solves to T (n ) =O (n ).

1.3.3 Optimal deterministic Quicksort
Armed with a deterministic linear-time median-finding algorithm, we now have the tools to
create an O (n log n )-cost deterministic Quicksort! Just use the linear-time median algorithm
(DeterministicSelect) to select the pivot, then the divide-and-conquer subproblems are at most
half the input, which gives us a cost of

T (n ) = T
�n

2

�

+T
�n

2

�

+O (n ).

Solving this using standard techniques (or remembering the solution from a previous class!)
shows us that the cost is O (n log n )with no randomness required!
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Exercises: Selection Algorithms & Recurrences

Problem 1. Recall the attempted analysis of randomized quickselect where we accidentally
assumed that E[T (X )] = T (E[X ]). Let X be a random variable, and find an increasing function
F :R+→R+ such that E[F (i )]≫ F (E[i ]).

Problem 2. Show that for constants c and a1, . . . , ak such that a1 + . . . ak = 1 and each ai < 1,
the recurrence

T (n )≤ T (a1n ) +T (a2n ) + . . . T (ak n ) + c n

solves to T (n ) = O (n log n ). Show that this is best possible by observing that T (n ) = T (n/2) +
T (n/2) +n solves to T (n ) =Θ(n log n ).

Problem 3. Consider the median of medians algorithm. What happens if we split the elements
into n/3 groups of size 3 instead? Or n/k groups of size k for larger odd values of k ?

Problem 4. The rank of an element a with respect to a list A of n distinct elements is |{e ∈ A |
e ≤ a } is the number of elements in A no greater than a . Hence the rank of the smallest element
in A is 1, and the rank of the median is n/2. Given an unsorted list A and indices i ≤ j , give an
O (n ) time algorithm to output all elements in A with ranks lying in the interval [i , j ].
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Lecture 2

Concrete models and lower bounds

In this lecture, we will examine some simple, concrete models of computation, each with a
precise definition of what counts as a step, and try to get tight upper and lower bounds for a
number of problems. Specific models and problems examined in this lecture include:

- The number of comparisons needed to find the largest and second-largest item in an array,

- The number of comparisons needed to sort an array,

- The number of swaps needed to sort an array,

- The number of queries on a graph to determine whether it is connected.

Objectives of this lecture

In this lecture, we want to:

- Understand some concrete models of computation, with several examples (the com-
parison model, the exchange model, the query-edge model)

- Understand the definition of a lower bound in a specific model

- See some examples of how to prove lower bounds in specific models, particularly for
sorting and selection problems

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 8.1, Lower bounds for sorting

- DPV, Algorithms, Chapter 2.3, Mergesort (Page 59)
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2.1 Terminology: Upper Bounds and Lower Bounds
In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems
in several different concrete models. Each model will specify exactly what operations may be
performed on the input, and how much they cost. Each model will have some operations that
cost a certain amount (like performing a comparison, or swapping a pair of elements), some
that are free, and some that are not allowed at all.

Definition: Upper bound

By an upper bound of Un for some problem and some length n , we mean that there exists
an algorithm A that for every input x of length n costs at most Un .

A lower bound for some problem and some length n , is obtained by the negation of an upper
bound for that n . It says that some upper bound is not possible (for that value of n). If we
take the above statement (in italics) and negate it, we get the following. for every algorithm A
there exists an input x of length n such that A costs more than Un on input x . Rephrasing:

Definition: Lower bound

By a lower bound of Ln for some problem and some length n , we mean that for any
algorithm A there exists an input x of length n on which A costs at least Ln steps.

These were definitions for a single value of n . Now a function f :N→R is an upper bound for
a problem if f (n ) is an upper bound for this problem for every n ∈N. And a function g (·) is an
lower bound for a problem if g (n ) is a lower bound for this problem for every n .

The reason for this terminology is that if we think of our goal as being to understand the “true
complexity” of each problem, measured in terms of the best possible worst-case guarantee
achievable by any algorithm, then an upper bound of f (n ) and lower bound of g (n ) means
that the true complexity is somewhere between g (n ) and f (n ).

Finally, what is the cost of an algorithm? As we said before, that depends on the particular
model of computation we’re using. We will consider different models below, and show each
has their own upper and lower bounds.

One natural model for examining problems like sorting and selection is the comparison model
from last lecture, which we recall as follows.

Definition: Comparison Model

In the comparison model, we have an input consisting of n elements in some initial or-
der. An algorithm may compare two elements (asking is ai < a j ?) at a cost of 1. Moving
the items, copying them, swapping them, etc., is free. No other operations on the items
are allowed (using them as indices, adding them, hashing them, etc).
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2.2 Selection in the comparison model

2.2.1 Finding the maximum of n elements
How many comparisons are necessary and sufficient to find the maximum of n elements, in
the comparison model of computation?

Claim: Upper bound on select-max in the comparison model

n −1 comparisons are sufficient to find the maximum of n elements.

Proof. Just scan left to right, keeping track of the largest element so far. This makes at most
n −1 comparisons.

Now, let’s try for a lower bound. One simple lower bound is that we have to look at all the
elements (else the one not looked at may be larger than all the ones we look at). But looking at
all n elements could be done using n/2 comparisons, so this is not tight. In fact, we can give a
better lower bound:

Claim: Lower bound on select-max in the comparison model

n − 1 comparisons are necessary for any deterministic algorithm in the worst-case to
find the maximum of n elements.

Proof. The key claim is that every item that is not the maximum must lose at least one compar-
ison (by lose, we mean it is compared to another element and is the lesser of the two). Why is
this true? Suppose there were two elements ai and a j and neither lost a comparison. Suppose
without loss of generality that ai > a j . If the algorithm outputs a j it is incorrect. Otherwise, if
it outputs ai then we could construct another input that is the same except that a j is now the
maximum (we don’t change the relative order of any other elements). On this new input, none
of the results of any comparisons change since a j never lost any comparisons in the first place,
so the algorithm, being deterministic, must output the same answer. However, the algorithm is
now incorrect. Therefore there must be n −1 elements that lose a comparison, and since only
one element loses per comparison, a correct algorithm must perform n −1 comparisons.

Since the upper and lower bounds are equal, the bound of n −1 is tight.

2.2.2 Finding the second-largest of n elements
How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the
second largest of n elements? Again, let us assume that all elements are distinct.

Claim: Lower bound on select-second-max in the comparison model

n−1 comparisons are needed in the worst-case to find the second-largest of n elements.
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Proof. The same argument used in the lower bound for finding the maximum still holds.

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim: Upper bound #1 on select-second-max in the comparison model

2n −3 comparisons are sufficient to find the second-largest of n elements.

Proof. Just find the largest using n−1 comparisons, and then the largest of the remainder using
n −2 comparisons, for a total of 2n −3 comparisons.

We now have a gap: n − 1 versus 2n − 3. It is not a huge gap: both are Θ(n ), but remember
today’s theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can
reduce the upper bound quite a bit:

Claim: Upper bound #2 on select-second-max in the comparison model

n + lg n −2 comparisons are sufficient to find the second-largest of n elements.

Proof. As a first step, let’s find the maximum element using n−1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum
in each pair, and recurse on the maxima. E.g.,

6 4 2 1 8 7 3 5

6 2 8 5

6 8

8

Round 1

Round 2

Round 3

Now, given just what we know from comparisons so far, what can we say about possible lo-
cations for the second-highest number (i.e., the second-best player)? The answer is that the
second-best must have been directly compared to the best, and lost.1 This means there are
only lg n possibilities for the second-highest number, and we can find the maximum of them
making only lg(n )−1 more comparisons.

At this point, we have a lower bound of n − 1 and an upper bound of n + lg(n )− 2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the
upper bound, but the proof is rather complicated so we won’t do it for now.

1Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!),
writing about the proper way to award prizes in lawn tennis tournaments.
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2.2. Selection in the comparison model

2.2.3 An alternate technique: decision trees
Our lower bound arguments so far have been based on an adversary technique. We argued
that if an algorithm makes too few comparisons, then we can concoct an input such that it will
produce the wrong answer. There are many techniques that can be used to prove lower bounds.
Another powerful one are decision trees.

A decision tree is a binary tree that represents the behavior of a specific algorithm based on
the outcomes of each comparison it makes. Specifically, each internal node corresponds to a
comparison such that the left subtree corresponds to the outcome of the comparison being
true and the right subtree corresponds to it being false. At a leaf node the algorithm performs
no more comparisons and thus is finished and produces an output.

Remark: Decision trees are for particular algorithms

It is very important to remember that a decision tree encodes a specific algorithm. Dif-
ferent algorithms will have different decision trees. The decision tree does not however
depend on the input to the algorithm, it encodes its behavior on any possible input. In
some sense, you can think of the decision tree as a flow chart that tells you exactly what
the algorithm does based on the results of the comparisons.

It turns out that decision trees can be a useful tool for analyzing lower bounds. Keeping in
mind that a decision tree always represents a particular algorithm, to prove a lower bound, we
must argue some property about the structure of any possible decision tree for the problem (if
we make an argument about a specific decision tree, that is just like arguing about a specific
algorithm, which does not help us derive a lower bound for the problem).

Since we are interested in the worst-case number of comparisons, we should observe that the
number of comparisons performed by the algorithm on a particular input is the depth of the
leaf node corresponding to that output. Therefore the worst-case cost (number of compar-
isons) of the algorithm corresponds exactly to the longest root-to-leaf path, i.e., the height of
the tree. Therefore, if we can successfully argue about the height of any possible decision tree
for a problem, we have an argument for a lower bound!

Here is a decision tree for some arbitrary algorithm that solves the select-max problem.

Output 1 Output 3 Output 3 Output 2

TRUE FALSE

TRUE FALSE TRUE FALSE
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You can follow it just like a flowchart to determine for any input what index the algorithm will
output! We can also use it to argue about lower bounds.

Proof of select-max lower bound via decision trees. At the root node of any decision tree for the
select-max problem there are n possible outputs (positions 1 . . . n). For each comparison, ex-
actly one element loses, and hence the set of possible outputs at each node is one fewer than
at its parent node. Therefore all of the leaves of this decision tree have depth n − 1 and hence
n −1 comparisons are required to determine the maximum element.

2.3 Sorting in the comparison model
For the problem of sorting in the comparison model, the input is an array a = [a1, a2, . . . , an ],
and the output is a permutation of the input π(a ) = [aπ(1), aπ(2), . . . , aπ(n )] in which the elements
are in increasing order.

Remark: Correctly defining the “output” of an algorithm

A surprisingly subtle aspect of proving lower bounds, and the source of many buggy or
incorrect lower bound proofs is the seemingly simple step of defining what the output
of the algorithm is supposed to be.

Remember, importantly, that the comparison model has no concept of “values” of the
input elements. The only thing that an algorithms knows about them are the results of
the comparisons. Therefore when a comparison-model sorting algorithm produces an
output, it doesn’t know the values of the elements, it only knows what order it rearranged
them into – so its output can only be described as a permutation of the input elements.

Many of our lower bound proofs will be combinatoric in nature, where we will count the
number of required outputs that an algorithm could need to produce. From the point of
view of a comparison-based algorithm, the two inputs [5, 8, 2] and [2, 3, 1] are exactly the
same, because their elements are in the same relative permuted order, and the actions
taken by a deterministic sorting algorithm on them would therefore be 100% identical.

When thinking about comparison-model lower bound proofs, be sure to keep this im-
portant distinction in mind – values do not matter at all because the algorithm does not
know them. It can only deduce/know information about relative order!

Theorem 2.1: Lower bound for sorting in the comparison model

Any deterministic comparison-based sorting algorithm must perform at least lg(n !) com-
parisons to sort n distinct elements in the worst case.a

aAs is common in CS, we will use “lg” to mean “log2”.

In other words, for any deterministic comparison-based sorting algorithmA , for all n ≥ 2 there
exists an input I of size n such thatA makes at least lg(n !) =Ω(n log n ) comparisons to sort I .
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To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose
a pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any
possible (comparison-based) algorithm that might exist. This is a difficult task, and its not at all
obvious how to even begin to do something like this! We now present the proof, which uses a
very nice information-theoretic argument. (This proof is deceptively short: it’s worth thinking
through each line and each assertion.)

Proof of Theorem 2.1. First remember that we are dealing with deterministic algorithms here.
Since the algorithm is deterministic, the first comparison it makes is always the same. De-
pending on the result of that comparison, the algorithm could take different actions, however,
critically, the result of all the previous comparisons always determines which comparison
will be made next. Therefore for any given input to the algorithm, we could write down the se-
quence of results of the comparisons (e.g., True, False, True, True, False, . . .) and this sequence
would entirely describe the behavior and hence the output of the algorithm on that input.

Now, in the comparison model, since values are unimportant and only order matters, there are
n ! different possible input sequences that the algorithm needs to be capable of sorting correctly,
one for each possible permutation of the elements. Furthermore, every input permutation has
a unique output permutation that correctly sorts it. So, for a comparison-based sorting algo-
rithm to be correct, it needs to be able to produce n ! different possible output permutations,
because if there is an output it can not produce, then there is an input which it can not sort.

If the algorithm makes ℓ comparisons whose results are encoded by a sequence of binary out-
comes (True or False) b1, b2, . . . , bℓ, then since each comparison has only two possible out-
comes, the algorithm can only produce 2ℓ different outputs. Since we argued that in order
to be correct the algorithm must be capable of producing n ! different outputs, we need

2ℓ ≥ n ! =⇒ ℓ≥ lg n !,

which proves the theorem.

The above is often called an “information theoretic” argument because we are in essence saying
that we need at least lg(M ) = lg(n !) bits of information about the input before we can correctly
decide which of M outputs we need to produce. This technique generalizes: If we have some
problem with M different outputs the algorithm needs to be able to produce, then in the com-
parison model we have a worst-case lower bound of lg M .

What does lg(n !) look like? We have:

lg(n !) = lg(n ) + lg(n −1) + lg(n −2) + ...+ lg(1)< n lg(n ) =O (n log n ),

and
lg(n !) = lg(n ) + lg(n −1) + lg(n −2) + ...+ lg(1)> (n/2) lg(n/2) =Ω(n log n ).

So, lg(n !) =Θ(n log n ). However, since today’s theme is tight bounds, let’s be a little more precise.
We can in particular use the fact that n ! ∈ [(n/e )n , n n ] to get:

n lg n −n lg e < lg(n !) < n lg n
n lg n −1.443n < lg(n !) < n lg n .
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Since 1.433n is a low-order term, sometimes people will write this fact this as

lg(n !) = (n lg n )(1−o (1)),

meaning that the ratio between lg(n !) and n lg n goes to 1 as n goes to infinity.

How Tight is this Bound? Assume n is a power of 2, can you think of an algorithm that makes
at most n lg n comparisons, and so is tight in the leading term? In fact, there are several algo-
rithms, including:

- Binary insertion sort. If we perform insertion-sort, using binary search to insert each new
element, then the number of comparisons made is at most

∑n
k=2⌈lg k ⌉ ≤ n lg n . Note that

insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

- Mergesort. Merging two lists of n/2 elements each requires at most n − 1 comparisons. So,
we get (n −1) +2(n/2−1) +4(n/4−1) + . . .+n/2(2−1) = n lg n − (n −1)< n lg n .

2.3.1 An Adversary Argument
A slightly different lower bound argument comes from showing that if an algorithm makes “too
few” comparisons, then an adversary can fool it into giving the incorrect answer. Here is a
little example. We want to show that any deterministic sorting algorithm on 3 elements must
perform at least 3 comparisons in the worst case. (This result follows from the information
theoretic lower bound of ⌈lg 3!⌉= 3, but let’s give a different proof.)

If the algorithm does fewer than two comparisons, some element has not been looked at, and
the algorithm must be incorrect. So after the first comparison, the three elements are w the
winner of the first query, l the loser, and z the other guy. If the second query is between w and
z , the adversary replies w > z ; if it is between l and z , the adversary replies l < z . Note that in
either case, the algorithm must perform a third query to be able to sort correctly.

2.4 Sorting in the exchange model
Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we
can swap any pair of books we like. How many swaps do we need to sort all the books? Formally,
we are considering the problem of sorting in the exchange model.

Definition: The Exchange Model

In the exchange model, an input consists of an array of n items, and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step. All other work is free:
in particular, the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in
the exchange model to sort an array of n items in the worst case?
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Claim: Upper bound on sorting in the exchange model

n −1 exchanges is sufficient.

Proof. For this we just need to give an algorithm. For instance, consider the algorithm that in
step 1 puts the smallest item in location 1, swapping it with whatever was originally there. Then
in step 2 it swaps the second-smallest item with whatever is currently in location 2, and so on
(if in step k , the k th-smallest item is already in the correct position then we just do a no-op).
No step ever undoes any of the previous work, so after n − 1 steps, the first n − 1 items are in
the correct position. This means the nth item must be in the correct position too.

But are n − 1 exchanges necessary in the worst-case? If n is even, and no book is in its correct
location, then n/2 exchanges are clearly necessary to “touch” all books. But can we show a
better lower bound than that?

Claim: Lower bound on sorting in the exchange model

In fact, n −1 exchanges are necessary, in the worst case.

Proof. Here is how we can see it. Create a graph in which a directed edge (i , j )means that that
the book in location i must end up at location j . An example is given in Figure 2.1.

7

1

6

2

3

4

5

Figure 2.1: Graph for input [f c d e b a g]

This is a special kind of directed graph: it is a permutation — a set of cycles. In particular,
every book points to some location, perhaps its own location, and every location is pointed to
by exactly one book. Now consider the following points:

1. What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i1, j1) and (i2, j2) and we swap the elements in loca-
tions i1 and i2. Then this causes those two edges to be replaced by edges (i2, j1) and (i1, j2)
because now it is the element in location i2 that needs to go to j1 and the element in i1 that
needs to go to j2. This means that if i1 and i2 were in the same cycle, that cycle now becomes
two disjoint cycles.

2. What is the effect of exchanging any two elements that are in different cycles?
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Answer: If we swap elements i1 and i2 that are in different cycles, then the same argument
as above shows that this merges those two cycles into one cycle.

3. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle,
such as [n , 1, 2, 3, 4, . . . , n−1]. Each operation at best increases the number of cycles by 1 and in
the end we need to have n cycles. So, this input requires n −1 operations.

2.5 Query models, and the evasiveness of connectivity
Optional content — Not required knowledge for the exams

To finish with something totally different, let’s look at the query complexity of determining if
a graph is connected. Assume we are given the adjacency matrix G for some n-node graph.
That is, G [i , j ] = 1 if there is an edge between i and j , and G [i , j ] = 0 otherwise. We consider a
model in which we can query any element of the matrix G in 1 step. All other computation is
free. That is, imagine the graph matrix has values written on little slips of paper, face down. In
one step we can turn over any slip of paper. How many slips of paper do we need to turn over
to tell if G is connected?

Claim: Upper bound

n (n −1)/2 queries are sufficient to determine if G is connected.

Proof. This just corresponds to querying every pair (i , j ). Once we have done that, we know
the entire graph and can just compute for free to see if it is connected.

Interestingly, it turns out the simple upper-bound of querying every edge is a lower bound too.
Because of this, connectivity is called an “evasive” property of graphs.

Claim: Lower bound

n (n −1)/2=
�n

2

�

queries are necessary to determine connectivity in the worst case.

Proof. We think of this as a game between two players: the evader and the querier. The querier
asks a sequence of questions of the form “Is there an edge between vertices x and y ?”. For each
question the evader must answer the question. The goal of the evader is to force the querier to
ask as many questions as possible. We’ll give a strategy for the evader which forces the querier
to ask

�n
2

�

questions to determine if the graph is connected.

The evader’s strategy will be to maintain the following invariant.

At any point in time the edges that have been declared to exist form a forest of trees
involving all the vertices of the graph. For each tree T all queries among the vertices
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of the T have already been asked. And for every pair of trees T and T ′ in the forest
there exists a pair (x , y )with x ∈ T and y ∈ T ′ that has not been queried.

Note that until there is just one tree, the querier does not know if the graph is connected or not.

Initially each tree is just one vertex, and the invariant trivially holds. The evader maintains the
invariant as follows. If the query is for two vertices in the same tree, then the evader just gives
the answer it gave before to this query. Nothing changes and the invariant still holds.

Say the query is for vertices x and y in two different trees Tx and Ty . Then the evader deter-
mines if all the other possible edges between Tx and Ty have already been queried. If that is
the case, then the evader answers 1 for “yes”, otherwise it answers 0 for “no”. Note that if it
answers yes, (and joins the two trees) then, by induction, all the edges within the set Tx

⋃

Ty

have already been queried, and the invariant holds. (If it answers “no” the invariant trivially
still holds.)

At any point in time before there is just one tree it is not known if the graph is connected or not.
Finally when there is just one tree the graph is connected, but by that point all of the

�n
2

�

the
edges have been queried.
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Lecture 3

Integer sorting

Last lecture we saw a general lower bound which says that any comparison model sorting algo-
rithm costs at leastΩ(n log n ) in the worst case. In this lecture we will derive sorting algorithms
that run in O (n ) cost! The catch is that to beat the comparison model lower bound we must of
course leave the comparison model behind and explore other models of computation. Specif-
ically, we will be looking at the problem of sorting integers, which gives us more power then
the comparison model since we can use properties of integers to help us sort them faster. We
will show two algorithms, Counting Sort and Radix Sort, which are capable of sorting integers
in linear time, provided that those integers are not too large.

Objectives of this lecture

In this lecture, we want to:

- See the Word RAM model of computation for integer (non-comparison) algorithms

- Learn about the counting sort algorithm for sorting (small) integers

- Learn about the radix sort algorithm for sorting (slightly bigger) integers

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 8: Sorting in Linear Time
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3.1 Models of computation for integers
In the first two lectures we have predominantly concerned ourselves with algorithms in the
comparison model of computation, where the input to our algorithms consisted of an array of
n comparable elements. In this model we didn’t have any other information available to us
about the elements. Were they integers, numbers, strings, who knows? This made the model
very general since we could derive algorithms for sorting and selection that effectively work on
any type because absolutely no assumptions about the type were made, only that they were
comparable, which is essentially required by the definition of sorting!

Last lecture we saw a very cool and fundamental result which is that in the comparison model,
sorting can not be done in less than Ω(n log n ) cost. We proved that it was mathematically im-
possible to invent a sorting algorithm that runs faster than this. Today, we want to invent some
sorting algorithms than run in O (n ) cost! To do so without contradicting ourselves we are going
to have to leave the comparison model behind and explore models of computation that give us
more power. Specifically, we are going to work on the problem of sorting integers, which means
that unlike in the comparison model where all we could do was compare two elements, we will
now gain the power to do things to the input elements like add them, divide them, use them
as indices into arrays, etc. These new found powers, and in particular the last one (using the
items as indices) will be the tools to beating the comparison model. Our model of computation
for today (and implicitly for much of the rest of the course) is the word RAM model.

3.1.1 The Word RAM model of computation

Definition: Word RAM model

In the word RAM model:

- We have unlimited constant-time addressable memory (called “registers”),

- Each register can store a w -bit integer (called a “word”),

- Reading/writing, arithmetic, logic, bitwise operations on a constant number of words
takes constant time,

- With input size n , we need w ≥ log n .

The final assumption is needed because if our input contains n words, then to be capable of
even reading the contents of the input, we are surely going to need to be able to write down
the integer n as an index, and that requires log n bits. Since the word size is w , the maximum
integer we can store in a single word 2w −1.

Note that unlike some of our previous models such as the comparison model which had con-
crete costs, e.g., exactly 1 per comparison, in the word RAM we only care about asymptotic
costs, so we ignore constant factors and just say that operations on a constant number of words
takes constant time. This model is essentially just a more formal version of what you are prob-
ably used to from your previous classes when you analyzed an algorithm by counting "instruc-
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tions". The only subtle part is the restriction on the word size w and the assumption that only
operations on w -bit integers take constant time. Most of the time this is of no consequence,
but there are some situations where it matters.

The importance of the word size Consider for example an algorithm that takes n integers
as inputs each of which is written with w bits, and computes their product. How does such
an algorithm work and what is its runtime? A “count the instructions” analysis would suggest
that it just multiplies all the numbers together and takes O (n ) time!. However, remember that
for n integers each w bits, their product is an integer containing n w bits, which requires n
registers to store! Computing this product would therefore take much more than Θ(n ) time
since multiplying a super-constant number of integers can not be done in a single instruction
and would instead require an algorithm for multiplying large integers1.

This might seem odd at first but this model is really trying to help us match the behavior that
such an algorithm would have on a real computer! Almost every modern processor operates on
64-bit words, such that all arithmetic, bitwise, comaprison operations, etc., can be done with
a single machine instruction. What would happen if you tried to implement an algorithm that
multiplies n integers on a real computer? In most languages other than Python, you will quickly
find that the result will overflow, so you will just get a wrong answer (most likely you’ll get the
answer modulo 264 or something similar.) In Python you will find that you do in fact get the
right answer, but the computation will become very slow! Under the hood Python is actually
happy to represent large numbers for you by decomposing them into an array of word-sized
integers. Doing arithmetic on these big integers takes more than constant time. Python uses
an algorithm called Karatsuba multiplcation for multiplying these big integers, which runs in
O (d log2 3)≈O (d 1.58) operations for d -digit numbers.

But what if... we ignore the word size An alternative model is the unit-cost RAM model which
does not place any restriction on the size of the integers. In this model we just say that all
arithmetic operations on integers takes constant time regardless of how many bits it takes to
represent them. This might seem like an unimportant and pedantic difference, but it turns out
that this assumption allows you to implement some wild and crazy algorithms, such as being
able to sort n integers in constant time!2 Perhaps even more ludicrous, a RAM with unlimited
precision (no bound on w ) can solve PSPACE-Complete problems in polynomial time!3

3.1.2 Beating the comparison model
To beat the comparison model, we have to advantage of some power that it doesn’t have. The
major limitation of the comparison model is that every operation we pay for (a comparison)
can only result in a binary outcome. This is fundamentally why our information theoretic lower
bounds gave us log2 # outputs, because the best we could do was double/halve the possible
outcomes each time we paid a cost of one. The source of untapped power of the word RAM is
that we can use our input elements (integers) as indices into arrays! That is, if I have an array

1We might see an algorithm for this later in the course. It takesΘ(d log d ) instructions to multiply d -digit integers!
2Appendix A of Computing with arbitrary and random numbers, Michael Brand’s PhD thesis, Monash University.
3See A characterization of the class of functions computable in polynomial time on Random Access Machines
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of length n and some integer from 1 to n (or 0 to n − 1 if zero-indexed), then I can access the
value of the array in constant time, but depending on the value of the integer, there are now n
possible outcomes, which is far more than the two outcomes of the comparison model!

Warmup example: constant-time static search Before we dive into sorting, lets demonstrate
how the word RAM has more power than the comparison model. The same ideas will be used
momentarily in our sorting algorithms. Consider the simpler problem of static searching, i.e.,
outputting the position of a given element in a given array if it exists, where arbitrary prepro-
cessing is allowed. By arbitrary preprocessing, we mean that you can, for example, sort the
elements or arrange them into a binary search tree, all for free to make the queries faster to
answer. There are n + 1 possible outcomes (each position and “it doesn’t exist”), so an infor-
mation theoretic lower bound in the comparison model immediately tells us that we can’t do
better thanΩ(log n ) cost. This tells us that binary search (on a sorted array) and balanced binary
search trees are asymptotically optimal in the comparison model as they match this bound.

But what could we do with the power of the word RAM when our elements are word-size inte-
gers? Given an array a1, . . . , an of n integers which are in the range {0, 1, . . . , u−1}, where u ≤ 2w

is the size of the universe of inputs we are considering, we could create an array T of size u , one
slot for every possible value, then store T [ai ]← i , i.e., store a lookup table of positions based on
the values. To answer a search query for a value x we simply check T [x ] and output the index if
there is one stored there. This solves the problem of static searching in constant time! We have
defeated the confines of the comparison model, at the expense of making the assumption that
our keys are integers rather than arbitrary comparable things. Furthermore this solution makes
the assumption that u is a reasonable amount of space to use. If the universe of keys is very
large, this solution is horribly space inefficient. That problem can be effectively eliminated by
the use of hashing which we will study in great detail in the next few lectures!

3.2 Sorting small integers: Counting Sort
Lets start by setting up the problem precisely.

Problem: Integer sorting

The integer sorting problem consists of an input array of n elements a1, a2, . . . , an , each
identified by a (not necessarily unique) integer key called key(ai ). The goal is to output
an array containing a permutation of the input aπ1

, . . . , aπn
such that

key(aπ1
)≤ key(aπ2

)≤ . . . key(aπn
).

An important feature of the problem is that we are not just assuming that the input is an array of
nothing but integers. Rather, the input is an array of elements with associated integer keys. This
of great practical importance since in real-life you are rarely going to want to sort an array that
contains literally nothing but integers, but likely you want to sort some data by some integer
property. For example, you may have a spreadsheet and you want to sort the rows by one of the
columns which contains an integer value. When you sort the rows, you of course do not only
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want to sort that one column containing the integer, but you want the entire row attached to
that integer to come along for the ride, otherwise the spreadsheet would be messed up and the
rows would no longer contain the right values.

Note that we allow there to be duplicate keys among the elements. Recall from your previous
classes that a sorting algorithm is called stable if it preserves the relative order of duplicate
keys. That is, if key(ai ) = key(a j ) and i < j , then ai appears before a j in the output. It will be of
importance to us in this lecture to design algorithms that are stable.

3.2.1 The algorithm
When sorting an array of elements, the main question we have for each element is “where
should it go?” In the comparison model when dealing with black-box comparable things, the
only way we can answer this question is by comparing the element to (often many) other ele-
ments. However, when our keys are integers, we already have a pretty good idea of where they
go. Element x comes after element x −1 and before element x +1 (if they exist).

Warm-up problem: Sorting distinct keys {1,2, . . . ,n } As a warm up, lets say that the input
only contains distinct keys in the range {1, 2, . . . , n}, which means the keys are exactly the set
{1, 2, . . . , n}. In this case, we could sort them by simply creating an output array S of size n , then
for each element ai , just place ai in S [key(ai )] directly!

Warmer-up: Sorting distinct keys in {0,1, . . . , u −1} If we knew the input contained only dis-
tinct keys in the range {0, 1, . . . , u−1}, we could sort them by creating an array S of size u instead
of size n , and then similarly placing element ai in slot S [key(ai )], then lastly filtering out the
empty slots with a second pass over the output.

Counting Sort In general we might have duplicate keys, so we can fix this by instead storing
a list of elements with key x at slot x . This gives us our first integer sorting algorithm.

Algorithm: Counting Sort

Suppose the input contains n elements a1, . . . , an whose keys are integers in the range
0, 1, . . . , u −1. The key function takes an element and returns the associated integer key.

function CountingSort(a : array, key : element → int) {
let L be an array of u empty lists
for each element x in a do {
L[key(x)].append(x)

}
let out = empty list
for each integer k in range(0, u) do {
out.extend(L[k])

}
return out

}
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The correctness follows from the fact that the elements are stored in the array in key order.

Theorem: Complexity of Counting Sort

On n elements with integer keys in {0, 1, . . . , u −1}, Counting Sort runs in O (n +u ) time.

Proof. The algorithm just makes one pass over the input of length n , then one pass over the
universe of keys u , and builds the output array of length n , so in total, we have an algorithm
that runs in O (n +u ) time

Finally, we should make the observation that Counting Sort is stable since it appends elements
to the lists in order. This will be very important in the last section.

We wanted linear-time sorting, right? Our goal was to design an algorithm that sorts faster
than a comparison sorting algorithm which we know can run inΘ(n log n ) time. Counting Sort
achieves a runtime of O (n+u ), so how exactly does that stack up? Its not quite directly compa-
rable since it depends on the size of u . Since our goal is to achieve linear-time sorting, we will
describe the algorithm in terms of which inputs allow it to achieve this goal. So, in this case,
as long as u = O (n ), Counting Sort runs in linear time! In other words, if our integers have at
most log n + c bits for any constant c , Counting Sort is linear time. This is not too bad. If we
have a data set of n elements and each has an index in 1 . . . n or even 1 . . . c n for some constant
n , then we can sort on that index in linear time!

Our next goal will be to improve this and find an algorithm that can sort even larger integers
still in linear time.

3.3 A side quest: Tuple sorting
A useful stepping stone towards our last algorithm will be a concept sometimes called tuple
sorting. The problem is this:

Problem: Tuple sorting

Given an array of n elements where each element has a key which are equal-length tu-
ples (k1, k2, . . . , kd ), we want to sort the array lexicographically by key. That is, the array
should be sorted by the first element of the tuples, with ties broken by the second, ties
on those broken by the third, and so.

We will describe three algorithms for this problem! All of them will work by using another or-
dinary sorting algorithm but in different ways.

Comparison tuple sorting The most straightforward (though not particularly useful for this
lecture) algorithm for tuple sorting is to just apply any of your favourite comparison sorting
algorithms (merge sort, quicksort, heapsort) that run in O (n log n ) cost, comparing the tuples
element by element. Note that comparing a tuple does not take constant time, so we need to
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multiply the cost (number of comparisons) by the length of the tuples, i.e., d . This will give us
an O (d n log n ) algorithm. This works fine in the comparison model, but it doesn’t generalize
very well outside the comparison model, e.g., to tuples of integers and integer sorting.

The remaining two algorithms, instead of only performing one sort, will sort multiple times to
achieve the same effect! This will also make them more generalizable and applicable outside
the comparison model since each sort will only apply to one element of the tuple.

3.3.1 Top-down tuple sorting
A natural algorithm for tuple sorting is to essentially follow the definition. First, we can sort,
using any sorting algorithm we like, using the first tuple element as the key. The array is now
sorted correctly except that keys with equal first tuple elements are not tie-broken by the second
tuple element yet. To resolve that, recursively sort each subarray of equal first elements, this
time using the second tuple element as the key, and so on.

As an example, consider sorting a set of dates which are represented as (Year, Month, Day)
tuples. A top-down tuple sort will first sort them by year, then recursively sort the dates that
have equal years by their month, and then finally recursively sort the dates with equal years
and months by their day.

SortedSortedSorted

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Feb, 06
2023, Jan, 19
2023, Jan, 17
2023, Feb, 07
2023, Feb, 19
2024, Feb, 16
2024, Feb, 18
2024, Jan, 16
2024, Feb, 06
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Jan, 19
2023, Jan, 17
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 19
2024, Jan, 18
2024, Feb, 16
2024, Feb, 18
2024, Feb, 06
2024, Feb, 15

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

The nice thing about this algorithm is that it can be applied using any sorting algorithm to
perform each step, as long as that sorting algorithm can sort the individual elements of the
tuples, e.g., we could use counting sort if every element of the tuples are integers!

3.3.2 Bottom-up tuple sorting
Like most recursive algorithms, we can also find a non-recursive alternative. What if instead of
recursively sorting each subarray of equal tuple elements, we just sorted the entire array one
tuple element at a time? Say we first sort the entire array using the first tuple element as the
key, then the second, and so on. What would happen? Well, the array wouldn’t actually be in
sorted order because it would be sorted by the final tuple elements, not the first!

However, this algorithm almost works, with just one minor adjustment. The tuple element that
we sort with respect to last is the one that ends up sorted, so we should actually sort in reverse
order of the tuple elements, i.e., sort with respect to the final tuple element, then the second
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last, and so on until we sort with respect to the first tuple element. This makes intuitive sense
because the final sort is going to dictate that the elements are ordered by the first tuple element,
which is exactly what we want.

Now the important observation: as long as the sorting algorithm that we use at each step is
stable, we will end up with the correct answer. This is because before we sort on the first tuple
element, the array is already sorted correctly with respect to the second tuple element because
of the previous sort, so by using a stable sort, all ties between equal first tuple elements will be
correctly tie-broken on the second tuple element! Applying this reasoning inductively should
convince us that the array will be correctly sorted lexicographically with respect to the tuples!

Lets see the date sorting example again, this time using the bottom-up approach. Notice that
the algorithm pretty much does the same thing but in reverse! First it sorts the days correctly,
then it sorts the months so that the (Month, Day) pairs are in sorted order, then finally it sorts
the years to bring everything into the correct order.

SortedSorted

2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Jan, 16
2023, Jan, 17
2024, Feb, 18
2024, Jan, 18
2023, Jan, 19
2023, Feb, 19
2024, Jan, 19

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2024, Jan, 16
2023, Jan, 17
2024, Jan, 18
2023, Jan, 19
2024, Jan, 19
2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18
2023, Feb, 19

Sorted

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

The key difference is that unlike the top-down approach, each round sorts the whole array,
rather than recursively subdividing the array into smaller pieces that are sorted separately.

3.4 Sorting bigger integers: Radix Sort
We now have the ingredients to derive our last and best integer sorting algorithm. Counting
Sort is great for sorting small integers but falls over once u becomes too large. However, what if
we were to use tuple sorting instead on a tuple of small integers? As long as the tuple elements
are small that sounds like it might be efficient! So the question is how can we convert a bigger
integer into a tuple of smaller integers such that sorting on the tuples is equivalent to sorting
on the original values? It turns out that we definitely already know the answer to this question,
because it is just how we write down numbers every day! We can split numbers into their digits!

Key Idea: Integer sorting is tuple sorting by digits

Sorting integers is equivalent to tuple-sorting them by their digits! If a number has a
greater first digit than another, then it is greater. If two numbers have equal first digits,
then they are tie-broken by their second digit and so on!
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3.4. Sorting bigger integers: Radix Sort

Here’s the idea in picture form, just like bottom-up tuple sorting from a moment ago. We first
sort the numbers by the least-significant digit, then by the second-least, and so on, until finally
sorting by the most significant digit. This algorithm is called bottom-up Radix Sort or Least-
Significant-Digit (LSD) Radix Sort, since it sorts in order from least to most significant.

SortedSortedSorted

2 3 1 1
1 2 2 1
2 1 2 1
1 1 4 2
4 1 4 2
3 1 3 3
1 4 2 3
1 1 3 3
2 3 1 3
4 4 2 3
4 4 2 3
3 3 3 4

3 1 3 3
1 4 2 3
2 3 1 1
3 3 3 4
1 1 3 3
1 1 4 2
2 3 1 3
4 4 2 3
1 2 2 1
4 1 4 2
4 4 2 3
2 1 2 1

Sorted

2 3 1 1
2 3 1 3
1 2 2 1
2 1 2 1
1 4 2 3
4 4 2 3
4 4 2 3
3 1 3 3
1 1 3 3
3 3 3 4
1 1 4 2
4 1 4 2

2 1 2 1
3 1 3 3
1 1 3 3
1 1 4 2
4 1 4 2
1 2 2 1
2 3 1 1
2 3 1 3
3 3 3 4
1 4 2 3
4 4 2 3
4 4 2 3

1 1 3 3
1 1 4 2
1 2 2 1
1 4 2 3
2 1 2 1
2 3 1 1
2 3 1 3
3 1 3 3
3 3 3 4
4 1 4 2
4 4 2 3
4 4 2 3

Since it is stable and the digits are small integers, we use Counting Sort for each iteration!

Algorithm: LSD Radix Sort

Suppose the input contains n elements a1, . . . , an whose keys are integers withnum_digits
digits, and we have a function Digit(x, i) which extracts the i th digit of x .

function RadixSort(a : array, key : element → int) {
let out = copy of a
for each i in range(0, num_digits) do {
out = CountingSort(out, key = x → Digit(key(x), num_digits − i))

}
return out

}

We could similarly implement a recursive top-down /MSD Radix Sort as well, but we will stick
with this for now since they have the same complexity. In practice it would be more efficient
to allocate the out array just once and reuse it (e.g., swapping it with a each iteration) for every
iteration of Counting Sort rather than constantly allocating new arrays each time.

Analysis The last step is to analyze the algorithm. How fast is it? Well, it depends on the
number of digits, right? If our numbers are again from a universe {0, 1, . . . , u−1}, then they have
d = logb u digits when written in base b . Each digit will be a smaller integer from {0, 1, . . . , b−1}.
The algorithm performs d iterations, each of which performs a counting sort. Since the digits
are in base b , Counting Sort takes O (n + b ) time. Therefore the total time for Radix Sort is

O ((n + b ) logb u ).

Initially this doesn’t look that great. If we pick any constant base b , then even if u =O (n ), the
runtime becomes O (n log n ), which is the same as comparison sorting and actually worse than
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Counting Sort! How can we make this better? Well, the higher the base, the fewer iterations the
algorithm needs, so lets make it even higher! As long as we do not cause the Counting Sort to
take more than linear time, we should be fine, so since the Counting Sort takes O (n + b ) time,
our base can go up to n without trouble! Intuitively this makes sense because Counting Sort
was good until the universe became bigger than linear in n , so we should pick that as the base
for Radix Sort to get the most value out of each iteration of Counting Sort.

Theorem: Complexity of Radix Sort

On n elements with integer keys in {0, 1, . . . , u −1}, Radix Sort runs in O (n logn u ) time.

This is a little hard to interpret and its not immediately obvious whether this is good, but the
claim is that this is now good and can sort much larger integers than Counting Sort could!

Corollary: Radix Sort can sort bigger integers

Radix Sort can sort n elements with integers keys in the range {0, 1, . . . , O (n c )} for any
constant c , i.e., any integer keys that are polynomial size in n , in linear time.

Proof. Let u =O (n c ), so lgn u =O (lgn n c ) =O (c ) =O (1) and hence the complexity is O (n ).

Wow, that’s a big improvement! We have gone from being able to only sort integer keys that
were linear in n , i.e., keys up to O (n ), which is quite restrictive, to being able to sort any keys
that are polynomial in n , i.e., keys up to O (n c ) for any constant c .

Remark: Integer sorting is still an open problem!

One cool thing about comparison sorting is that it is (asymptotically) a solved prob-
lem. We know that Ω(n log n ) is a lower bound, but we also have algorithms that run in
O (n log n ) cost, so those algorithms are optimal up to constant factors.

The same however is not true for integer sorting! The algorithms we learned today
can sort integers that are up to polynomial size in n , but what about sorting integers
without any restriction on the size? This is still an open research problem. The best
algorithms that have been discovered run in O (n log log n ) time (deterministically), or
in O (n

p

log log n ) expected time. We don’t however know any lower bound for integer
sorting other than the trivial Ω(n ) lower bound! So, we still don’t know whether there
exists a linear-time sorting algorithm for integers that works regardless of their size, or
whether there is a lower bound that shows that this is not possible. Either could be true!
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3.4. Sorting bigger integers: Radix Sort

Exercises: Integer Sorting

Problem 5. We wrote pseudocode that performs a bottom-up (LSD) Radix Sort. Write similar
pseudocode for a top-down Most-Significant-Digit (MSD) Radix Sort instead.

Problem 6. Argue that the complexity of MSD Radix Sort is the same as LSD / bottom-up.
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Lecture 4

Hashing: Universal and Perfect Hashing

Hashing is a great practical tool, with an interesting and subtle theory too. In addition to its use
as a dictionary data structure, hashing also comes up in many different areas, including cryp-
tography and complexity theory. In this lecture we describe two important notions: universal
hashing and perfect hashing.

Objectives of this lecture

In this lecture, we want to:

- Review dictionaries and understand the formal definition and general idea of hashing

- Define and analyze universal hashing and its properties

- Analyze an algorithm for static perfect hashing

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 11, Hash Tables

- DPV, Algorithms, Chapter 1.5, Universal Hashing
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Lecture 4. Hashing: Universal and Perfect Hashing

4.1 Dictionaries, hashing, and hashtables

4.1.1 The Dictionary problem
One of the main motivations behind the study and hashing and hash functions is the Dictionary
problem. A dictionary D stores a set of items, each of which has an associated key. From an
algorithmic point of view, items themselves are not typically important, they can be thought of
as just data associated with a key. The key is the important part for us as algorithm designers.
The operations we want to support with a dictionary are:

Definition: Dictionary data type

A dictionary supports:

- insert(item): add the given item (associated with its key)

- lookup(key): return the item with the given key (if it exists)

- delete(key): delete the item with the given key

In some cases, we don’t care about inserting and deleting keys, we just want fast query times—
e.g., if we were storing a literal dictionary, the actual English dictionary does not change (or
changes extremely rarely). This is called the static case. Another special case is when we only
insert new keys but never delete: this is called the incremental case. The general case with
insertions, lookups and deletes is called the fully dynamic case.

For the static problem we could use a sorted array with binary search for lookups. For the
dynamic we could use a balanced search tree. However, hashtables are an alternative approach
that is often the fastest and most convenient way to solve these problems. You should hopefully
already be familiar with the main ideas of hashtables from your previous studies.

4.1.2 Hashing and hashtables
To design and analyze hashing and hashing-based algorithms, we need to formalize the setting
that we will work in. We will continue to work in the word RAM model from last lecture, so
operations on word-sized integers takes constant time, and we have access to constant time
indirect addressing (looking up an element of an array by its index in constant time).

The key space (the universe): The keys are assumed to come from some large universe U .
Most often, when analyzed on the word RAM model, we will assume that U = 0, . . . , u −1, where
u = 2w is the universe size, i.e., the keys are word-sized integers.

The hashtable: There is some set S ⊆U of keys that we are maintaining (which may be static
or dynamic). Let n = |S |. Think of n as much smaller than the size of U . We will perform inserts
and lookups by having an array A of some size m , and a hash function h : U → {0, . . . , m − 1}.
Given an item with key x , the idea of a hashtable is that we want to store it in A[h (x )]. Note that
if U was small then you could just store the item in A[x ] directly, no need for hashing! Such a
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data structure is often called a direct-access array or direct-address table. The problem is that
U is assumed to be very big, so this would waste memory. That is why we employ hashing.

Collisions: Recall that hashtables suffer from collisions, and we need a method for resolving
them. A collision is when h (x ) = h (y ) for two different keys x and y . For this lecture, we will
assume that collisions are handled using the strategy of separate chanining, by having each
entry in A be a list1 containing all the colliding items. There are a number of other methods
(e.g., open addressing aka probing), but for this lecture we are focusing primarily on the hash
function itself, and separate chaining just happens to be the simplest method. To insert an
item, we just add it to the list2. If h is a “good” hash function, then our hope is that the lists will
be small. This lecture will focus on exploring what “good” hash functions look like.

The question we now turn to is: what properties are needed to achieve good performance?

Desired properties: The main desired properties for a good hashing scheme are:

1. The keys are nicely spread out so that we do not have too many collisions, since collisions
affect the time to perform lookups and deletes.

2. m =O (n ): in particular, we would like our scheme to achieve property (1) without needing
the table size m to be much larger than the number of items n .

3. The function h is fast to compute. In our analysis today we will be viewing the time to com-
pute h (x ) as a constant. However, it is worth remembering in the back of our heads that h
shouldn’t be too complicated, because that affects the overall runtime.

Given this, the time to lookup an item x is O (length of list A[h (x )]). The same is true for deletes.
Inserts take time O (1) if we don’t check for duplicates, or the same time again if we do. So, our
main goal will be to be able to analyze how big these lists get.

Prehashing non-integer keys: One issue that we sweep under the rug in theory but that mat-
ters a lot in practice is dealing with non-integer keys. Hashtables in the real world are frequently
used with data such as strings, so we want this to be applicable.

The way that we get around this in theory is to require non-integer key types to come equipped
with a pre-hash function, i.e., a function that converts the keys reasonably uniformly into inte-
gers in the universe U . Then we can proceed as normal assuming integer keys.

Basic intuition: One way to spread items out nicely is to spread them randomly. Unfortu-
nately, we can’t just use a random number generator to decide where the next item goes because
then we would never be able to find it again. So, we want h to be something “pseudorandom”
in some formal sense.

We now present some bad news, and then some good news.

1Historically, separate chaining was always described by using linked lists to store the set of colliding items. For
most theoretical purposes however, the kind of list (e.g., linked list vs. dynamic array) is irrelevant so I just say list.

2This assumes that the user will never insert a duplicate key. To guard against this we could first scan the list and
check for duplicates before inserting.
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Claim: Bad news

For any hash function h , if |U | ≥ (n −1)m +1, there exists a set S of n items that all hash
to the same location.

Proof. By the pigeonhole principle. In particular, to consider the contrapositive, if every loca-
tion had at most n −1 items of U hashing to it, then U could have size at most m (n −1).

So, this is partly why hashing seems so mysterious — how can one claim hashing is good if for
any hash function you can come up with ways of foiling it? A common but unsatisfying answer
is that there are a lot of simple hash functions that work well in practice for typical sets S . But
we are not a practical class, we want theoretical guarantees! What can we do if we want to have
good worst-case guarantees?

4.1.3 The key idea: Random hashing
In Lecture One we reviewed one of the holy grails of algorithm design. To foil an adversary from
constructing worst-case inputs to your algorithm, introduce randomness into the algorithm!
Specifically, let’s use randomization in our construction of h . Importantly, we must remember
that the function h itself will be a deterministic function, but we will use randomness to choose
which function h we end up with.

What we will then show is that for any sequence of insert and lookup operations (remember,
we won’t assume the set S of items inserted is random since that would give us average-case
complexity and we want worst-case bounds), if we pick h in this probabilistic way, the perfor-
mance of h on this sequence will be good in expectation. We will come up with different kinds
of hashing schemes depending on what we mean by “good”. Intuitively, the goal is to make the
hash appear as if it was a totally random function, even though it isn’t.

We will first develop the idea of universal hashing. Then, we will use it for an especially nice
application called “perfect hashing”.

4.2 Universal Hashing

Definition: Universal Hashing

A set of hash functionsH where each h ∈H maps U →{0, . . . , m−1} is called universal
(or is called a universal family) if for all x ̸= y in U , we have

Pr
h∈H
[h (x ) = h (y )]≤ 1/m . (4.1)

Make sure you understand the definition! This condition must hold for every pair of distinct
keys x ̸= y , and the randomness is over the choice of the actual hash function h from the set
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H . Here’s an equivalent way of looking at this. First, count the number of hash functions inH
that cause x and y to collide. This is

|{h ∈H |h (x ) = h (y )}|.

Divide this number by |H |, the number of hash functions. This is the probability on the left
hand side of (4.1). So, to show universality you want

|{h ∈H | h (x ) = h (y )}|
|H |

≤
1

m

for every x ̸= y ∈U . Here are some examples to help you become comfortable with the defini-
tion.

Example

The following three hash families with hash functions mapping the set {a , b } to {0, 1} are
universal, because at most 1/m of the hash functions in them cause a and b to collide,
were m = |{0, 1}|.

a b
h1 0 0
h2 0 1

a b
h1 0 1
h2 1 0

a b
h1 0 0
h2 1 0
h3 0 1

On the other hand, these next two hash families are not, since a and b collide with prob-
ability more than 1/m = 1/2.

a b
h1 0 0
h3 1 1

a b c
h1 0 0 1
h2 1 1 0
h3 1 0 1

4.2.1 Using Universal Hashing

Theorem 4.1: Universal hashing

IfH is universal, then for any set S ⊆U of size n , for any key x ∈ S (e.g., that we might
want to lookup), if h is drawn randomly from H , the expected number of collisions
between x and other keys in S is less than n/m .

Proof. Each y ∈ S (y ̸= x ) has at most a 1/m chance of colliding with x by the definition of
universal. So, let the random variable Cx y = 1 if x and y collide and 0 otherwise. Let Cx be the
random variable denoting the total number of collisions for x . So,

Cx =
∑

y ∈S
y ̸=x

Cx y .
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We know E[Cx y ] = Pr(x and y collide)≤ 1/m . Therefore, by linearity of expectation,

E[Cx ] =
∑

y ∈S
y ̸=x

E[Cx y ]≤
|S | −1

m
=

n −1

m
,

which is less than n/m .

When a table is storing n items in m slots, this quantity n/m represents how “full” the table
is and shows up frequently in the anaylsis of hashing, so it gets a name. α = n/m is called the
load factor of the hashtable. We now immediately get the following theorem.

Theorem

Insert, lookup, and delete, on a hashtable using universal hashing with separate chain-
ing cost Θ(1+α) time in expectation.

Proof. The runtime for insert, lookup, and delete, for a key x is proportional to the number of
items in the list at slot A[h (x )] (plus a constant cost to compute the hash function). Suppose x is
not currently in the hashtable, then by Theorem 4.1 the expected number of items in A[h (x )] is
the number of items in the hashtable that collide with x , which is less than (n+1)/m =Θ(1+α).
Similarly if x is currently in the table then then the number of items in A[h (x )] is the the number
of items in the hashtable that collide with x plus one (itself, since x is definitely at location
A[h (x )]), so by Theorem 4.1 the cost is again at most Θ(1+n/m ) =Θ(1+α).

Corollary

For any sequence of L insert, lookup, and delete operations in which there are at most m
keys in the hashtable at any one time, using separate chaining with universal hashing,
the expected total cost of the L operations is only O (L ).

Proof. Since there are at most m keys in the table at any time, α ≤ 1, so every operation costs
Θ(1+α) =Θ(1) in expectation. By linearity of expectation, the expected total cost is O (L ).

Can we construct a universalH ? If not, this this is all useless. Luckily, the answer is yes.

4.2.2 Constructing a universal hash family: the matrix method

Definition: The matrix method for universal hashing

Assume that keys are w -bits long, so U = 0, . . . , 2w −1. We require that the table size m
is a power of 2, so an index is b -bits long with m = 2b . We pick a random b -by-w 0/1
matrix A, and define h (x ) = Ax , where we do addition mod 2. x is interpreted as a 0/1
vector of length w , and h (x ) is a 0/1 vector of length b , denoting the bits of the result.
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These matrices are short and fat. For instance, in picture form:

Claim: The matrix method is universal

LetH be the hash family generated by the matrix method. For all x ̸= y from U , we
have

Pr
h∈H
[h (x ) = h (y )] =

1

2b
=

1

m

Proof. First of all, what does it mean to multiply A by x ? We can think of it as adding some of
the columns of A (doing vector addition mod 2) where the 1 bits in x indicate which ones to
add. E.g., if x = (1010 · · · )⊺, Ax is the sum of the 1st and 3rd columns of A.

Now, take an arbitrary pair of keys x , y such that x ̸= y . They must differ someplace, so say they
differ in the i th coordinate and for concreteness say xi = 0 and yi = 1. Imagine we first choose
all the entries of A but those in the i th column. Over the remaining choices of i th column,
h (x ) = Ax is fixed, since xi = 0 and so Ax does not depend on the i th column of A. However,
each of the 2b different settings of the i th column gives a different value of h (y ) (in particular,
every time we flip a bit in that column, we flip the corresponding bit in h (y )). So there is exactly
a 1/2b chance that h (x ) = h (y ).

More verbosely, let y ′ = y but with the i th entry set to zero. So Ay = Ay ′+ the i th column of
A. Now Ay ′ is also fixed now since y ′i = 0. Now if we choose the entries of the i th column of
A, we get Ax = Ay exactly when the i th column of A equal A(x − y ′), which has been fixed by
the choices of all-but-the-i th-column. Each of the b random bits in this i th column must come
out right, which happens with probability (1/2) each. These are independent choices, so we
get probability (1/2)b = 1/m .

Efficiency Okay great, its universal! But how efficient is it? If we manually compute the matrix
product, since it is an b ×w matrix, this will take O (b w ) =O (w lg m ) time, which is not great,
since this is actually worse than using a BST. However, this is assuming that we compute the re-
sult bit-by-bit. If we take advantage of the word RAM and use the fact that the key and rows are
w -bit integers, we can compute each row-vector product in constant time with a single multi-
plication and improve the performance to O (lg m ) time, which is about the same as a balanced
BST since we assume m =O (n ). That means that the matrix method is not particularly practi-
cal as a hash family since we prefer hash functions that are constant time. It is mostly intended
to serve as a proof that nontrivial universal families actually exist and a good first example of
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how to prove universality. There does exist universal families that contain hash functions that
can be evaluated in constant time, but their proofs of universality are more complicated.

4.2.3 Another universal family: the dot-product method

Definition: The dot-product method for universal hashing

We will first require m to be a prime number. In the matrix method, we viewed the key
as a vector of bits. In this method, we will instead view the key x as a vector of integers
[x1, x2, . . . , xk ]with the requirement being that each xi is in the range {0, 1, . . . , m−1} and
hence k = logm u . There is a very natural interpretation of this. Just think of the key
being written in base m .

To select a hash function, we choose k random numbers r1, r2, . . . , rk in {0, 1, . . . , m − 1}
and define:

h (x ) = r1 x1+ r2 x2+ . . .+ rk xk mod m .

Note that choosing [r1, r2, . . . , rk ]here is equivalent to just picking a single value r in the universe
and then writing it in base m as well. The proof that this method is universal follows the exact
same lines as the proof for the matrix method.

Claim: The dot-product method is universal

LetH be the hash family generated by the dot-product method. For all x ̸= y from U ,
we have

Pr
h∈H
[h (x ) = h (y )] =

1

m

Proof. Let x and y be two distinct keys. We want to show that Prh (h (x ) = h (y )) ≤ 1/m . Since
x ̸= y , it must be the case that there exists some index i such that xi ̸= yi . Now imagine choosing
all the random numbers r j for j ̸= i first. Let h ′(x ) =

∑

j ̸=i r j x j . So, once we pick ri we will
have h (x ) = h ′(x ) + ri xi . This means that we have a collision between x and y exactly when
h ′(x ) + ri xi = h ′(y ) + ri yi mod m , or equivalently when

ri (xi − yi ) = h ′(y )−h ′(x ) mod m .

Since m is prime, division by a non-zero value mod m is legal (every integer between 1 and m−1
has a multiplicative inverse modulo m), which means there is exactly one value of ri modulo
m for which the above equation holds true, namely ri = (h ′(y )−h ′(x ))/(xi − yi ) mod m . So, the
probability of this occurring is exactly 1/m .

Efficiency Is this more efficient than the matrix method? Well, our keys consist of k pieces/dig-
its, where k = logm u , so computing the hash function takes O (k ) = O (logm u ) time, which is
faster than the matrix method when m is large, but slower when m is small. If we pick m =Θ(n )
like usual, then this is O (logn u ), which is O (1) time if u =O (n c ) (same as the analysis of Radix
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Sort!), i.e., if the universe size is polynomial in n . So this hash family is constant time for rea-
sonable universe sizes, but not for all universe sizes.

4.3 More powerful hash families
Recall that our overarching goal with universal hashing was to produce a hash function that
behaved as if it was totally random. We can try to be more specific about what we mean. In
the case of universal hashing, if we took any two distinct keys x , y from our universe, and then
hashed them using our hash function from a universal family, then the probability of collision
was at most 1/m , which is the probability that we would get if the hash function was totally
random! We can therefore think of universal hashing as hashing that appears to behave totally
randomly if all we care about is pairwise collisions.

In some cases (for some algorithms), though, this is not good enough. Although universal hash-
ing looks good if all we care about are collisions, there are scenarios where universal hashes ap-
pear totally not random. Lets consider an example. Suppose we are maintaining a hash table
of size m = 2, and an evil adversary would like to cause a collision by inserting just two items.
If our hash was totally random, then the adversary would have a 50/50 chance of success just
by pure chance. Suppose that we use the following universal family for our hash table.

a b c
h1 0 0 1
h2 1 0 1

In this case, the evil adversary can just first insert a , and now we are in trouble. If a goes into
slot 0, then the adversary knows we have h1 and can hence select b to insert next, causing a
guaranteed collision. Otherwise, if a goes into slot 1, then the adversary can select c and cause
a guaranteed collision. So, even though we used a universal hash family, it wasn’t as good as
a totally random hash, because the adversary was able to figure out which hash function had
been selected by just knowing the hash of one key. The problem at a high level was that although
this family makes collisions unlikely, it doesn’t do anything to prevent the hashes of different
keys from correlating. In this family, the adversary can deduce the hash values of b and c by
just knowing the hash of a .

To fix this, there is a closely-related concept called pairwise independence.

Definition: Pairwise independence

A hash familyH is pairwise independent if for all pairs of distinct keys x1, x2 ∈U and
every pair of values v1, v2 ∈ {0, . . . , m −1}, we have

Pr
h∈H

[h (x1) = v1 and h (x2) = v2] =
1

m 2

Intuitively, pairwise independence guarantees that if we only ever look at pairs of keys in our
universe, then their hash values appear to behave totally randomly! In other words, if the ad-
versary ever learns the hash value of one key, it can not deduce any information about the hash
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values of the other keys, they appear totally random. Of course, it is possible that by learning the
hash values of two keys, the adversary may be able to deduce information about other keys. To
improve this, we can generalize the definition of pairwise independence to arbitrary-size sets
of keys.

Definition: k -wise independence

A hash familyH is k -wise independent if for all k distinct keys x1, x2, . . . , xk and every
set of k values v1, v2, . . . , vk ∈ {0, . . . , m −1}, we have

Pr
h∈H

[h (x1) = v1 and h (x2) = v2 and . . . and h (xk ) = vk ] =
1

m k

Intuitively, if a hash family is k -wise independent, then the hash values of sets of k keys appear
totally random, or, if an adversary learns the hash values of k − 1 keys, it can not deduce any
information about the hash values of any one other key.

4.4 Perfect Hashing
The next question we consider is: if we fix the set S (the dictionary), can we find a hash func-
tion h such that all lookups are constant-time? The answer is yes, and this leads to the topic
of perfect hashing. We say a hash function is perfect for S if all lookups involve O (1) deter-
ministic work-case cost (though lookup must be deterministic, randomization is still needed
to actually construct the hash function). Here are now two methods for constructing perfect
hash functions for a given set S .

4.4.1 Method 1: an O (n 2)-space solution
Say we are willing to have a table whose size is quadratic in the size n of our dictionary S . Then,
here is an easy method for constructing a perfect hash function. LetH be universal and m =
n 2. Then just pick a random h fromH and try it out! The claim is there is at least a 50% chance
it will have no collisions.

Claim

IfH is universal and m = n 2, then

Pr
h∈H
(no collisions in S )≥ 1/2.

Proof. How many pairs (x , y ) in S are there? Answer:
�n

2

�

. For each pair, the chance they collide
is ≤ 1/m by definition of universal. Therefore,

Pr(exists a collision)≤

�n
2

�

m
=

n (n −1)
2m

≤
n 2

2n 2
=

1

2
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This is like the other side to the “birthday paradox”. If the number of days is a lot more than the
number of people squared, then there is a reasonable chance no pair has the same birthday.

So, we just try a random h from H , and if we got any collisions, we just pick a new h . On
average, we will only need to do this twice. Now, what if we want to use just O (n ) space?

4.4.2 Method 2: an O (n )-space solution
The question of whether one could achieve perfect hashing in O (n ) space was a big open ques-
tion for some time, posed as “should tables be sorted?” That is, for a fixed set, can you get
constant lookup time with only linear space? There was a series of more and more compli-
cated attempts, until finally it was solved using the nice idea of universal hash functions in a
2-level scheme.

The method is as follows. We will first hash into a table of size n using universal hashing. This
will produce some collisions (unless we are extraordinarily lucky). However, we will then rehash
each bin using Method 1, squaring the size of the bin to get zero collisions. So, the way to think
of this scheme is that we have a first-level hash function h and first-level table A, and then n
second-level hash functions h1, . . . , hn and n second-level tables A1, . . . , An . To lookup a key x ,
we first compute i = h (x ) and then find the item in Ai [hi (x )]. (If you were doing this in practice,
you might set a flag so that you only do the second step if there actually were collisions at index
i , and otherwise just put x itself into A[i ], but let’s not worry about that here.)

N

L2
4

L2
6

L2
9

L2
10

Say hash function h hashes L i keys of S to location i . We already argued (in analyzing Method
1) that we can find h1, . . . , hn so that the total space used in the secondary tables is

∑

i (L i )2.
What remains is to show that we can find a first-level function h such that

∑

i (L i )2 = O (n ). In
fact, we will show the following:

Theorem

If we pick the initial h from a universal familyH , then

Pr

�

∑

i

(L i )
2 > 4n

�

<
1

2
.

Proof. We will prove this by showing that E
�∑

i (L i )2
�

< 2n . This implies what we want by
Markov’s inequality. (If there was even a 1/2 chance that the sum could be larger than 4n then
that fact by itself would imply that the expectation had to be larger than 2n . So, if the expecta-
tion is less than 2n , the failure probability must be less than 1/2.)
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Now, the neat trick is that one way to count this quantity is to count the number of ordered pairs
that collide, including a key colliding with itself. E.g, if a bucket has {d,e,f}, then d collides
with each of {d,e,f}, e collides with each of {d,e,f}, and f collides with each of {d,e,f},
so we get 9. So, we have:

E

�

∑

i

(L i )
2

�

=E

�

∑

x

∑

y

Cx y

�

(Cx y = 1 if x and y collide, else Cx y = 0)

= n +
∑

x

∑

y ̸=x

E[Cx y ]

≤ n +
n (n −1)

m
(where the 1/m comes from the definition of universal)

< 2n . (since m = n)

So, we simply try random h fromH until we find one such that
∑

i L 2
i < 4n , and then fixing

that function h we find the n secondary hash functions h1, . . . , hn as in Method 1.
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Exercises: Hashing

Problem 7. Show that any pairwise independent hash family is also a universal hash family.

Problem 8. Show that the matrix method as defined above, which was universal, is not pairwise
independent.
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Lecture 5

Fingerprinting & String Matching

In today’s lecture, we will talk about randomization and hashing in a slightly different way. In
particular, we use arithmetic modulo prime numbers to (approximately) check if two strings
are equal to each other. Building on that, we will get an randomized algorithm (called the Karp-
Rabin fingerprinting scheme) for checking if a long text T contains a certain pattern string P as
a substring. This technique is surprisingly elegant and extremely extensible!

Objectives of this lecture

In this lecture, we will:

- Cover some facts about prime numbers that are useful for randomized hashing schemes

- See a new application of hashing to string equality checking

- Look at the Karp-Rabin pattern matching algorithm

Recommended study resources

- CLRS, Introduction to Algorithms, Section 32.2, The Rabin-Karp algorithm

- DPV, Algorithms, Section 1.3.1, Generating random primes

5.1 How to Pick a Random Prime
In this lecture, we will often be picking random primes, so let’s talk about that. This is used
in many widely used algorithms, for example, you do this when generating RSA public/pri-
vate key pairs. So, how do we actually pick a random prime in some range {1, . . . , M }? Here’s a
straightforward approach:

Algorithm: Random prime generation

- Pick a random integer x in the range {1, . . . , M }.

- Check if x is a prime. If so, output it. Else go back to the first step.

Okay this is not quite complete, we have to fill in some details. How would you pick a random
number in the prescribed range? Pick a uniformly random bit string of length ⌊log2 M ⌋+1. (We
assume we have access to a source of random bits.) If it represents a number ≤M , output it,
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Lecture 5. Fingerprinting & String Matching

else repeat. The chance that you will get a number ≤M is at least half, so in expectation you
have to repeat this process at most twice.

How do you check if x is prime? You can use the Miller-Rabin randomized primality test1

(which may produce false positives, but it will only output “prime” when the number is com-
posite with very low probability). There are other randomized primality tests as well, see the
Wikipedia page. Or you can use the Agrawal-Kayal-Saxena2 primality test, which has a worse
runtime, but is deterministic and hence guaranteed to be correct. We won’t cover those algo-
rithms in this course, so for now, just know that they exist, we can use them, and know that they
run in O (polylog M ) time.

5.2 How Many Primes?
You have probably seen a proof that there are infinitely many primes. Here’s a different question
that we’ll need for this lecture.

For positive integer n, how many primes are there in the set {1, 2, . . . , n}?

Let there be π(n ) primes between 0 and n . One of the great theorems of the 20t h century was
the Prime Number theorem:

Theorem 5.1: The prime number theorem

The prime counting function π(n ) satisfies

lim
n→∞

π(n )
n/(ln n )

= 1.

And while this is just a limiting statement, an older result of Chebyshev (from 1848) says that

Theorem 5.2: Chebyshev

For n ≥ 2, the prime counting function π(n ) satisfies

π(n )≥
7

8

n

ln n
= (1.262 . . .)

n

log2 n
>

n

log2 n

Here are two consequences of this theorem. The first is that a random integer between 1 and
n is a prime number with probability at least 1/log2 n . We also get the following fact:

Corollary 5.1: Density of primes

If we want at least k ≥ 4 primes between 1 and n , it suffices to have n ≥ 2k log2 k .

1http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
2http://en.wikipedia.org/wiki/AKS_primality_test

54

http://en.wikipedia.org/wiki/Prime_number_theorem
http://mathworld.wolfram.com/PrimeNumberTheorem.html
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/AKS_primality_test
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Proof. Just plugging in to Theorem 5.2, we get

π(2k log2 k )≥
2k log2 k

log2(2k log2 k )
≥

2k log2 k

log2 2+ log2 k + log2 log2 k
≥ k .

5.2.1 Tighter Bounds
The following even tighter set of bounds were proved by Pierre Dusart in 2010.

Theorem 5.3: Dusart

For all n ≥ 60184 we have:

n

ln n −1.1
>π(n )>

n

ln n −1

Because this is a two-sided bound, it allows us to deduce a lower bound on the number of
primes in a range. For example, the number of 9-digit prime numbers (i.e. primes in the range
[108, 109−1]) is

π(109−1)−π(108−1)>
109−1

ln(109−1)−1
−

108−1

ln(108−1)−1.1
= 44928097.3 . . .

From this we can infer that a randomly generated 9 digit number is prime with probability
at least 0.049920 . . .. Thus, the random sampling method would take at most 21 iterations in
expectation to find a 9-digit prime.

5.3 The String Equality Problem
Here’s a simple problem: we’re sending a Mars lander. Alice, the captain of the Mars lander,
receives an N -bit string x . Bob, back at mission control, receives an N -bit string y . Alice knows
nothing about y , and Bob knows nothing about x . They want to check if the two strings are the
same, i.e., if x = y . 3 One way is for Alice to send the entire N -bit string to Bob. But N is very
large. And communication is super-expensive between the two of them. So sending N bits will
cost a lot. Can Alice and Bob share less communication and check equality?

If they want to be 100% sure that x = y , then one can show that fewer than N bits of communi-
cation between them will not suffice. But suppose we are OK with being correct with probability
0.9999. Formally, we want a way for Alice and Bob to send a message to Bob so that, at the end
of the communication:

- If x = y , then Pr[ Bob says equal ] = 1.

- If x ̸= y , then Pr[ Bob says unequal ] = 1−δ.

3E.g., this could be an update to the lander firmware, and we want to make sure the file did not get corrupted
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Here’s a protocol that does almost that. We will hash the strings using the hash function hp (x ) =
(x mod p ) for a random prime p , then check whether the hashes are equal.

Algorithm: Randomized string equality test

1. Alice picks a random prime p from the set {1, 2, . . . , M } for M = ⌈2 · (5N ) · log2(5N )⌉.

2. She sends Bob the prime p , and also the value hp (x ) := (x mod p ).

3. Bob checks if hp (x )≡ y mod p . If so, he says equal else he says unequal.

For now, let’s not worry about where the particular value of M came from: it will arise naturally.
Let’s see how this protocol performs.

Lemma 5.1

If x = y , then Bob always says equal.

Proof. Indeed, if x = y , then x mod p = y mod p . So Bob’s test will always succeed.

Lemma 5.2

If x ̸= y , then Pr[ Bob says equal ]≤ 1
5 .

Proof. Consider x and y and N -bit binary numbers. So x , y < 2N . Let D = |x − y | be their
difference. Bob says equal only when x mod p = y mod p , or equivalently (x − y ) = 0 mod p .
This means p divides D = |x − y |. In words, the random prime p we picked happened to be a
divider of D . What are the chances of that? Let’s do the math.

The difference D is a N -bit integer, so D ≤ 2N . So D can be written (uniquely) as D = p1p2 · · ·pk ,
each pi being a prime, where some of the primes might repeat4. Each prime pi ≥ 2, so D =
p1p2 · · ·pk ≥ 2k . Hence k ≤N : the difference D has at most N prime divisors. The probability
that the randomly chosen prime p is one of them is

N

number of primes in {1, 2, . . . , M }
.

We want this to be at most 1/5, i.e., we would like that the number of primes in {1, 2, . . . , M } is at
least 5N . But Corollary 5.1 says that choosing M ≥ 10N log2 5N will give us at least 5N primes.
Hence

Pr[ Bob falsely says equal ]≤
N

number of primes in {1, 2, . . . , M }
≤

N

5N
≤

1

5
.

4This unique prime-factorization theorem is known as the fundamental theorem of arithmetic.
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5.3.1 Communication cost
Naïvely, Alice could have sent x over to Bob. That would take N bits. Now she sends the prime
p , and x mod p . That’s two numbers at most M = 10N log2 5N . The number of bits required
for that:

2 log2 M = 2 log2(10N log2 5N )) =O (log N ).

To put this in perspective, suppose x and y were two copies of all of Wikipedia. Say that’s about
25 billion characters (25 GB of data!). Say 8 bits per character, so N ≈ 2 ·1011 bits. With the new
approach, Alice sends over 2 log2(10N log2 5N )) ≈ 86 bits, or 11 bytes of data. That’s a lot less
communication!

5.3.2 Reducing the Error Probability
If you don’t like the probability of error being 20%, here are two ways to reduce it.

Approach #1 Have Alice repeat this process multiple times independently with different ran-
dom primes, with Bob saying equal if and only if in all repetitions, the test passes. For example,
for 10 repetitions, the chance that he will make an error (i.e., say equal when x ̸= y ) is only

(1/5)10 =
1024

1010
≤ 0.000001.

That’s a 99.999% chance of success! In general, if we repeat R times, we get the probability of
error is at most (1/5)R , so if we desire an error probability of δ, we should do R = log5(1/δ)
repetitions. Since each round requires communicating O (log N ) bits, the total number of bits
that Alice must communicate is

O (log(1/δ) log N ).

Can we do better than this?

Approach #2 Have Alice choose a random prime from a larger set. For some integer s ≥ 1,
if we choose M = 2 · s N log2(s N ), then the arguments above show that the number of primes
in {1, . . . , M } is at least s N . And hence the probability of error is 1/s . If we desire an error
probability ofδ, then we must choose s = 1/δ. For example, to obtain the same 99.999% chance
of success, we would pick s = 1/10−6 = 106. Now Alice is communicating two integers at most
2 · s N log2(s N ), so the number of bits is

2 log2(2 · s N log2(s N )) = 2 log2 s +2 log2 N +2 log2(log2(s N ))+2,

=O (log s + log N ),

=O (log(1/δ) + log N ).

This is much better than Approach #1!
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5.4 The Karp-Rabin Algorithm (the “Fingerprint” method)
Let’s use this idea to solve a different problem.

Problem: Pattern matching

In the pattern matching problem, we are given, over some alphabet Σ,

- A text T , of length m .

- A pattern P , of length n .

The goal is to output the locations of all the occurrences of the pattern P inside the text
T . E.g., if T = abracadabra and P = ab then the output should be {0, 7}.

There are many ways to solve this problem, but today we will use randomization to solve this
problem. This solution is due to Karp and Rabin. The idea is smart but simple, elegant and
effective—like in many great algorithms. To simplify the presentation, we will start by assuming
that Σ = {0, 1}, i.e., all of our strings are written in binary, but the ideas generalize to larger
alphabets.

5.4.1 The Karp-Rabin Idea: “Rolling the hash”
As in the last section, interpret the string written in binary as an integer and use the hash

hp (x ) = (x mod p )

for some randomly chosen prime p .

Now look at the string x ′ obtained by dropping the leftmost bit of x , and adding a bit to the
right end. E.g., if x = 0011001 then x ′ might be 0110010 or 0110011. If I told you hp (x ) = z ,
can you compute hp (x ′) fast?

10100110011100

𝒙

𝒙′

Let x ′l b be the lowest-order (rightmost) bit of x ′, and xh b be the highest order (leftmost) bit of
x . Now observe that

- removing the high-order bit (xh b ) is just equivalent to subtracting xh b ·2n−1,

- shifting all of the remaining bits to one higher position is equivalent to multiplying by 2,

- appending the low-order bit x ′l b is equivalent to just adding x ′l b .
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Therefore, we can write

x ′ = 2(x − xh b ·2n−1) + x ′l b

Since hp (a + b ) = (hp (a ) +hp (b )) mod p , and hp (2a ) = 2hp (a ) mod p , we then have

hp (x
′) = (2hp (x )− xh b ·hp (2

n ) + x ′l b ) mod p .

Take a moment to understand the significance of this fact. Given the hash hp (x ) for the sub-
string x and the value hp (2n ), we can compute the hash of the next adjacent substring hp (x ′)
in just a constant number of arithmetic operations modulo p . This is an enormous speedup
compared to computing hp (x ′) from scratch which would take O (n ) arithmetic operations.

5.4.2 The pattern matching algorithm

To keep things short, let Ti ... j denote the string from the i th to the j th positions of T , inclusive.
So the string matching problem is: output all the locations i ∈ {0, 1, . . . , m −n} such that

Ti ...i+(n−1) = P.

Here’s the algorithm.

Algorithm: Karp-Rabin pattern matching

1. Pick a random prime p in {1, . . . , M } for M = ⌈2s n log2(s n )⌉ (we’ll choose s later.)

2. Compute hp (P ) and hp (2n ), and store these results.

3. Compute hp (T0...n−1), and check if it equals hp (P ). If so, output match at position 0.

4. For each i ∈ {0, . . . , m −n −1}

(i) compute hp (Ti+1...i+n ) using hp (Ti ...i+n−1)

(ii) If hp (Ti+1...i+n ) = hp (P ), output match at position i+1.

Notice that we’ll never have a false negative (i.e., miss a match) but we may erroneously output
location that are not matches (have a false positive) if we get a hash collision! Let’s analyze the
error probability, and the runtime.

Probability of Error Since the Karp-Rabin algorithm can encounter false positives, we should
analyze the probability of them occuring. This will also show us how large of a prime number
of we need to pick in order to achieve a desired false positive probability.

Theorem: Error probability of Karp-Rabin

We can achieve an error probability of δ using the Karp-Rabin algorithm with a prime
of O

�

log
�

1
δ

�

+ log m + log n
�

bits.
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Proof. We do m different comparisons, each has a probability 1/s of failure. So, by a union
bound, the probability of having at least one false positive is m/s . Hence, setting s = 100m will
make sure we have at most a 1

100 chance of even a single mistake.

This means we set M = (200 ·mn ) log2(100 ·mn ), which requires log2 M + 1 =O (log m + log n )
bits to store. Hence our prime p is also at most O (log m+log n ) bits.5 Generalizing this, picking
a prime from the range M = (2/δ ·mn ) log2(1/δ ·mn ) achieves a failure probability of δ with a
prime of O

�

log
�

1
δ

�

+ log m + log n
�

bits.

Running Time Let’s assume we’re working in a Θ(log M )-bit word RAM, i.e., M fits in a con-
stant number of registers and we can perform all arithmetic and comparisons on Θ(log M )-bit
integers in constant time. We will not worry about the time to pick a random prime.

Theorem: Running time of Karp-Rabin

The Karp-Rabin pattern matching algorithm runs in O (m +n ) time.

Proof. Since p <M and all of our calcuations are done mod p , each individual arithmetic op-
eration takes constant time.

- Computing hp (x ) for n-bit x can be done in O (n ) time. So each of the hash function compu-
tations in Steps 2 and 3 take O (n ) time.

- Now, using the idea in Section 5.4.1, we can compute each subsequent hash value in O (1)
time! So iterating over all the values of i takes O (m ) time.

That’s a total of O (m +n ) time! You can’t do much faster, since the input is m +n bits long.

5If we do the math, and say m , n ≥ 10, then log2 M ≤ 4(log2 m + log2 n ). Now, just for perspective, if we were
looking for a n = 1024-bit phrase in Wikipedia, this means the prime p is only 4(log2 238+ log2 210)≤ 192 bits long.
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5.4. The Karp-Rabin Algorithm (the “Fingerprint” method)

Exercises: Fingerprinting

General alphabets For simplicity, we looked at the case where Σ = {0, 1}. The Karp-Rabin
algorithm generalizes naturally to larger alphabets. Instead of treating the input as a number
in binary, treat it as base-|Σ|. For example, if the text contains only lower-case English words,
we would use base-26. The formula for rolling the hash still works, except we replace 2 with |Σ|,
and the range {1, . . . , M } from which we should select our prime becomes slightly larger.

Problem 9. Suppose we use an alphabet Σ which has size |Σ| for Karp-Rabin. What should we
use as our new value of M , and how does this affect the number of bits required to store the
prime p ?

Other pattern matching algorithms and problems Though there are many algorithms for
pattern matching, the advantage of the Karp-Rabin approach is not only the simplicity, but
also the extensibility. You can, for example, solve the following 2-dimensional problem using
the same idea.

Problem 10. Given a (m1 ×m2)-bit rectangular text T , and a (n1 × n2)-bit pattern P (where
ni ≤mi ), find all occurrences of P inside T . Show that you can do this in O (m1m2) time, where
we assume that you can do modular arithmetic with integers of value at most poly(m1m2) in
constant time.
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Lecture 6

Amortized Analysis

In this lecture we discuss a useful form of analysis, called amortized analysis, for problems in
which one must perform a series of operations, and our goal is to analyze the time per opera-
tion. The motivation for amortized analysis is that looking at the worst-case time per operation
can be too pessimistic if the only way to produce an expensive operation is to “set it up” with a
large number of cheap operations beforehand.

We also discuss the use of a potential function which can be a useful aid to performing this
type of analysis. A potential function is much like a bank account: if we can take our cheap
operations (those whose cost is less than our bound) and put our savings from them in a bank
account, use our savings to pay for expensive operations (those whose cost is greater than our
bound), and somehow guarantee that our account will never go negative, then we will have
proven an amortized bound for our procedure.

As in the earlier lectures, in this lecture we will avoid use of asymptotic notation as much as
possible, and focus instead on concrete cost models and bounds.

Objectives of this lecture

In this lecture, we want to:

- Understand amortized analysis, how it differs from worst- and average-case analysis.

- See different methods for amortized analysis (aggregate, bankers, potential)

- Practice using the method of potential functions for amortized analysis

- See some examples of data structures and their performance using amortized analysis

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 17, Amortized Analysis

6.1 The ubiquitous example: Dynamic arrays (lists)
Every (good) programming language has an array type. An array is usually defined to be a fixed-
size contiguous sequence of elements. However, it is extremely common for programmers to
not know exactly how large an array needs to be up front. Instead, they need something more
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general than this, an array where you can increase the size and add new elements over time.
Luckily, most programming languages also supply such a container in their standard libraries!

Interface: List

The List API consists of:

- initialize(): Create an empty list

- append(x ): Insert x at the end of the list

- get(i ): Read and return the i th element of the list

C++ provides this with vector, Java has ArrayList, and Python has list (the type you get
when you write something between square brackets,[...]). In this lecture, to avoid ambiguity
between this data structure, and a fixed-size array, we’ll borrow from Python and refer to this
data structure as a list. When we say array, we will mean a fixed-size array. So, how would we
implement a list type from scratch if all we have access to are regular arrays? One option would
be to represent a list of size n as an array of size n , then allocate a new array of size n + 1 and
move over all of the existing elements whenever we want to append a new element, but this
would make append cost O (n ) time! We’d like to be much much faster than this.

The standard solution is to use doubling resizing. We maintain an array of some capacity c ≥ 1
in which the first n of the slots are the actual list elements, and the remaining slots are free
space for future elements, so c ≥ n . When we want to append to the list, we check whether
c > n , and if so, we can just insert the new element in the next available position, increment
n , and we are done. If c = n , i.e., the current array is full, we allocate a new array of size 2c ,
i.e., double the size! We can then move all of the existing elements over to the new array, throw
away the old one, and insert the new element. To make this concrete, lets add another method1

to our data structure:

- grow(): Double the current capacity of the array, moving the elements from the old array into
the new array. This costs n since we move n elements.

So, now we can concretely write down our algorithm in terms of this method.

Algorithm 6.1: Doubling List

We implement the API of List as follows:

- initialize(): Create an array with capacity 1. (n = 0, c = 1)

- append(x ): If c = n then grow(). Write x at position n and increment n .

- get(i ): Return the i th element of the array

- grow(): Double c and create a new array with capacity c , move every element from
the old into the new array.

1If you like thinking in terms of Object-Oriented Programming, this is a private method, its not available to the
user, but we will use it internally and it will help our analysis to separate it out from the rest of the operations.
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How fast is this solution? Well, in the best case when c > n , we can just insert the new element
and be done in O (1)operations. That’s pretty great. But in the worst case, we have c = n , and we
have to spend O (n ) time moving all of the n elements over to the new array, which costs O (n ).
So, in the worst case, this new algorithm still takes O (n ) time. Does that mean this is really a bad
algorithm, though? Maybe in this case it is not our algorithm that is bad, but our analysis. By
considering the worst-case performance for every append, we are really being too pessimistic,
because it is impossible for every append to trigger the worst case. After triggering the worst
case, it is impossible to trigger another one until we have performed c /2 more appends, so we
can make our analysis better by considering an entire sequence of operations, rather than just
thinking about one operation at a time. This is the key idea behind amortized analysis.

Key Idea: Amortized analysis

The key idea of amortized analysis is to consider the worst-case cost of a sequence of op-
erations on a data structure, rather than the worst-case individual cost of any particular
operation.

This means that amortized analysis is not applicable an isolated run of a single algorithm, e.g.,
it wouldn’t make logical sense to ask about the amortized cost of Quicksort. Rather, we always
talk about the amortized cost of a sequence of operations on a data structure.

So now that we have the idea of amortized analysis, how do we actually do it? It turns out that
there are several ways, and we will see many of them in this lecture. You may have already seen
some of them in your previous classes. The first method that we will analyze is probably the
simplest, but the least general. It is called the aggregate method, or total cost method.

Definition: The aggregate method for amortized analysis

In this method, we will simply add up the total cost of performing a sequence of m op-
erations on the data structure, then divide this by the number of operations m , yielding
an average cost per operation, which we will define as our amortized cost!

This is the simplest and least general method of analysis because we will end up assigning each
operation the same amortized cost. If there are multiple kinds of operations, you could choose
to split the cost unevenly, giving different amortized costs to each operation. It is extremely
important to not confuse this kind of analysis with average-case analysis, even though both
involve averages!

Okay, we have to do one last thing before we analyze our algorithm, which is to decide on a
cost model. When we were looking at sorting and selection, we used the comparison model
which just counts the number of comparisons performed by the algorithms. This new algo-
rithm performs no comparisons, so that would be a rather bad choice for this problem! We will
stress that the cost model is always going to be somewhat arbitrary and there is no one correct
choice. A good cost model should try to capture the costs of the most important/expensive
steps of the algorithm so that it gives as realistic of a prediction of its performance as possible.
It should also ideally be as simple as possible so that we don’t make our analysis more difficult
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than it needs to be. Lets go with the following simple cost model:

- Writing a value to any location in an array costs 1

- Moving a value from one array to another costs 1

- All other operations are free

Now we are ready! Lets use this model and the aggregate method to analyze the algorithm.

Lemma

The cost of a sequence of m append operations using array-doubling is at most 3m .

Proof. After performing m appends, the number of elements in the list is n = m . First, lets
count the cost of all of the append operations not including the growing operations (we will
account for those separately). The cost of inserting elements is just 1, so in total this costs m .

Now we consider the cost of growing. After m appends, the capacity of the array will be c = ⌈⌈m ⌉⌉
(this notation means the smallest power of two that is at least m , also called the “super ceiling
of m”). Also, notice that ⌈⌈m ⌉⌉ ≤ 2m for any value of m . Now, since the array is capacity c , the
most recent grow must have incurred a cost of c /2 since the previous capacity was c /2 and
that many elements were moved from the old array to the new array. Furthermore, the grow
operation before that must have cost c /4, and so on. So, the costs of the grow operations is

1+2+4+ . . .+
⌈⌈m ⌉⌉

2
≤ 1+2+4+ · · ·+m ≤ 2m .

Therefore in total, the cost of a sequence of m append operations is at most m +2m = 3m .

The aggregate method for amortized analysis therefore gives us the following result.

Theorem: The amortized cost of array-doubling lists

The amortized cost (using the aggregate method) of append using the array-doubling
algorithm is 3

Proof. The lemma tells us that a sequence of m append operations costs at most 3m , hence
each append in the sequence costs at most 3 on average, which is the amortized cost according
to the aggregate method.

6.2 The Bankers Method
So far so good, but we’re going to need a better way to keep track of things for more complex
problems. You may have previously heard of the bankers method (also known as the accounting
method, or the charging method) for amortized analysis. This is a more general and powerful
method of amortized analysis than the aggregate method since it allows us to assign different
costs to different operations, but in exchange, it requires more creativity to use.
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Definition: The bankers method of amortized analysis

In the bankers method, each operation has an actual cost as specified by the cost model,
and additionally may choose to pay an extra cost (a credit) to store in the data structure
for later use. A future operation may use this credit to offset the cost of an expensive
operation. The amortized cost of an operation is its actual cost in the cost model, plus
any credit it pays for, minus the value of any previous credit that it consumes.

Now lets see an example of using the bankers method to analyze our list.

Theorem: The amortized cost of array-doubling lists using the bankers method

The amortized cost (using the bankers method) of append using the array-doubling al-
gorithm is 3

Proof. We will use the following charging scheme: Whenever we insert a new element into the
list, we will pay a credit of 2 and leave it on the list element. Therefore, the cost of an append,
not counting the grow operation is 3.

Now consider what happens when a grow operation is triggered. The array must be full (c =
n), and the final half of the elements (n/2 of them) will each possess an unused credit of 2.
Therefore, there is a credit of n in the data structure. We consume this credit to pay for the cost
of moving the n elements to the freshly allocated array (which costs exactly n), so the amortized
cost of the resizing procedure is zero. Therefore, the amortized cost of any append operation,
whether it triggers a resizing or not is always 3.

Thankfully, we get the same amortized cost that we got from the aggregate method, which sug-
gests that the method also makes sense. An important thing that we have to be careful of and
keep in mind when using the bankers method is that we must never spend credit that doesn’t
exist. We must be able to argue that the necessary amount of credit has been placed in data
structure by previous operations, and has not already been consumed by a previous operation.
In the argument above, we note that we only consume credit when growing occurs, and hence
when a grow triggers, the final n/2 element must each possess 2 unused credits.

6.3 The Potential Method
The bankers method is a nice improvement over the aggregate method since it can be used to
analyze trickier data structures, or data structures with different costs per operation. We can
do even better with an even more general method called the potential method. The potential
method is the most general, but therefore most difficult-to-use method that we will see for
amortized analysis, so we will spend the rest of this lecture working with it.

In the potential method, we define a potential function Φ, which maps a data structure state S
to a real number Φ(S ). We will often use the notation Si to denote the state of the data structure
after applying the i th operation, and S0 to denote the initial state of the data structure. The

67



Lecture 6. Amortized Analysis

potential function can be thought of as a generalization of the credit in the data structure in
the bankers method.

Definition: The potential method for amortized analysis

Consider a sequence of m operations σ1,σ2, . . . ,σm on the data structure. Let the se-
quence of states through which the data structure passes be S0,S1, . . . ,Sm . Notice that
operationσi changes the state from Si−1 to Si . Let the actual cost of operationσi in the
cost model be ci . Given a potential function Φ, we then define the amortized cost a ci of
operationσi by the following formula:

a ci = ci +Φ(Si )−Φ(Si−1),

In plain English, we can describe the amortized cost as

(amortized cost) = (actual cost) + (change in potential).

Lets compare this to the bankers method for a moment. If an operation pays a credit of p , we
can consider that as equivalent to increasing the potential by p . If an operation consumes p
credits, we can consider that as the same as decreasing the potential by p . With this correspon-
dence, we can observe that the amortized cost defined by the potential method is the same as
the amortized cost defined by the bankers method. This shows that the potential method is
indeed a generalization of the bankers method.

Returning to the general potential method, if we sum up the amortized costs of a sequence of
operations, we obtain the following formula:

∑

i

a ci =
∑

i

(ci +Φ(Si )−Φ(Si−1)) = Φ(Sm )−Φ(s0) +
∑

i

ci .

Note that what happened here is that the terms telescoped. The Φ(Si ) terms all appeared once
as a positive and once as a negative, so they all canceled out, except for the first and last terms
which each only appeared once. Rearranging we get

∑

i

ci =

�

∑

i

a ci

�

+Φ(S0)−Φ(Sm ).

If Φ(S0)≤Φ(Sm ) (as will frequently be the case) we get
∑

i

ci ≤
∑

i

a ci .

Thus, if we can bound the amortized cost of each of the operations, and the final potential is at
least as large as the initial potential, then the total amortized cost is indeed an upper bound on
the total actual cost, or, the average actual cost is at most the average amortized cost. It is very
common (but not required) to define our potential functions such that Φ(S0) = 0 and Φ(Si ) ≥ 0
for all i . Doing so guarantees that the bound above holds and removes the need for us to do an
additional proof that Φ(Sm )≥Φ(S0) to show that our amortized cost is actually valid.

Most of the art of doing an amortized analysis is in choosing the right potential function. This
is typically the hardest part. Once a potential function is chosen we must do two things:
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1. Prove that with the chosen potential function, the amortized costs of the operations satisfy
the desired bounds.

2. Bound the quantity Φ(S0)−Φ(Sm ) appropriately.

6.4 Lists Revisited
Let’s do the analysis of the array-doubling list using the potential method. The hardest part is
coming up with a good potential function. This often involves making educated guesses and
then iterating with trial and error. There’s no real way to guarantee that you’ll pick the right one
the first time.

Some key ideas to keep in mind are these:

- The goal is to make operations that have an expensive actual cost have a much cheaper amor-
tized cost. So we want to rig the potential so that it goes down a lot when an expensive oper-
ation occurs, so that the change in potential is negative, making the amortized cost less than
the actual cost.

- Operations that were previously cheap will have to get more expensive to compensate. Much
like the bankers method, we want each cheap operation to result in the potential increasing,
so that their amortized cost will be more than their actual cost.

In this case, the expensive operation that we are trying to cheapen is the resizing. If we can
identify a property of the data structure that changes drastically when a grow occurs, then we
want the potential function to go down according to this property. Since the actual values of
the list do not affect the cost, the only properties of the list that matter are the capacity c and
the current number of elements n . Here’s an observation that we might exploit. As we append
more elements, the value of n gets closer to the value of c . When a grow occurs, c gets larger
again and this gap widens. So the gap between n and c looks to be just the quantity we want
to base our potential on!

Let’s start our trial-and-error loop.

- (First guess) Our first natural guess for the potential will be

Φ(n , c ) = n − c ,

since this has the properties discussed above. Unfortunately it has the undesirable property
of never being positive. We’d like to stick to our plan of having our potential function never
be negative, so we need something different.

- (Second guess) We’d still like to have the property that Φ increases when we append a new
element, and decreases when we grow, but we want it to be non-negative too. Lets use the
fact that since the capacity doubles when n = c , we have n ≥ c

2 , and change our potential to

Φ(n , c ) = n −
c

2
.
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This looks promising. It has the properties we want and appears to always be non-negative2.
Lets do the analysis and see if it works. Consider an append operation, and as usual, forgo
analyzing the cost of a grow initially. The actual cost a c = 1 and we increase n by 1, so the
potential increases by 1. The amortized cost so far is therefore 2.

Now we consider the cost of a grow. The actual cost a c = n , but what about the potential?
Well, since we just triggered a grow, it must be true that n = c , so Φ(Si−1), i.e., the initial
potential, must be n − n

2 =
n
2 . After performing the grow, it will now be the case that c = 2n ,

so Φ(Si ) = n − 2n
2 = 0. Therefore, the potential decreased by n

2 . The amortized cost of a grow
is therefore

n +
�

0−
n

2

�

=
n

2
.

Hmmm, so that didn’t quite work. It almost worked, though. The potential went down by
n
2 , which is proportional to the actual cost of n that we were trying to cancel. Really we just
needed the potential to change by twice as much. So, lets correct our potential by making it
twice as large!

- (Third time’s a charm) Using our latest observation, lets define our new potential function
to be

Φ(n , c ) = 2
�

n −
c

2

�

.

Now we do the analysis again and see what happens. Consider an append operation separate
from the cost of any grow. We pay an actual cost of a c = 1, and we increase n by 1 which
increases the potential by 2. The amortized cost so far is 3.

Now we analyze the grow method. The actual cost is a c = n , and since n = c , the original
potential is Φ(Si−1) = 2

�

n − n
2

�

= n , and the new potential (now that c = 2n) is 2
�

n − 2n
2

�

= 0.
So the difference in potential is −n , and hence the amortized cost of a grow is

n +
�

0−2
�n

2
−0

��

= 0.

Hooray! Since the amortized cost of a grow is zero, the amortized cost of any append is 3.

Are we done? Not 100%. We still have to check our initial condition on the potential. Remember
that we want Φ(Sm ) ≥ Φ(S0). It turns out that we were wrong about our Φ never being negative,
because when we first initialize the data structure, we have n = 0, c = 1, which means that
Φ(0, 1) =− 1

2 . Oops. Luckily this doesn’t matter at all because it is still true that Φ(Sm )≥Φ(S0). So
we can conclude the following.

Theorem: The amortized cost of array-doubling lists using the potential method

The amortized cost (using the potential method) of append using the array-doubling
algorithm is 3.

Proof. Choose the potential function Φ(n , c ) = 2
�

n − c
2

�

, and observe that, as above, the amor-
tized cost of append is 3, and that Φ(Sm )≥Φ(S0).

2Except for a little corner case that we’ll fix momentarily
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6.5 An Even-more-dynamic Array
A data structure that supports deletes can both grow and shrink in size. It would be nice if the
size that it occupies is not too much bigger than necessary. This is where a list that shrinks
in size is useful. Lets try to design and analyze a data structure that supports the following
operations.

- initialize(): create an empty list

- append(x ): insert x at the end of the list

- get(i ): Read and return the i th element of the list

- pop(): remove the last element of the list

As before, we will denote the capacity of the current array by c and the number of actual list
elements by n . To support shrinking the list, we will replace our grow operation from earlier
with two operations: grow and shrink. grow() increases the capacity of the array from c to 2c ,
and shrink() decreases the capacity of the array from c to c /2.

Since our original cost model didn’t specify deletions, lets add that in. Our new cost model is

- Writing a value to any location in an array costs 1

- Moving a value from one array to another costs 1

- Erasing a value from an array costs 1

- All other operations are free

Using these primitives, here’s how we implement the interface.

- initialize(): create an empty list with capacity 2. (c = 2 and n = 0)

- append(): if c = n then grow(). Now insert the element into the table.

- pop(): if n = c /4 and c ≥ 4 then shrink(). Now erase the element from the table.

There is a little bit of subtlety in this design. The situation immediately after a grow() or a
shrink() is that n = c /2. The key thing is that right after one of these expensive operations,
the system is very far from from having to do another expensive operation. This allows it time
to build up its piggy bank to pay for the next expensive operation.

Lets now try to analyze our growing-and-shrinking array using a potential function. Since the
algorithm is quite similar, we would expect a similar potential function to do the trick. As men-
tioned earlier, one nice observation is that c /2 is still the “midpoint” in some sense of the ca-
pacity, since we will always have n = c /2 immediately following a grow or a shrink. So, it would
be nice if the potential function still had the property that it was equal to zero when n = c /2.

When we perform an append operation, we have the same desire as before. We would like to
charge 2 to the potential so that after performing c /2 of them, we have saved up c potential
which is enough to pay for the grow. This suggests that as a starting point, our potential should
still be 2

�

n − c
2

�

whenever n ≥ c /2, the same as before!
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How should we handle pops? They are a little different. If we start at half capacity right after a
grow or shrink (n = c /2), it only takes c /4 pops to trigger a shrink, not c /2 like was the case for
append. However, note that the shrink operation only has to move c /4 elements to the newly
shrunk array (because n = c /4 when a shrink is triggered). So unlike grow, which requires each
of its appends to pay for 2 moves, shrink only needs a 1 to 1 charge for each pop. This suggests
that we do not need a constant of 2 for pop/shrink! This suggests the following potential:

Φ(n , c ) =

¨

2
�

n − c
2

�

, if n ≥ c
2 ,

c
2 −n if n < c

2 .

The first case handles the situation where the array is in a “growing state”, it is currently larger
than it was after the most recent resize, and it is heading towards needing a grow operation.
The second case handles the situation where it is in a “shrinking state”, where it is smaller than
it was after the last resize, and it is heading towards a shrink operation.

Theorem 6.1: The amortized cost of the growing-shrinking list

Using the doubling-halving array data structure, the amortized cost ofappend is at most
3, the amortized cost of pop is at most 2, and the amortized cost of initialize is at
most 1.

Proof. As usual, lets first consider the cost of an append operation without accounting for a
grow (yet). The actual cost is 1, but what about the change in potential? Well now our potential
function has two cases so we have to consider two cases. If n ≥ c /2, then the math is the same
as before. n increases by 1, so the potential increases by 2. If n < c /2, then the potential actually
decreases by 1. Therefore the worst-case potential increase is 2, and hence the amortized cost
of append (not including grow) is at most 3.

Now we account for grow. This is again the same as the doubling array. Before growing, we
have n = c and hence the potential is n . After growing the potential is zero, so the potential has
dropped by n , which is exactly the cost of moving the n elements to the new array, and hence
the amortized cost of grow is zero.

Now lets look at pop and shrink. First, consider the cost of pop separately to the cost of shrink.
Erasing the element from the array costs 1, and n decreases by 1. How does this affect the
potential? If n ≥ c /2, then the potential goes down by 2. If n < c /2, then the potential increases
by 1. So, in the worst-case, the potential increase is 1, and hence the amortized cost of pop (not
including shrink) is at most 2.

Now we account for shrink. Before a shrink occurs, c = 4n , and hence the initial potential is n .
After a shrink occurs, the potential is zero, so it has decreased by n , which is exactly the cost of
moving the n elements to the new array. Therefore, the amortized cost of shrink is zero.

Lastly, we should consider the final and initial potential. Φ(S0) = 1 and Φ(Sm ) ≥ 0, so Φ(S0)−
Φ(Sm ) ≤ 1. We could modify our potential function to fix this, but I’m just going to charge that
1 to be the cost of initialize for simplicity.
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Exercises: Amortized Analysis

Problem 11. Describe the difference between amortized analysis using the aggregate method,
and average-case analysis. How are they different? What about expected cost analysis? Where
does this fit in and how is it different from the first two? Make sure you understand the differ-
ences!

Problem 12. Give a proof for Theorem 6.1 using the banker’s method. Where would you put
the banker’s tokens in the data structure?

Problem 13. Suppose we changepop() to shrink when s = n/2, show a sequence of operations
that incur large amortized cost.

Problem 14. Modify the potential function used in the proof of Theorem 6.1 so that we do not
need to charge 1 to the cost of initialization (in other words, change the potential so that the
initial potential is zero but the proof still works).
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Lecture 7

Union-Find

In this lecture we describe the disjoint-sets problem and the family of union-find data struc-
tures. This is a problem that captures (among many others) a key task one needs to solve in
order to efficiently implement Kruskal’s minimum-spanning-tree algorithm. We describe sev-
eral variants of the union-find data structure and prove that they achieve good amortized costs.

Objectives of this lecture

In this lecture, we will

- Design a very useful data structure called Union-Find for the disjoint sets problem

- Practice amortized analysis using potential functions

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 21 (3rd edition) or Chapter 19 (4th edition),
Data Structures for Disjoint Sets

7.1 Motivation
To motivate the disjoint-sets/union-find problem, let’s recall Kruskal’s Algorithm for finding a
minimum spanning tree (MST) in an undirected graph. Remember that an MST is a tree that
includes all the vertices and has the least total cost of all possible such trees.

Kruskal’s Algorithm:

Sort the edges in the given graph G by weight and examine them from lightest to
heaviest. For each edge (u , v ) in sorted order, add it into the current forest if u and
v are not already connected.

Today, our concern is how to implement this algorithm efficiently. The initial step takes time
O (|E | log |E |) to sort. Then, for each edge, we need to test if it connects two different compo-
nents. If it does, we will insert the edge, merging the two components into one; if it doesn’t (the
two endpoints are in the same component), then we will skip this edge and go on to the next
edge. So, to do this efficiently we need a data structure that can support the basic operations
of (a) determining if two nodes are in the same component, and (b) merging two components
together. This is the disjoint-sets or union-find problem.
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Lecture 7. Union-Find

7.2 The Disjoint-Sets / Union-Find Problem
The general setting for the union-find problem is that we are maintaining a collection of disjoint
sets {S1,S2, . . . ,Sk } over some universe. Each set will have a representative element (or canonical
element) that is used to identify it. The representative element is arbitrary, but it is important
is that it is consistent so that we can identify whether two elements are in the same set.

Interface: Union-Find

The disjoint-sets/union-find API consists of:

MakeSet(x ): Create a new set containing the single element x . Its representative
element is x . (x must not be in another set.)

Find(x ): Return the representative element of the set containing x .

Union(x , y ): x and y are representative elements of two different sets. This oper-
ation forms a new set that is the union of these two sets, and removes
the two old sets.

Implementing Kruskal’s Algorithm Given these operations, we can implement Kruskal’s al-
gorithm as follows. The sets Si will be the sets of vertices in the different trees in our forest. We
begin with MakeSet(v ) for all vertices v (every vertex is in its own tree). When we consider some
edge (v, w ) in the algorithm, we first compute v ′ =Find(v ) and w ′ =Find(w ). If they are equal, it
means that v and w are already in the same tree so we skip over the edge. If they are not equal,
we insert the edge into our forest and perform a Union(v ′, w ′) operation. All together we will
do |V |MakeSet operations, |V | −1 Unions, and 2|E | Find operations.

7.2.1 A Tree-Based Data Structure
We will represent the collection of disjoint sets by a forest of rooted trees. Each node in a tree
corresponds to one of the elements of a set, and each set is represented by a separate tree in
the forest. The root of the tree is the representative element of the corresponding set. We will
refer to the total number of elements in all of the sets (i.e., the number of nodes in the forest)
as n .

1

2 6

7

3

5

4 8
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The trees are defined by parent pointers. So every node x has parent p (x ). A node x is a root
of its tree if p (x ) = x . To find the representative element of a set, it suffices to walk up the tree
until we reach a root node, which must be the answer. To union two trees, we can simply make
one tree a child of the other. To do this, we can first find the roots of the two trees by calling
Find, and then setting one as the child of the other.

It will be convenient for our cost analysis to distinguish between the cost incurred by Union
when it calls Find, and the actual cost of the step that joins the two trees. To do so, we define a
subroutine Link, which is not part of the API but just used internally by Union. With all of this
set up, here is a basic implementation.

Algorithm: Union-Find Forests

Union-Find forests (a.k.a. disjoint-set forests) implement the API as follows:

MakeSet(x ): Create node x and set p (x )← x .

Find(x ): Starting from x , follow the parent pointers until you reach the root, r ,
then return r .

Union(x , y ): Link(Find(x ), Find(y ))

Link(x , y ): Set p (y )← x .

We are going to analyze several variants of this data structure.

Analysis with no optimizations The vanilla version of the data structure unfortunately has
terrible worst-case (even in an amortized analysis) performance. Too see this, suppose we cre-
ate n sets and then Union them into a long chain of length n . Now every find operation on the
bottom-most element of the chain costs Θ(n ).

We will now explore two optimizations that substantially improve the performance of the data
structure: union-by-size and path compression.

7.3 The union-by-size optimization
Our first optimization, and the simpler of two to analyze is union-by-size. The pathological cost
of the no-optimization example was caused by the fact that we were able to build a long chain
of nodes with the Union operation, allowing all subsequent Finds to be very expensive.

Key Idea: Union by size optimization

When performing the Union (Link) operation, always make the smaller (by number of
nodes) tree the child of the larger tree.

To implement this, we augment each element x with an additional field s (x ). If x is a root of
a tree, then s (x ) contains the size of the subtree rooted at x . If x is not the root of a tree, then
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we do not care about the value of s (x ) since it would be too expensive to update s (x ) on every
single node, and its value is never needed on nodes other than roots.

Algorithm: Link with union-by-size optimization

Augment each element x with a field s (x ). MakeSet(x ) sets s (x )← 1.

Link(x , y ): - if s (x )< s (y ) then swap(x , y ),

- Set p (y )← x ,

- Set s (x )← s (x ) + s (y ).

With this minor change to the algorithm, the claim is that we now get great performance! Even
better, we don’t need amortized analysis for this one, we get a worst-case bound.

Theorem 7.1: Union by size performance

Consider the union-find forest data structure where the union-by-size optimization is
used. Then MakeSet and Link each cost O (1) and Find has a worst-case cost of O (log n ).

Proof. MakeSet and Link each perform a constant number of operations regardless of the in-
put, so they they cost O (1).

To analyze the cost of Find, we observe that every edge of the tree is created by the union of two
sets, and using union by size, the smaller tree must have always been made into a child of the
larger one. Therefore, whenever the Find algorithm moves from a node to its parent, the total
size of the rooted at the current node at least doubles. Since no tree has size more than n , the
number of edges on any path to the root is at most log n , so any Find operation costs at most
O (log n ) in the worst case.

7.4 The path compression optimization

In the previous section, we improved the worst-case performance of Find by improving the
Union operation, but leaving the Find operation unchanged. What if we instead want to im-
prove the Find operation itself? Assuming worst-case Unions, is there a way to make the Find
operation O (log n ) cost on its own? With the power of amortized analysis, the answer is yes,
and the technique is elegant and intuitive (though the analysis is hard!)

The worst case for a Find operation is encountering a long root-to-leaf path. When that hap-
pens, we can’t avoid having to traverse it to the root, but, we can at least try to make the situation
better for future Find operations that happen to come along one of the same nodes.
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Key Idea: Path compression optimization

Each time the data structure performs a Find operation, it changes the parent of every
node encountered on the path to point directly to the root so that future Finds do not
have to travel the same long path.

Unlike union by size, this does not require augmenting the data structure with any additional
fields, and the implementation is nice and elegant.

Algorithm: Path compression implementation

Find with path compression can be implemented elegantly with recursion.

Find(x ): - if p (x ) ̸= x then set p (x )← Find(p (x )),

- return p (x )

Note that we are not combining union by size with path compression (yet). We are just using
path compression with worst-case unions. The claim is that this algorithm is also efficient, but
we are going to need amortized analysis to prove it. The idea is that a single Find operation can
be inefficient (the worst-case cost is still the same), but after performing an inefficient Find,
the forest must become shallower as a result, making future Finds more efficient. To make the
analysis clean, we will define a simple cost model that we will use.

Cost model We will analyze path compression under the cost scheme:

- MakeSet(x ) costs 1,

- Link(x , y ) costs 1,

- Find(x ) costs the number of nodes on the path from x to the root.

Note that these costs are accurate up to constant factors in the word RAM, so our results will be
asymptotically valid in the word RAM, but without having to deal with the arbitrary constants.
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Theorem 7.2: Path Compression without Union by Size

Consider the forest-based union-find data structure where path compression is applied
but union by size is not. Then the amortized cost of Link is (1+log n ), the amortized cost
of Find is (2+ log n ), and Makeset still costs 1.

The proof is not as simple as the proof for union by size, and uses a very non-trivial potential
function. Before diving right into it, lets try to get a handle on how we might measure the po-
tential. The main observation that we need is that balance defines the difference between an
efficient Find and an inefficient Find (which must therefore be paid for by the stored poten-
tial). A very balanced tree can have low potential since operations will be cheap anyway, but
an imbalanced tree will need a lot more potential to pay for the Finds.

Heavy and light nodes While balance appears to be the key thing that we care about, a par-
ticular Find operation doesn’t care how balanced the tree is as a whole, it only cares about the
specific nodes along the x → r path that it encounters. So what we need is a way of measuring
how balanced a tree is on a per-node level. In other words, what would it mean for a single
node to be good or bad for balance?

In a balanced tree, all of the children of a particular node x would have an even share of x ’s
descendants as their descendants. Nodes that deviate significantly from this (such as a long
chain of nodes) will break this. This motivates us to define the concept of heavy and light
nodes. Let size(x ) be the number of nodes that are descendants of x (including x ).

Definition: Heavy and light nodes

In a tree, a node u (other than the root) with parent p (u ) is called:

1. heavy if size(u )> 1
2 size(p (u )), i.e., u ’s subtree has a majority of p (u )’s descendants,

2. light, if size(u )≤ 1
2 size(p (u )), i.e., u ’s subtree has at most half of p (u )’s descendants.

A perfectly balanced tree would have no heavy nodes, only light nodes (except for the root).
A maximally imbalanced tree (a chain) would consist entirely of heavy nodes (except for the
root). We have the following very useful observation about heavy and light nodes.

Lemma 7.1: Heavy-light lemma

On any root-to-leaf path in a tree on n vertices, there are at most log n light nodes.

Proof. Consider a node x . If x is light, then by definition, size(p (x ))≥ 2size(x ). Since there are
no more than n nodes in any tree, the number of times one can double the size of the current
node is at most log n . Therefore there are at most log n light nodes on any root-to-leaf path.

This gives us an idea. We want the amortized cost of Find to be O (log n ), and it costs us 1
for every node we touch on the root-to-leaf path. So, we can afford to traverse a path of light
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nodes, since there are at most log n of them. We only get sad when we have to touch heavy
nodes, because there could be a lot of them, so lets try to use a potential function to save up
and pay for the heavy nodes!

So, how many heavy nodes can there be? Well, a lot, unfortunately, but what about how many
heavy children can a particular node have? By definition, a node can only have one heavy child
at a time since a heavy child must contain a majority of the descendants! When a Find operation
path compresses a heavy child, another child might become a heavy child in its place. However,
the node must therefore lose over half of its descendants, sine the heavy child was a majority
of the subtree. This can not happen very many times. In particular, a node u with size(u )
descendants can only halve its size log(size(u )) times before it has no children anymore!

Therefore, the number of heavy children a single node could ever have is bounded by log(size(u )),
so the total number of heavy children we could ever have in our tree is

Φ(F ) =
∑

u∈F

log (size(u )) ,

which will be our potential function! As usual, log is base-2. It is important to note that this sum
is over every node in the forest, not only the roots. This potential function is quite powerful and
is also used in the analysis of other data structures, such as Splay Trees. It is, at some intuitive
level, a very good potential function for measuring how imbalanced a tree is. It can be shown
as an exercise that a perfectly balanced tree on n vertices hasΘ(n ) potential, while a long chain
(the most imbalanced tree) has Θ(n log n ) potential.

This potential has a few nice important properties:

1. The potential is initially zero (all trees have size 1),

2. at any point in time the potential is non-negative,

3. the potential increases every time a Link is done,

4. and it decreases (or stays the same) every time a Find is done.

The first two properties mean that we can use the total amortized cost to bound the actual total
cost. The last two properties tell us intuitively that the potential should be on the right track
for the analysis, since union is the cheap operation (which we therefore want to make more
expensive by paying into the potential) and find is the expensive operation, which we want to
make cheaper by withdrawing from the potential.

Analysis of MakeSet Calling MakeSet(x ) creates a new singleton set {x } represented by a
node with no parent or children and does not modify any of the existing sets. Therefore the
potential contributed by all of the existing nodes does not change, and we just get one new
term in the potential from the new node.

∆ΦMakeSet = log(size(x )) = log(1) = 0.

Since we just created it, the size of x ’s subtree is just one, and log 1 = 0, so the potential does
not change at all. Therefore the actual and amortized cost of MakeSet is 1.

81



Lecture 7. Union-Find

Analysis of Link Consider a Link operation. Suppose the operation links a node y to a node
x . The only node whose size changes is x . Let size(x ) be the size of x before the Link and
size′(x ) be the size after the Link. We know that size(x ) ≥ 1, because any tree has at least one
node in it. So log(size(x ))≥ 0. Similarly size′(x )≤ n and log(size′(x ))≤ log n . So we have:

∆ΦLink =Φfinal−Φinitial,

= log(size′(x ))− log(size(x )),

≤ log n

Since the actual cost of a Link is 1, the amortized cost of Link is at most 1+ log n .

Analysis of Find Let’s consider the Find operation. The following figure shows a typical Find
with path compression. On the left is the tree before and on the right is after. The triangles
labeled with capital letters represent arbitrary trees, which are unchanged. A Find operation is
applied to the node labeled a on the left. The cost of this operation is 4 (it touches 4 nodes). 

d d
C D a b a c b

D

b C A B C

B

The find path passes through vertices a , b , c , and d . These labels are the sizes of the nodes.
Note that the node labeled b has size b before the Find, and has size b − a after the Find.
Similarly the node labeled c has size c before the Find and has size c −b after the Find. Those
are the only two nodes whose size changes as a consequence of the Find. In general, all nodes
except for the first and last have their size decreased, while the first and last remain the same.
Since sizes only decrease, the potential from every node can only decrease, never increase!

There are (1+# heavy nodes+# light nodes)on the Find path (the root is neither heavy nor light).
We recall from Lemma 7.1 that there are at most log n light nodes on the path, so we are happy
to pay for those in the final cost. Our goal is therefore to cancel out the cost of the heavy nodes
using the potential function. Given any path from a vertex to its corresponding root node, we
consider all of the heavy nodes on the path except the child of the root (because it does not
move as a result of path compression). For every such vertex u , whose parent we will denote
as p , the new size of p , which we will denote as size′(p ), is given by size′(p ) = size(p )− size(u ).

By the definition of heavy, u and p satisfy size(u )> 1
2 size(p ), so from this equation, we have

size′(p ) = size(p )− size(u ),

< size(p )−
1

2
size(p ),

<
1

2
size(p ),
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i.e., the size of p at least halves! This means that the change in potential at node p is

∆Φat node p = log(size′(p ))− log(size(p )),

< log
�

1

2
size(p )

�

− log(size(p )),

=−1.

Therefore, the potential of every node (other than the root) whose child on the Find path is
heavy decreases by at least one. The overall decrease in the potential is at least (# heavy nodes−1)
and hence the amortized cost of a find operation is

Amortized cost of Find≤ 1+# heavy nodes+# light nodes
︸ ︷︷ ︸

actual cost

− (# heavy nodes−1)
︸ ︷︷ ︸

∆Φ

,

≤ 2+# light nodes,

≤ 2+ log n .

7.5 Both optimizations at once
This problem has been extensively analyzed. In the 1970s, a series of upper bounds were proven
for the amortized cost of Union and Find, going from log n to log log n to log∗n , and finally to
α(n ). Bob Tarjan proved the final result and matched it with a corresponding lower bound, thus
“closing” the problem and showing that O (1) time is impossible.

Here log∗n denotes the function that counts the number of times you have to apply log to n
until it doesn’t exceed 1. The function α(n ) is an inverse of Ackermann’s function, and grows
insanely slowly1, even slower than log∗n . We won’t be studying the proofs of these results since
that would take another entire lecture, but they are useful results to know so that you can ana-
lyze the runtime of algorithms that use Union-Find as an ingredient.

Theorem 7.3: Union-Find with union-by-size and path compression

Consider the forest-based union-find data structure with both path compression and
the union-by-size optimizations. Then the amortized cost of MakeSet is O (1), and the
amortized costs of Link and Find are O (α(n )).

The proof uses a very complicated potential function. If you want to read it, you can find it in
CLRS (Chapter 19 in the fourth edition, or Chapter 21 in the third edition).

1For n up to the number of particles in the universe, α(n ) ≤ 4, so while it may not be a constant for theoretical
purposes, in practice it is indistinguishable from a small constant
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Exercises: Union Find

Problem 15. Consider the union-find forest data structure with path compression. Suppose we
perform a sequence of n MakeSet operations, followed by m Unions, then f Finds in that order,
i.e., the operations are not interleaved. Show that the total cost of this sequence of operations
is O (n +m + f ), i.e., each operation takes constant amortized time. (Hint: define a potential
function that is the degree of the root of the tree.)

Problem 16. Show that the potential function from Section 7.4 is Θ(n ) for a perfectly balanced
tree on n vertices and Θ(n log n ) for a chain of n vertices.

Problem 17. Suppose we implement the union-find forest data structure with both union-by-
size and path compression. Show, using the same potential function as Section 7.4 that the cost
of Union is O (1).

Problem 18. Consider the union-find forest data structure with union by size. Show that the
worst-case bound of O (log n ) cost per Find operation is tight, i.e., describe an input for which
the Find operation costs Ω(log n ).

Problem 19. Consider the union-find forest data structure with path compression. Show that
the amortized bound of O (log n ) cost per Union and Find operation is tight, i.e., describe an
input with m Union operations and f Find operations for which the total cost is at least

Ω(m log n + f log n ).
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Range query data structures

Today we are going to explore a class of data structures for performing range queries and see
how they can be applied to speed up algorithms. Our focus is therefore twofold. First, we would
like to design and analyze a specific data structure, that we will refer to as a SegTree, and explore
its power. Then, we will see how it can be used to improve other algorithms.

Objectives of this lecture

In this lecture, we will:

- Introduce the SegTree data structure

- See what kinds of problems SegTrees are capable of solving

- See how SegTrees and related data structures can be used to speed up algorithms

8.1 Range queries

Definition: Range queries

Given a sequence (but not strictly necessarily integers), a range query on that sequence
asks about a property of some contiguous range of the data i to j .

For example, suppose we have a sequence of n integers a [0], a [1], . . . , a [n − 1], and we want to
support querying the sum between positions i to j . We will use the convention that the left
index is inclusive, and the right index is exclusive. Here are two approaches to get warmed up.

Approach #1 For each query, just loop over positions i to j − 1 and compute the sum. This
takes Θ( j − i ) =O (n ) time. This is very simple, but not at all efficient if the sequence is long.

Approach #2 Start by precomputing the prefix sums

p [ j ] =
∑

0≤i< j

a [i ],

then answer a query for the sum between i and j by returning p [ j ] − p [i ]. This takes O (n )
preprocessing time, which seems reasonable, then each query can be answered in O (1) time!
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Approach #2 is basically optimal if we never plan to modify the elements of the array, but range
queries become so much more useful if we allow modifications. So, our goal is to support an API
that enables fast modifications and fast queries. Specifically, lets try to design a data structure
that maintains an array of n integers and implements:

- Assign(i , x ): Assign a [i ]← x ,

- RangeSum(i , j ): Return
∑

i≤k< j

a [k ].

How would approaches #1 and #2 above fare now that we want to support modifications?

1. Approach #1 can implement Assign in O (1) time by just assigning x to a [i ], then RangeSums
are still the same as before and take O (n ) time.

2. Approach #2 would require us to re-compute the prefix sums p [ j ] for all j < i whenever we
perform Assign(i , x ), which requires Θ(n − i ) = O (n ) time. Queries however still take O (1)
time which is nice.

So, in both cases we have one operation that takes O (1) time, and the other which takes O (n )
time. If in some particular application, one of the operations is extraordinarily rare, maybe
this is a good solution, but if we perform roughly half and half updates and queries, then both
solutions are taking O (n ) time on average for each operation. This is not great at all. Can we
design a data structure that makes both operations fast?

You may have already seen a data structure that can do this. In fact, we’ve already seen it in this
course! Augmented balanced binary search trees (e.g., Splay Trees) can be used to solve this
problem in just O (log n ) time per operation and O (n )words of space. However, they are tricky
to implement, and often in practice the constant factor is quite high, making them somewhat
less practical. Splay Trees also give amortized bounds rather than worst case, though you can
improve this by using AVL trees or Red-Black trees.

Today, we are going to design a data structure for this problem with the same bounds, O (log n )
worst-case time per operation and O (n )words of space, but that is much simpler to implement,
and much faster in practice due to smaller constants hidden by the big-O . We will refer to this
data structure as a SegTree1. We will also discuss how to generalize SegTrees to handle a much
wider class of problems, where the

∑

operation is replaced by an arbitrary associative operator,
enabling us to perform many different kinds of range queries with just one data structure!

8.2 Making range queries dynamic
Let’s take a step back and have a closer look at Approach #2 from earlier and see if we can
find inspiration for a better algorithm. What the algorithm from Approach #2 is really doing is
computing the sum from 1 to n in a sequential loop and just saving the results along the way.

1“SegTree” has become the traditional name for this data structure in 15-451, though you might not find it called
that in other places. In the competition programming literature they are called “segment trees”. However, this name
conflicts with another specifically augmented binary search tree that represents a set of line segments in the plane.
To remove this ambiguity, Danny Sleator coined the name “SegTree” and it has stuck.
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The inefficiency of performing updates was due to the fact that if we edit element 0, there are
n values in p that depend on it, and hence we do O (n )work in updating everything.

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

0 3 4 14 22 26 31 40 42

The dependencies here are what make the update algorithm slow. Is there instead an alternative
way to break up the computation such that most of the intermediate calculations depends on
fewer of the numbers? You may or may not have seen this idea before when seeking a parallel
algorithm for computing the sum (or in general, any reduction) of a range of values. The left-
to-right sequential sum is completely not parallel because of the dependencies, but a divide-
and-conquer algorithm avoids this problem.

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

The divide-and-conquer sum has fewer dependencies because each element of the input only
affects log2 n intermediate vales produced by the computation. This means that if we update
an element of the input, the output could be updated efficiently2. Its not clear yet though how
we can actually answer RangeSum queries using this information, so lets figure that out now.

Doing queries The key idea is in figuring out how to build any interval [i , j ) that we might
want to query out of some combination of the intervals represented by the divide-and-conquer
tree. For example, if we wanted to query the interval [1, 7) = [1, 6], we could add up the intervals
[1, 1], [2, 3], [4, 5], [6, 6] as shown below. Similarly, we can query [0, 7) as shown on the right.

2What we’ve actually made here is an extremely cool and powerful observation! It turns out that parallel algo-
rithms are usually much easier to convert into dynamic algorithms / data structures than sequential ones, because
they both share a common feature—both of them rely on having shallow dependence chains. An algorithm where
all of the computations are dependent on the previous ones is hard to parallelize, and also hard to dynamize (make
updatable) because changing a small amount of the input may change a large amount of the computation.
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3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

4 18 9 11

22 20

42

We need to somehow prove that we don’t need too many intervals to make up any query in-
terval. Because of course, we could always answer any query [i , j ) by summing up all of the
intervals of size 1 from i to j , but that’s just the first algorithm which takes O (n ) time.

Lemma 8.1: Few blocks per level

Any interval [i , j ) can be made up of a set of disjoint intervals/blocks from the tree such
that we use at most two intervals from any level.

Proof. Suppose for the sake of contradiction that we use three adjacent blocks on the same
level. Since each block is half the size of its parent, it must be the case that one of the two
pairs of adjacent blocks could be replaced by its parent to cover the same interval, yielding a
construction that uses fewer blocks.

X X

Now suppose instead that we use three non-adjacent blocks on the same level. We can make
a similar argument. Since the union of all the intervals gives one contiguous interval, it must
be the case that the leftmost block is a right child of its parent (and symmetrically, that the
rightmost block is a left child of its parent). If this were not the case, we could replace it with its
parent to cover the same interval, yielding a construction that uses fewer blocks on this level.

X

It must be the case that the leftmost block is a right child and the rightmost block is a left child.
So, the third block somewhere in between them could instead be covered by some intervals
between the leftmost and rightmost block, yielding a construction that uses fewer blocks.

X
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Applying this argument up the tree, there is a construction with at most two blocks per level.

Since there is a construction with at most two blocks per level, we get the following corollary.

Corollary: O (log2 n ) blocks per query

Any interval [i , j ) can be made up of a set of at most 2 log2 n disjoint blocks from the tree.

8.3 The data structure
Now that we have the key ingredients, we can put together the data structure. For the moment
let’s assume that n is a power of two. If it is not, we can always round it up to the next one by at
most doubling it, so it won’t affect our asymptotic bounds. We will talk about some fairly low
level implementation details today, more than we might often do so in this course.

One of the things that make common tree data structures inefficient is that traversing them
requires chasing down pointers throughout the tree, each of which points to a node that might
reside far away from the former in memory. To make SegTrees more efficient, we will apply
the same ordering trick from the binary heap data structure that you may have seen before. It
works because the SegTree data structure is a so-called perfect binary tree (every internal node
has two children, and all leaves are on the same depth).

Definition: The binary heap ordering trick

Given a perfect binary tree on N nodes, we can lay it out in memory using an array of
size N using the following scheme:

- Place the root node at position 0

- Given the node at position i , place its left child in position 2i +1

- Given the node at position i , place its right child in position 2i +2

7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

Notice that the number of nodes N = 2n−1, and that when using this trick, the n input elements
of a are all stored in the last n elements of the array. We can use these ideas to implement the
data structure. We will make use of the following convenience functions:

- Parent(i ) := ⌊(i −1)/2⌋. Returns the parent of node i

- LeftChild(i ) := 2i +1. Returns the left child of i
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- RightChild(i ) := 2i +2. Returns the right child of i

Building the tree To build the tree, we start with the input a [0 . . . (n−1)]. We then perform the
divide-and-conquer to compute all of the block values for the intermediate sums. The leaves
of the tree using the binary heap indexing trick are the indices n−1+i for each i , so we start by
copying the input into those blocks before recursively computing all of the composite sums.

Algorithm: Building a SegTree

n : int
A : list〈int〉

SegTree(a : list〈int〉) {
n := size(a)
A := array〈int〉(2*n−1)
for i in 0 to (n−1) do
A[n + i − 1] = a[i]

build(0, 0, n)
}

build : (u : int, L : int, R : int) −> () = {
mid := (L + R)/2
if LeftChild(u) < n−1 then
build(LeftChild(u), L, mid)

if RightChild(u) < n−1 then
build(RightChild(u), mid, R)

// reduce the value of the children
A[u] = A[LeftChild(u)] + A[RightChild(u)]

}

Implementing updates To implement Assign(i , x ), we just have to update the element at po-
sition i and all of its ancestor blocks in the tree. This takes O (log n ) time and looks like this.

Algorithm: Updating a SegTree

Assign : (i : int, x : int) −> () = {
u := i + n − 1
A[u] = x
while u > 0 do {
u = Parent(u)
// reduce the value of the children
A[u] = A[LeftChild(u)] + A[RightChild(u)]

}
}

Implementing queries To implement RangeSum(i , j ), we need to figure out how to identify
the set of O (log n ) blocks that make up [i , j ). Fortunately, we can do this very naturally with
recursion. What we will do is essentially the same as the original divide-and-conquer sum,
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except we only need to recurse when we are on a block that contains some elements from [i , j )
and some elements not from [i , j ).

Algorithm: Querying a SegTree

RangeSum : (i : int, j : int) −> int = {
return compute_sum(0, i, j, 0, n)

}

compute_sum = (u : int, i : int, j : int, L : int, R : int) −> int {
if (i <= L && R <= j) then
return A[u]

else {
mid := (L + R)/2
if i >= mid then
return compute_sum(RightChild(u), i, j, mid, R)

else if j <= mid then
return compute_sum(LeftChild(u), i, j, L, mid)

else {
left_sum := compute_sum(LeftChild(u), i, j, L, mid)
right_sum := compute_sum(RightChild(u), i, j, mid, R)
return left_sum + right_sum // reduce the value of the children

}
}

}

8.4 Speeding up algorithms with range queries

One thing that we want to practice in this course is choosing the right data structure for the job
when designing an algorithm. We’ve seen in recent lectures that applying hashing can often
drastically reduce the running time of algorithms. How can range queries help us design better
algorithms? If we find ourselves designing an algorithm that requires summing over, or taking
the minimum or maximum of a set of numbers in a loop, then we may be able to improve it by
substituting that code with a range query. Lets see an example.

Problem: Inversion count

Given a permutation p of 0 through n −1, the number of inversions in the permutation
is the number of pairs i , j such that i < j but p [i ]> p [ j ].

For example, the inversion count of the sorted permutation is 0, because everything is in order.
The inversion count of the reverse sorted permutation is

�n
2

�

since every pair is out of order.
Lets start by designing an inefficient algorithm. Per the definition, we can just loop over all
pairs i < j and check whether p [i ]> p [ j ].
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inversions : (p : list〈int〉) −> int {
n := size(p)
result : int = 0
for j in 0 to n − 1 do {
for i in 0 to j − 1 do {
if p[i] > p[j] then
result = result + 1

}
}
return result

}

This will take O (n 2) time, but can we improve it somehow using range queries? Lets try to
decompose what the loops of the algorithm are doing. The first one is considering each index
j in order, straightforward enough. The second loop is considering all i < j and counting the
number of such i ’s that have been seen previously such that p [i ] is larger than p [ j ]. Okay, this
is sounding like some kind of range query now because we are counting the number of things
in a range... How exactly do we express this using a SegTree?

We need a range of values to correspond to the count of the number of elements that we have
seen that are greater than a certain value. Let’s store an indicator variable for each element x
that contains a 1 if we have seen that element, or otherwise 0. To count the number of elements
that are greater than p [ j ]will therefore correspond to a range query of RangeSum(p [j ], n ). The
optimized code for inversion counting therefore looks something like this.

Algorithm: Optimized inversion count using a SegTree

inversions : (p : list〈int〉) −> int {
n := size(p)
counts : SegTree = (list〈int〉(n, 0)) // SegTree containing n zeros
result : int = 0
for j in 0 to n − 1 do {
result = result + counts.RangeSum(p[j], n)
counts.Assign(p[j], 1)

}
return result

}

Since each Assign and each RangeSum cost O (log n ), the total cost of this algorithm is just
O (n log n ), which is a great improvement over the earlier O (n 2) one!

8.5 Extensions of SegTrees

8.5.1 Other range queries
We just figured out how to implement SegTrees that support an Assign and RangeSum API.
What makes SegTrees so versatile, though, is that they are not limited to only performing sums
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of integers. There was nothing particularly special about summing integers, except that it made
for a good motivating example. Note that nowhere in our algorithm did we ever need to perform
subtraction, which means we never made the assumption that the operation was invertible,
which actually makes it even more general than the original “Approach #2” at the beginning!
The exact same algorithm that we have just discussed can therefore also be used to implement
range queries over any associative operation. In the code presented above, there are three lines
commented with reduce the value of the children, which add the values computed at the child
nodes. Replacing just these three lines with any other associative operation yields a correct
data structure for performing range queries over that operator.

For example, we can also compute the maximum or minimum over a range by replacing X +Y
in the three commented lines above with max(X , Y ) or min(X , Y ). There’s also no reason to
restrict ourselves to integers. We can use any value type, such as floating-point values, or tuples
of multiple values, as long as we are able to provide the corresponding associative operator.

Key Idea: SegTrees with any associative operation

SegTrees can be used with any associative operation, such as sum, min, max, but also
even more complicated ones that you will see in recitation!

8.5.2 Other update operations
Our update operation for our vanilla SegTree is Assign(i , x ), which sets the value of a [i ] to x .
In some applications, instead of directly setting the value, we might want something slightly
different. For example, we might want to add to the value instead of overwriting it. Fortunately,
this can be supported with a combination of Assign and RangeSum. Note that we can always
get the current value of a [i ] by performing RangeSum(i , i +1), and then use that in an Assign.
So to implement a new operation Add(i , x ), which adds x to a [i ], we can just write

- Add(i , x ): Assign(i , x +RangeSum(i , i +1))

The Add operation calls a constant number of SegTree operations, and hence it also runs in
O (log n ) time. This operation will be convenient for the next extension.

8.5.3 Flipping the operations
Our vanilla SegTree supports point updates and range queries, that is, we can edit the value of
one element of the sequence and then query for properties (e.g., sum, min, max) of a range
of values in O (log n ) time. What if we want to do the opposite? Lets imagine that we want to
support the following API over a sequence of n integers:

- RangeAdd(i , j , x ): Add x to all elements a [i ], . . . , a [ j −1]

- GetValue(i ): Return the value of a [i ]

Rather than come up with a brand new data structure, lets try to use our original SegTree as a
black box and reduce this new problem to the old one. This should always be your first choice
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when designing a new data structure or algorithm (can I reduce to something that I already
know how to solve? This is almost always easier than designing something new from scratch!)

The idea Somehow we need to convert range additions into just a single update, and range
sums into the ability to get a specific value. How might we do that? Well, notice that at a par-
ticular location i , the value a [i ] is equal to the sum of all of the RangeAdds that have touched
location i . That sounds like RangeSum should be able to help us then...

Consider the diagram above. The value of Get(i ) is affected only by+x since the ranges+y and
+z do not touch i . Notice that more specifically, the value at i is the sum of all of the ranges
whose starting point is at most i , but whose ending point is at least i . We can represent this
using prefix sums.

Notice that the value of i is just the sum of the +x ’s that occur at or before i , then subtract
the −x ’s that occur before at or before i (since the interval ended before it reached i ). This is
exactly just the prefix sums of all of these +x ’s and −x ’s up to position i . Therefore, we can use
the RangeSum method to compute this prefix sum and hence implement Get.

Algorithm: RangeAdd and Get

We can implement the RangeAdd and Get API in terms of Add and RangeSum as follows.

- RangeAdd(i , j , x ): Add(i , x ); Add( j ,−x )

- Get(i ): return RangeSum(0, i +1)

Both RangeAdd and Get call a constant number of SegTree operations, and hence they both
run in O (log n ) time as well.

Note that in this algorithm we had to make use of subtraction, which means that it isn’t appli-
cable to any arbitrary associative operation anymore, since not every associative operator has
an inverse. This algorithm is therefore only applicable to invertible associative operations.
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8.5.4 Range queries and range updates
Optional content — Not required knowledge for the exams

We have now seen how to implement point updates with range queries (i.e., Assign and Range-
Sum) and the opposite set of operations, range updates with point queries (i.e., RangeAdd and
Get). Wouldn’t it be amazing if we could get the best of both worlds and have both? It would be
amazing if there existed a data structure that supported the following API:

- RangeAdd(i , j , x ): Add x to all elements a [i ], . . . , a [ j −1]

- RangeSum(i , j ): Return
∑

i≤k< j

a [k ].

This almost sounds too good to be true, but it turns out that there is a very clever reduction that
involves using two SegTrees as black boxes that implements both of these operations in O (log n )
time. You might see this in recitation, or as a practice problem later!

Similar to before, this extension specifically works for sum and addition because of the fact that
addition is invertible, and hence it wouldn’t work for querying the max or min of a range.

Can we do even better? At this point maybe we are starting to ask for too much, but would it
be possible to support range queries for more general associative operations again, while also
supporting range update operations too? Surely we are dreaming at this point, but it turns out
to still be possible! We won’t delve into the full implementation details, but it is super cool to
know that this is possible, so lets just sketch a high-level overview of the how it works. The key
technique is called lazy propagation.

Lazy propagation Suppose we want to perform RangeAdd(i , j , x ). The naive way would be to
manually add x to all elements a [i ], . . . , a [ j −1] and then reduce the ancestors of these nodes in
the tree, but this would take O (n ) time. Instead, lets use the same idea that we used for querying
and start by identifying a set of at most 2 log2 n disjoint blocks that make up the interval [i , j ).
What if we only performed the update operation +x on these blocks? Well, for each block that
was affected, if the block contained s elements, then the sum would increase by s · x . Then, we
could reduce the ancestors of the affected blocks to update their values, too. This would leave
us with a partially updated tree of blocks like so...

0 1 2 3 4 5 6 7
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All of the red blocks have the most up-to-date value, but the descendants of the dark red blocks
are all out of date, they are missing the update! To fix this, we remember for each child block
of the updated blocks, a “pending” value, which indicates that an update is still waiting to be
applied to that block and its descendants. In the following diagram, green blocks are up-to-
date, and gray blocks are out of date. The blue values indicate the pending updates that are
waiting to be applied.

0 1 2 3 4 5 6 7

So, when do we actually apply the pending updates? Well, if we never traverse to those blocks
then we never need to, because we don’t care about their values! Only when we actually tra-
verse to that block in the future as part of a subsequent update or query do when then apply the
update and then propagate the update to the block’s children. Hence the name lazy propaga-
tion. We only propagate the update when we actually need it, instead of when we first perform
the operation!

0 1 2 3 4 5 6 7

In the diagram above, a future query visits a block with a pending update +2x , so it applies it
to the value of the block and then propagates the update, which creates pending updates of
+x on both of the children. That’s it! With lazy propagation, you can have range updates and
range queries, and you don’t need your operation to be invertible since we didn’t make use of
subtraction this time.
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Dynamic Programming I

Dynamic Programming is a powerful technique that often allows you to solve problems that
seem like they should take exponential time in polynomial time. Sometimes it allows you to
solve exponential time problems in slightly better exponential time. It is most often used in
combinatorial problems, like optimization (find the minimum or maximum weight way of do-
ing something) or counting problems (count how many ways you can do something). We will
review this technique and present a few key examples.

Objectives of this lecture

In this lecture, we will:

- Review and understand the fundamental ideas of Dynamic Programming.

- Study several example problems:

– The Knapsack Problem

– Independent Sets on Trees

– The Traveling Salesperson Problem

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 15/14 (3rd/4th ed.), Dynamic Programming

- DPV, Algorithms, Chapter 6, Dynamic Programming

- Erikson, Algorithms, Chapter 3, Dynamic Programming
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9.1 Introduction
Dynamic Programming is a powerful technique that can be used to solve many combinatorial
problems in polynomial time for which a naive approach would take exponential time. Dy-
namic Programming is a general approach to solving problems, much like “divide-and-conquer”,
except that the subproblems will overlap.

You may have seen the idea of dynamic programming from your previous courses, but we will
take a step back and review it in detail rather than diving straight into problems just in case you
have not, or if you have and have completely forgotten!

Key Idea: Dynamic programming

Dynamic programming involves formulating a problem as a set of subproblems, express-
ing the solution to the problem recursively in terms of those subproblems and solving
the recursion without repeating the same subproblem twice.

The two key sub-ideas that make DP work are memoization (don’t repeat yourself) and opti-
mal substructure. Memoization means that we should never try to compute the solution to
the same subproblem twice. Instead, we should store the solutions to previously computed
subproblems, and look them up if we need them again.

9.1.1 Warmup: Climbing Steps
Lets start with a nice problem to break down these key ideas. Suppose you can jump up the
stairs in 1-step or 2-step increments. How many ways are there to jump up n stairs?

Where is the substructure in this problem? Well, with n stairs, we have two choices, either we
jump up 1 or 2 steps. After jumping up 1 step, we will have n − 1 steps remaining, or after
jumping up 2 steps we will have n −2 steps remaining. So it sounds like some sensible smaller
problems to consider would be the number of ways to jump up n steps for any smaller value
of n . Lets define a function stairs which counts exactly this. We can evaluate stairs recursively

function stairs(n : int) −> int = {
if (n <= 1) return 1;
else {
waysToTake1Step = stairs(n−1);
waysToTake2Steps = stairs(n−2);
return waysToTake1Step + waysToTake2Steps;

}
}

We found the substructure in the problem, but we’re not done yet. Implemented as such, the
above code would perform exponentially many recursive calls because it would end up repeat-
edly evaluating the same problem. Notice that stairs(n ) calls stairs(n−1) and stairs(n−2). But
stairs(n − 1) also calls stairs(n − 2), so we will call that twice. Going deeper into the recursion,
we will see that we compute the same values exponentially many times!
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To rectify this, we apply the other key idea of dynamic programming, which is don’t repeat your-
self, aka. memoization. Lets store a lookup table of previously computed values, and instead
of recomputing from scratch every time, we will just reuse values that already exist in the table!
By convention we will refer to the lookup/memoization table as “memo”. The most generic way
to implement the memo table is to use a dictionary that maps subproblems to their values.

dictionary<int, int> memo;

function stairs(n : int) −> int = {
if (n <= 1) return 1;
if (memo[n] == None) {
waysToTake1Step = stairs(n−1);
waysToTake2Steps = stairs(n−2);
memo[n] = waysToTake1Step + waysToTake2Steps;

}
return memo[n];

}

Note that for very many problems, the memo table does not need to be implemented as a
hashtable dictionary. In the majority of problems, including this one, the subproblems are
just identified by integers from 0 . . . n , so the dictionary can actually just be implemented as
an array! A hashtable dictionary would only be required if the subproblem identifiers can not
easily be mapped to a set of small integers.

9.1.2 The “recipe”
With these key ideas in mind, lets give a high-level recipe for dynamic programming (DP). A
high-level solution to a dynamic programming problem usually consists of the following steps:

1. Identify the set of subproblems You should clearly and unambiguously define the set of
subproblems that will make up your DP algorithm. These subproblems must exhibit some
kind of optimal substructure property. The smaller ones should help to solve the larger ones.
This is often the hardest part of a DP problem, since locating the optimal substructure can
be tricky.

2. Identify the relationship between subproblems This usually takes the form of a recurrence
relation. Given a subproblem, you need to be able to solve it by combining the solutions to
some set of smaller subproblems, or solve it directly if it is a base case. You should also make
sure you are able to solve the original problem in terms of the subproblems (it may just be
one of them)!

3. Analyze the required runtime The runtime is usually the number of subproblems multi-
plied by the time required to process each subproblem. In uncommon cases, it can be less
if you can prove that some subproblems can be solved faster than others, or sometimes it
may be more if you can’t look up subproblems in constant time.

This is just a high-level approach to using dynamic programming. There are more details that
we need to account for if we actually want to implement the algorithm. Sometimes we are
satisfied with just the high-level solution and won’t go further. Sometimes we will want to go
down to the details. These include:
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4. Selecting a data structure to store subproblems The vast majority of the time, our sub-
problems can be identified by an integer, or a tuple of integers, in which case we can store
our subproblem solutions in an array or multidimensional array. If things are more com-
plicated, we may wish to store our subproblem solutions in a hashtable or balanced binary
search tree.

5. Choose between a bottom-up or top-down implementation A bottom-up implementation
needs to figure out an appropriate dependency order in which to evaluate the subproblems.
That is, whenever we are solving a particular subproblem, whatever it depends on must
have already been computed and stored. For a top-down algorithm, this isn’t necessary,
and recursion takes care of the ordering for us.

6. Write the algorithm For a bottom-up implementation, this usually consists of (possibly
nested) for loops that evaluate the recurrence in the appropriate dependency order. For
a top-down implementation, this involves writing a recursive algorithm with memoization.

9.2 The Knapsack Problem
Imagine you have a homework assignment with different parts labeled A through G. Each part
has a “value” (in points) and a “size” (time in hours to complete). For example, say the values
and times for our assignment are:

A B C D E F G
value 7 9 5 12 14 6 12
time 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that
was proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5
points) then the best approach is to work on problems in order of points-per-hour (a greedy
strategy). But, what if there is no partial credit? In that case, which parts should you do, and
what is the best total value possible?1

The above is an instance of the knapsack problem, formally defined as follows:

Definition: The Knapsack Problem

We are given a set of n items, where each item i is specified by a size si and a value vi .
We are also given a size bound S (the size of our knapsack). The goal is to find the subset
of items of maximum total value such that sum of their sizes is at most S (they all fit into
the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O (nS ). Lets go through our recipe book for
dynamic programming and see how we can solve this.

1Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!
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Step 1: Identify some optimal substructure Lets imagine we have some instance of the knap-
sack problem, such as our example {A, B , C , D , E , F,G } above with total size capacity S = 15.
Here’s a seemingly useless but actually very useful observation: The optimal solution either
does contain G or it does not contain G . How does this help us? Well, suppose it does contain
G , then what does the rest of the optimal solution look like? It can’t contain G since we’ve al-
ready used it, and it has capacity S ′ = S − sG . What does the optimal solution to this remainder
look like? Well, by similar logic to before, it must be the optimal solution to a knapsack problem
of total capacity S ′ on the set of items not including G ! (Formally we could prove this by con-
tradiction again—if there was a more optimal knapsack solution for capacity S ′ without G , we
could use it to improve our solution.) This is another case of optimal substructure appearing!

Step 2: Defining our subproblems Now that we’ve observed some optimal substructure, lets
try to define some subproblems. Our observation seems to suggest that the subproblems should
involve considering a smaller capacity, and considering one fewer item. How should we keep
track of which items we are allowed to use? We could define a subproblem for every subset of
the input items, but then we would have Ω(2n ) subproblems, and that’s no better than brute
force! But here’s another observation: it doesn’t really matter what order we consider inserting
the items if for every single item we either use it or don’t use it, so we can instead just consider
subproblems where we are using items 1 . . . i for 0 ≤ i ≤ n . Combining these two ideas, both
the capacity reduction and the subset of items, we define our subproblems as:

V(k , B ) = The value of the best subset of items from {1, 2, . . . , k} that uses at most B space

The solution to the original problem is the subproblem V (n ,S ).

Step 3: Deriving a recurrence Now that we have our subproblems, we can use our substruc-
ture observation to make a recurrence. If we choose to include item k , then our knapsack has
B − sk space remaining, and we can no longer use item k , so this gives us

v (k , B ) = vk +V (k −1, B − sk ) if we take item k

Otherwise, if we don’t take item k , then we get

v (k , B ) =V (k −1, B ) if we don’t take item k

Finally, we need some base case(s). Well, if we have no items left to use k = 0, that seems like a
good base case because we know the answer is zero! So, putting this together, we can write the
recurrence:

Algorithm: Dynamic programming recurrence for Knapsack

V (k , B ) =







0 if k = 0
V (k −1, B ) if sk > B
max{vk +V (k −1, B − sk ), V (k −1, B )} otherwise

Note here that we had to check whether sk > B . In this case, we can’t choose item k even if we
wanted to because it doesn’t fit in the knapsack, so we are forced to skip it. Otherwise, if it fits,
we try both options of taking item k or not taking item k , then use the best of the two choices.
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Step 4: Analysis We have O (nS ) subproblems and each of them requires a constant amount
of work to evaluate for the first time. So, using dynamic programming, we can implement this
solution in O (nS ) time.

A top-down implementation This can be turned into a recursive algorithm. Naively this
again would take exponential time. But, since there are only O (nS ) different pairs of values
the arguments can possibly take on, so this is perfect for memoizing. Let us initialize a 2D
memoization table memo[k][b] to “unknown” for all 0≤ k ≤ n and 0≤ b ≤ S .

function V(k : int, B : int) −> int = {
if (k == 0) return 0;
if (memo[k][B] != unknown) return memo[k][B]; // <− added this
if (s_k > B) result := V(k−1,B);
else result := max{v_k + V(k−1, B−s_k), V(k−1, B)};
memo[k][B] = result; // <− and this
return result;

}

Since any given pair of arguments to V can pass through the memo check only once, and in
doing so produces at most two recursive calls, we have at most 2n (S + 1) recursive calls total,
and the total time is O (nS ).

So far we have only discussed computing the value of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards:
if memo[k][B] = memo[k-1][B] then we didn’t use the k th item so we just recursively work
backwards from memo[k-1][B]. Otherwise, we did use that item, so we just output the k th
item and recursively work backwards from memo[k-1][B-s_k]. One can also do bottom-up
Dynamic Programming.

9.3 Max-Weight Indep. Sets on Trees (Tree DP)
Given a graph G with vertices V and edges E , an independent set is a subset of vertices S ⊆ V
such that none of the vertices are adjacent (i.e., none of the edges have both of their endpoints
in S ). If each vertex v has a non-negative weight wv , the goal of the Max-Weight Independent
Set (MWIS) problem is to find an independent set with the maximum weight. We now give a
Dynamic Programming solution for the case when the graph is a tree. Let us assume that the
tree is rooted at some vertex r , which defines a notion of parents/children (and ancestors/de-
scendents) for the tree. Lets go through our usual motions.

Step 1: Identify some optimal substructure Suppose we choose to include r (the root) in the
independent set. What does this say about the rest of the solution? By definition, it means that
the children of the root are not allowed to be in the set. Anything else though is fair game. In
particular, for every granchild of the root, we would like to build a max-weight independent
set rooted at that vertex. A proof by contradiction would as usual verify that this has optimal
substructure.
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On the other hand, if we choose to not include r in our independent set, then all of the chil-
dren are valid candidates to include. Specifically, we would like to construct a max-weight in-
dependent set in all of the subtrees rooted at the children (which may or may not contain those
children themselves).

Step 2: Define our subproblems The optimal substructure suggests that our subproblems
should be based on particular subtrees. This general technique is often referred to as “tree DP”
for this reason. Our set of subproblems might therefore be

W (v ) = the max weight independent set of the subtree rooted at v

The solution to the original problem is W (r ).

Step 3: Deriving a recurrence Like many of our previous algorithms, we build the recurrence
by casing on possible decisions we can make. Keeping with the spirit of that, it seems like the
decision we can make at any given problem W (v ) is whether or not to include the root vertex
v in the independent set. If we choose to not include it, then we should just recursively find a
max-weight set in the children’s subtrees. We let C (v ) be the set of children of vertex v . Then
we have

W (v ) =
∑

u∈C (v )

W (u ) if we don’t choose v.

Suppose we do choose v , then what can we do? As discussed, we can no longer include any of
v ’s children without violating the rules, but we can consider any of v ’s grandchildren and their
subtrees. Let G C (v ) denote the set of v ’s grandchildren. Then we have

W (v ) =wv +
∑

u∈G C (v )

W (u ) if we choose v.

Finally, what about base cases? If v is a leaf then the max-weight independent set just contains
v for sure. To write the full recurrence, we just take the best of the two choices, choose v or
don’t choose v .

Algorithm: Dynamic programming recurrence for max-weight independent set on a tree

W (v ) =max

(

∑

u∈C (v )

W (u ), wv +
∑

u∈G C (v )

W (u )

)

Wait, stop! Where’s the base case? We must have forgotten it. Or did we? Suppose v is a leaf.
Then both of the sums in the recurrence are empty because C (v ) and G C (v )will both be empty.
Therefore W (v ) =wv for a leaf from the second case. This means that this particular recurrence
doesn’t need an explicit base case, because it sort of comes built in to the sum over the children.

Step 4: Analysis This is our first example of a DP where the runtime needs a more sophisti-
cated analysis than just multiplying the number of subproblems by the work per subproblem.
If we were to do that naive analysis, we would get O (n 2) since there are O (n ) subproblems and
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each might have to loop over up to O (n ) children/grandchildren. However, we can do better.
Note that each vertex is only the child or grandchild of exactly one other vertex (its parent or
its grandparent respectively). Therefore, each subproblem is only ever referred to by at most
two other vertices. So we can do the analysis “in reverse” or “upside down” in some sense, and
argue that each subproblem is only used at most twice, and hence the total work done is just
two times the number of subproblems, or O (n ).

9.4 Traveling Salesperson Problem (TSP)
The NP-hard Traveling Salesperson Problem (TSP) asks to find the shortest route that visits all
vertices in a graph exactly once and returns to the start.2 We assume that the graph is complete
(there is a directed edge between every pair of vertices in both directions) and that the weight
of the edge (u , v ) is denoted by w (u , v ). This is convenient since it means a solution is really
just a permutation of the vertices.

Since the problem is NP-hard, we don’t expect to get a polynomial-time algorithm, but perhaps
dynamic programming can still help get something better than brute force. Specifically, the
naive algorithm for the TSP is just to run brute-force over all n ! permutations of the n vertices
and to compute the cost of each, choosing the shortest. We’re going to use Dynamic Program-
ming to reduce this to O (n 22n ). This is still exponential time, but it’s not as brutish as the naive
algorithm. As usual, let’s first just worry about computing the cost of the optimal solution, and
then we’ll later be able to recover the path.

Step 1: Find some optimal substructure This one harder than the previous examples, so we
might have to try a couple of times to get it right. Suppose we want to make a tour of some
subset of nodes S . Can we relate the cost of an optimal tour to a smaller version of the problem?
Its not clear that we can. In particular, suppose we call out a particular vertex t , and then ask
whether it is possible to relate the cost of the optimal tour of S −{t } and S . It doesn’t seem so,
because its not clear how we would splice t into the tour formed by S−{t }. In fact, we can even
show an example which demonstrates that the optimal tour of S−{t }may not actually have all
that much in common with the optimal tour of S :

2Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesperson
Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.
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On the left is an optimal tour of a graph with four vertices. After adding a fifth vertex, we can
see that the new optimal tour does not actually contain the old one as a subset, so there does
not appear to be any optimal substructure here and we can not use these as our subproblems!

When faced with such an issue, it can quite often be resolved by adding more information to the
subproblems. Adding a vertex into a cycle seems difficult to do because we don’t know where
to put it and how it might affect everything after it, but adding a vertex onto the end of a path
sounds simpler, so lets try that. We will fix an arbitrary starting vertex x , and now consider the
cheapest path that starts at x , visits all of the vertices in S and ends at a specific vertex t . The
last part is essentially the “additional information” that we added to make the subproblems
more specific. If we just considered any paths consisting of the vertices in S but without fixing
the final vertex, we would run into the same problem as before.

Can we find any substructure in this much more specific object? The path now has a final
vertex, which means it also has a second-last vertex! Specifically, the optimal path from x to t
must have some second-last vertex t ′, and the path from x to t ′ must be an optimal such path
using the vertices S −{t } over all possible choices of t ′. Lets use this for our subproblems.

Step 2: Define our subproblems Based on the above, lets make our subproblems

C (S , t ) = The minimum-cost path starting at x and ending at t going through all vertices in S

What is the solution to our original problem? Is it one of the subproblems? Actually the answer
is no this time. But we can figure it out by combining a handful of the subproblems. Specifically,
we want to form a tour (a cycle) using a path that starts at x . So we can just try every other vertex
in the graph t , and make a path from x to t then back to x again to complete the cycle. So the
answer, once we solve the DP will be

answer= min
t ∈(V −{x })

(C (V , t ) +w (t , x ))

Step 3: Deriving a recurrence Using the substructure we described above, the idea that will
power the recurrence is that to get a path that goes from x to t , we want a path that goes from
x to t ′ plus an edge from t ′ to t . Which t ′ will be the best? We can’t know for sure, so we should
just try all of them and take the best one. We also need a base case. We can’t use an empty
path as our base case since we assume a starting vertex x and an ending vertex t for every
subproblem, so lets use a path of two vertices as our base case. This gives us the recurrence
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Algorithm: Dynamic programming recurrence for TSP

C (S , t ) =







w (x , t ) if S = {x , t },
min
t ′∈S

t ′ ̸∈{x ,t }

C (S −{t }, t ′) +w (t ′, t ) otherwise.

Step 4: Analysis The parameter space for C (S , t ) is 2n−1 (the number of subsets S considered)
times n (the number of choices for t ). For each recursive call we do O (n ) work inside the call
to try all previous vertices t ′, for a total of O (n 22n ) time. This is assuming we can lookup a set
(e.g, S −{t }) in constant time.

Remark: Efficiently representing the set

Since this algorithm is too slow for large values of n , we usually assume that n is small,
and so a highly efficient way to store the set S is as a single integer, where you use the
individual bits of the integer to indicate which vertices are in or not in the set. This makes
it easy to store and lookup the subproblem solutions because an integer is a much better
key for an array or hashtable than a set!

This technique is sometimes called “Subset DP”. These ideas apply in many cases to reduce a
factorial running to time to a regular exponential running time.
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Exercises: Dynamic Programming

Problem 20. We showed how to find the weight of the max-weight independent set. Show how
to find the actual independent set as well, in O (n ) time.

Problem 21. Give an example where using the greedy strategy for the 0-1 knapsack problem
will get you less than 1% of the optimal value.

Problem 22. Suppose you are given a tree T with vertex-weights wv and also an integer K ≥ 1.
You want to find, over all independent sets of cardinality K , the one with maximum weight. (Or
say “there exists no independent set of cardinality K ”.) Give a dynamic programming solution
to this problem.

Problem 23. Given the results of C (S , t ) for a TSP problem, explain how to find the actual se-
quence of vertices that make up the tour.
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Lecture 10

Dynamic Programming II

In the previous lecture, we reviewed Dynamic Programming and saw how it can be applied to
problems about sequences and trees. Today, we will extend our understanding of DP by apply-
ing it to other classes of problems, like shortest paths, and explore how to speed up dynamic
programming implementations with clever tricks like fancier data structures!

Objectives of this lecture

In this lecture, we will:

- Learn about optimizing DPs by eliminating redundancies via the all-pairs shortest
path problem

- Learn about optimizing DPs with data structures via the longest increasing subse-
quence problem

- Learn about optimizing tree DPs

10.1 All-pairs Shortest Paths (APSP)
Say we want to compute the length of the shortest path between every pair of vertices in a
weighted graph. This is called the all-pairs shortest path problem (APSP). If we use the Bellman-
Ford algorithm (recall 15-210), which takes O (nm ) time, for all n possible destinations t , this
would take time O (mn 2). We will now see a Dynamic-Programming algorithm that runs in
time O (n 3), but let’s warm up with a simpler but worse algorithm.

10.1.1 A first attempt in O (n 4)

We dealt with the Traveling Salesperson Problem (TSP) just last lecture, which we also solved
in terms of substructure over paths. It therefore seems natural to try the same thing for APSP.
In our DP solution for TSP, we created paths by extending them by one edge at a time. We also
had to remember the current subset of vertices since the goal was to visit every vertex once and
only once. In this problem, we no longer have that restriction, so it won’t be necessary to store
all of the subsets.

Instead, to build a path out of k vertices, all we need is a path of k−1 vertices! We don’t actually
care which vertices they are, so we can just parameterize the subproblems by an integer (the
number of vertices in the path) rather than a subset of vertices.
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Defining the subproblems Based on the above observation that we can build a path from a
shorter path plus a new edge, we can define our subproblems as

D [u ][v ][k ] = the length of the shortest path from u to v using k vertices

Deriving a recurrence To build a path from u to v with k vertices, we just need to build a
path from u to some other vertex, then add v . We can try every possible intermediate vertex to
ensure that we definitely get the right one, which gives us a recurrence that looks like

D [u ][v ][k ] =min
v ′∈V

�

D [u ][v ′] +w (v ′, v )
�

For simplicity, assume that if (v ′, v ) /∈ E , then w (v ′, v ) =∞. Our base case will be when there
is just a single vertex v in the path, in which case the distance from v to itself is zero.

D [v ][v ][1] = 0.

After evaluating every value of D for all u , v, k where 1≤ k ≤ n , the length of the shortest path
from u to v is given by the minimum of D [u ][v ][k ] for all 1≤ k ≤ n .

Analysis We have O (n 3) subproblems and each of them takes O (n ) time to evaluate, so this
takes O (n 4) time. Actually, we can be a little bit more clever in a similar way to which we an-
alyze tree DP algorithms. Note that we only have to check v ′ ∈ V for v ′ that have an outgoing
edge pointing to v , i.e., such that (v ′, v ) ∈ E , so the total amount of work spent evaluating the
minimum over all v for any fixed value of u and k is O (m ), so the total work is at most O (n 2m ),
which matches the strategy of repeatedly running Bellman-Ford.

If we think about it carefully, perhaps this isn’t so surprising since Bellman-Ford also builds
paths by repeatedly adding one edge at a time starting from a single source node, so this al-
gorithm is kind of doing the same thing as running Bellman-Ford simultaneously from every
possible start vertex! (We just reinvented Bellman-Ford, oops).

10.1.2 An improved version in O (n 3)
The nice thing about paths is that there are lots of ways of breaking them up into pieces. The
previous strategy was to just add a single edge at a time, but that seems inefficient because
every time we want to add an edge, we have to look at every possible second-last vertex.

Another way to break paths up is to chop them into two paths! A path from u to v can be bro-
ken at any point along the path k into the two paths u to k and k to v . How exactly does this
let us decompose the problem into smaller problems though? We can not just define our sub-
problems as the shortest path between u and v and then solve them by trying all intermediate
vertices k , because this would assume that we already had all the shortest paths between all u
and all possible k to begin with, i.e., the problems aren’t guaranteed to be smaller problems.

To make the problems smaller, we need one crucial observation: In a valid shortest path, there
is no reason to use the same vertex twice! So, when we decide to break a shortest path u to v
into two paths U to k and k to v , we don’t need k to occur inside either of those paths! Let’s
therefore try adding new intermediate vertices one at a time.
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Define our subproblems The idea is that we want to build paths out of increasingly larger
sets of intermediate vertices. When vertex k is introduced, we can stitch together a path from
u to k and k to v to build a path from u to v . Those smaller paths do not need to contain k
since there is no point in using k more than once. So, we will use the subproblems

D [u ][v ][k ] = length of the shortest path from u to v using intermediate vertices {1, 2, . . . , k}

Deriving a recurrence We need to consider two cases. For the pair u , v , either the shortest
path using the intermediate vertices {1, 2, . . . , k} goes through k or it does not. If it does not,
then the answer is the same as it was before k became an option. If k now gets used, we can
break the path at k and use the optimal substructure to glue together the two shortest paths
divided at k to get a new shortest path. Writing the recurrence using this idea looks like this.

D [u ][v ][k ] =min{D [u ][v ][k −1], D [u ][k ][k −1] +D [k ][v ][k −1]} .

Our base case will just be

D [u ][v ][0] =











0 if u = v,

w (u , v ) if (u , v ) ∈ E ,

∞ otherwise.

Analysis We have O (n 3) subproblems and each of them takes O (1) time to evaluate, so this
takes O (n 3) time! Notice that the key improvement here over the previous algorithm was that
for each subproblem, we only needed to make a single binary decision: use k or don’t use k ,
which is much more efficient than our earlier algorithm which had to try every vertex.

10.1.3 Optimizing the space: eliminating redundancies
One downside of the algorithm is that it uses a lot of space, O (n 3), which is a factor n larger than
the input graph. This is bad if the graph is large. Can we reduce this? There are two ways. First,
notice that the subproblems for parameter k only depend on the subproblems with parameter
k −1. So, we don’t actually need to store all O (n 3) subproblems, we can just keep the last set of
subproblems and compute bottom-up in increasing order of k .

Here’s an even simpler but more subtle way to optimize the algorithm. We can just write:

// After each iteration of the outside loop, D[u][v] = length of the
// shortest u−>v path that’s allowed to use vertices in the set 1..k
for k = 1 to n do
for u = 1 to n do
for v = 1 to n do
D[u][v] = min( D[u][v], D[u][k] + D[k][v] );

So what happened here, it looks like we just forgot the k parameter of the DP, right? It turns
out that this algorithm is still correct, but now it only uses O (n 2) space because it just keeps a
single 2D array of distance estimates. Why does this work? Well, compared to the by-the-book
implementation, all this does is allow the possibility that D [u ][k ] or D [k ][v ] accounts for vertex
k already, but a shortest path won’t use vertex k twice, so this doesn’t affect the answer! This
algorithm is known as the Floyd-Warshall algorithm.
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Key Idea: Optimize DP by eliminating redundant subproblems

Sometimes our subproblems might not all be necessary to the solve the problem, so if
we can eliminate many of them, we will either speed up the algorithm or reduce the
amount of space it requires.

10.2 Advanced Tree DP
In the previous lecture we saw the bread and butter of tree DP, which involves solving the prob-
lem for every possible rooted subtree of a tree and then combining the answers to the child
problems to form the answer for the root problem. Sometimes this is not quite enough and is
not efficient, so let’s see a trick to make it even better. The problem arises when we want to
solve problems on trees with high degree, but the problem involves making decisions about
how much of a quantity to split between the children. Here’s an example problem:

Problem: Counting subtrees

Given a rooted tree with n nodes and root r , count the number of distinct subtrees
rooted at r with exactly K nodes.

To get the main idea we will first solve the problem with the additional assumption that the tree
is a binary tree, then we will see how to remove this assumption.

10.2.1 Solution for binary trees
Under the assumption that the tree is binary, counting the number of possible subtrees rooted
at a particular vertex v with exactly k nodes just consists in deciding how to divide the k − 1
nodes other than v between the two children.

Defining the subproblems For simplicity we will assume that the tree is a full binary tree, i.e.,
every node is either a leaf or has two children. We will use the subproblems:

S (v, k ) = the number of subtrees rooted at v containing k nodes

The solution to the problem is S (r, K ).

Deriving a recurrence To solve the subproblems, we just sum over all of the possible ways to
divide the k −1 remaining nodes between the two children:

S (v, k ) =























1 if k = 0 or k = 1,

0 if k > 1 and if v is a leaf

k−1
∑

k ′=0

S (L (v ), k ′) ·S (R (v ), (k −1)−k ′) otherwise
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The first base cases are when k ∈ {0, 1} since we can make exactly one subtree out of one node
(just itself) and one subtree using zero nodes (the empty subtree). Otherwise if k > 1 and v is
a leaf then we can not possible make a subtree with k nodes since all we have is a single leaf!

Analysis We have O (n K ) subproblems and each takes O (K ) time, so the cost is O (n K 2).

10.2.2 Generalization to high-degree trees
How generalizable is this solution to high-degree trees? Well, it works, but its going to be slow.
For a node with two children, there were O (K )ways to divide the subtree nodes between them.
For a node with three children, there would be O (K 2) ways to do it, for four children, O (K 3)
and so on... This is exponential in K , so trying all possibilities is off the table.

However, there is a lot of redundancy in these possibilities. If I decide to put k ′ out of k nodes
on the first child, then there are k−1−k ′ remaining nodes to distribute between the remaining
children. The fact that I put k ′ nodes on the first child does not affect the others at all. So we
can eliminate the redundancy by further parameterizing the subproblems by which children
we are considering, and just adding in one child at a time!

Defining the subproblems For simplicity we will assume that the tree is a full binary tree, i.e.,
every node is either a leaf or has two children. We will use the subproblems:

S (v, k , i ) =

¨

the number of subtrees rooted at v containing k

nodes using only the i th child and after of v

The solution to the problem is S (r, K , 0).

Deriving a recurrence To solve the subproblems, we sum over all of the possible ways to di-
vide the k nodes between the current child and the root with the rest of the children:

S (v, k , i ) =























1 if k = 0 or k = 1,

0 if k > 1 and if i = deg(v )

k−1
∑

k ′=0

S (C (v, i ), k ′, 0) ·S (v, k −k ′, i +1) otherwise

For notation, we have used C (v, i ) to mean the i th child of v , and deg(v ) to be the degree (num-
ber of children) of v . The base cases are similar to the binary case, we can make only one tree
with a single node or no nodes. Note that S (v, k , deg(v )) refers to a subproblem in which we
have ran out of children of v to consider, i.e., we are considering v alone. If v is a leaf then
deg(v ) = 0 and all the subproblems for v will fall into this or the first case.

Note the subtle difference between this and the binary version where the recursion divides the
k nodes into k ′ and k−k ′ instead of (k−1)−k ′. This is because in the binary case, we used that
one on v and then split the remaining k −1 nodes between the children, but in this recurrence,
the second subproblem S (v, . . .) still includes the root, so we do not lose one node anymore.
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Analysis How many subproblems do we have now? There are n choices for v , and n choices
for i , and K choices for K , so our new cost should be O (n 2K 2), right? No! This is tree DP of
course, and there aren’t very many possible values of i for every single v ! In particular, note
that each (v, i ) pair maps one-to-one with a specific child vertex, so there at most n of them in
total. This means that the number of subproblems is actually still at most n K and hence the
cost is still O (n K 2), so we just got to generalize to non-binary trees for free! It does not actually
cost any more than the binary case.

10.3 Longest Increasing Subsequence

Our next problem is the “longest increasing subsequence” (LIS) problem, which has an O (n 2)
solution, but can then be improved with some clever optimizations!

Problem: Longest Increasing Subsequence

Given a sequence of comparable elements a1, a2, . . . , an , an increasing subsequence is a
subsequence ai1

, ai2
, ..., aik−1

, aik
(i1 < i2 < . . . ik ) such that

ai1
< ai2

< . . .< aik−1
< aik

.

A longest increasing subsequence is an increasing subsequence such that no other in-
creasing subsequence is longer.

Find some optimal substructure Given a sequence a1, . . . , an and its LIS ai1
, . . . , aik−1

, aik
, what

can we say about ai1
, . . . , aik−1? Since ai1

, . . . , aik
is an LIS, it must be the case that ai1

, . . . , aik−1
is

an LIS of a1, . . . aik
such that aik−1

< aik
. Alternatively, it is also an LIS that ends at (and contains)

aik−1
. This suggests a set of subproblems.

Define our subproblems Lets define our subproblems to be

LIS[i ] = the length of a longest increasing subsequence of a1, . . . ai that contains ai

Note that the answer to the original problem is not necessarily LIS[n ] since the answer might
not contain an , so the actual answer is

answer= max
1≤i≤n

LIS[i ]

Deriving a recurrence Since LIS[i ] ends a subsequence with element i , the previous element
must be anything a j before i such that a j < ai , so we can try all possibilities and take the best
one

LIS[i ] =







0 if i = 0,

1+max
0≤ j<i
a j<ai

L I S [ j ] otherwise.
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Analysis We have O (n ) subproblems and each one takes O (n ) time to evaluate, so we can
evaluate this DP in O (n 2) time. Is this a good solution or can we do better?

10.3.1 Optimizing the runtime: better data structures
The by-the-definition implementation of the recurrence for LIS gives an O (n 2) algorithm, but
sometimes we can speed up DP algorithms by solving the recurrence more cleverly. Specif-
ically in this case, the recurrence is computing a minimum over a range, which sounds like
something we know how to do faster than O (n )...

How about we try to apply a range query data structure (a SegTree) to this problem! Initially, its
not clear why this would work, because although we are doing a range query over 1≤ j < i , we
have to account for the the constraint that a j < ai , so we can not simply do a range query over
the values of LIS[1 . . . (i −1)] or this might include larger elements.

So here’s an idea... Let’s solve the subproblems in order by the value of the final element, instead
of just left-to-right by order of i . That way, when we solve a particular subproblem correspond-
ing to a particular final element, we will have only processed the subproblems corresponding
to all smaller elements, which are all legal to append the next larger element to!

function LIS(a : list〈int〉) −> int = {
sortedByVal := sorted list of (value, index) pairs
// SegTree is endowed with the RangeMax operation
LIS := SegTree(array〈int〉(size(a), 0))
for val, index in sortedByVal do {
answer := LIS.RangeMax(0, index) + 1 // Solve the subproblem
LIS.Assign(index, answer) // Store the subproblem

}
return LIS.RangeMax(0, size(a))

}

This optimized algorithm performs two SegTree operations per iteration, and it has to sort the
input, so in total it takes O (n log n ) time.

Key Idea: Speed up DP with data structures

If your DP recurrence involves computing a minimum, or a sum, or searching for some-
thing specific, you can sometimes speed it up by storing the results in a data structure
other than a plain array (e.g., a SegTree or BST).

115



Lecture 10. Dynamic Programming II

10.4 Counting Paths in a Graph
Optional content — Not required knowledge for the exams

For this next problem lets consider a directed unweighted graph on n vertices. Our goal is to
compute, for every pair of vertices u , v , the number of directed walks1 of length k that start at
u and end at v . A walk is a path between u and v that might repeat vertices or edges.

Step 1: Find some optimal substructure A walk of length k between u and v is just a walk of
length k −1 from u to some neighbor of v with one additional edge.

Step 2: Define our subproblems Lets define our subproblems to be

W [u ][v ][k ] = the number of walks of length k between u and v

Step 3: Deriving a recurrence To find the number of walks of length k between u and v , we
have to look at walks of length k −1 and then add another edge. This means we are interested
in vertices that are one away from u or v . To avoid overcounting, we should just pick one of
them, so lets consider vertices adjacent to v . Our goal is then to sum over all such vertices.

W [u ][v ][k ] =







1u=v if k = 0,
∑

v∈adj[x ]

W [u ][x ][k −1] otherwise

Here, I have used the notation 1u=v as an indicator function, i.e. it is equal to 1 if u = v , other-
wise it is equal to zero, and adj[x ] to mean the set of vertices adjacent to x .

Step 4: Analysis Computing this recurrence as written, we have O (n 2k ) subproblems and
each takes O (n ) time to evaluate, so the total runtime is O (n 3k ). Can we do better?

10.4.1 Optimizing the runtime: matrices
Although it might not look it from the way it is written, the recurrence above is actually of a
useful form. Lets rewrite it a bit to make it clearer. I’m going to move the k ’s to subscripts, and
rewrite the sum using an indicator function. The reason will hopefully become clear soon.

Wk [u ][v ] =
∑

x∈V

Wk−1[u ][x ]A[x ][v ], W0 = I

Here, A is the adjacency matrix of the graph (it contains 1 at [u ][v ] if there is an edge from u to
v , otherwise it contains zero), and I is the identity matrix (n×n in this case). Does this formula
look familiar? Its actually matrix multiplication!! Specifically, it says that

Wk =Wk−1A,

1If k is large, then the number of such paths could end up being quite a big number, which could mess with the
analysis. Lets just assume that we can still do arithmetic in constant time. One way to achieve this is to compute
everything mod p
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10.4. Counting Paths in a Graph

where A is the adjacency matrix of the graph, and W0 = I . Which means by extension that

Wk = Ak .

So we can compute Wk by computing a power of a matrix. Using exponentiation by squaring,
we can therefore compute Wk in O (n 3 log k ) time, since matrix multiplication takes O (n 3) time,
and we have to square O (log k ) times.

Key Idea: Speeding up DP with matrices

If your dynamic programming recurrence is a low-order linear recurrence relation, you
can sometimes speed it up by writing it as a matrix equation and using matrix exponen-
tiation!

10.4.2 Making the matrix method even faster
There are a couple of ways to make the matrix method even faster.

Option 1: faster multiplication Above, we saw how to compute the number of walks in a
graph in O (n 3 log k ) time using matrix multiplication. This was assuming that matrix multi-
plication takes O (n 3) time, but there are actually faster algorithms out there (asymptotically
at least). Currently, matrix multiplication takes O (nω) where ω = 2.37.... It is not yet known
whether there exists an O (n 2+o (1))-time algorithm! So, just plugging in a “faster” matrix multi-
plication, we get a runtime of

O (nω log k ).

Option 2: diagonalization Another way to do better, if we remember our linear algebra class,
is by diagonalizing the matrix into the form A = P D P −1, where D is a diagonal matrix. Then
our equation becomes

Wk = P D k P −1,

which means we only have to compute powers of the diagonal elements of the matrix, rather
than powers of an entire n ×n matrix, which is much cheaper! Since it just takes log k time to
compute each power, and there are n elements on the diagonal of D , this takes O (n log k ) time
plus the time required to compute the diagonalization, which is O (n 3), for a runtime of

O (n 3+n log k ).
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Exercises: Dynamic Programming II

Problem 24. Provide a formal proof by induction that the Floyd-Warshall algorithm gives a
correct answer. The comment in the pseudocode is the inductive hypothesis on which you
should use induction on k .

Problem 25. Can you find a greedy algorithm that matches the O (n log n ) performance of the
LIS algorithm above?

Problem 26. Write a different implementation of the LIS algorithm that still uses a SegTree but
loops over i and uses range queries on j instead (the opposite of the solution above).
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Lecture 11

Network Flows I

In these next three lectures we are going to talk about an important algorithmic problem called
the Network Flow Problem. Network flow is important because it can be used to model a wide
variety of different kinds of problems. So, by developing good algorithms for solving flows, we
get algorithms for solving many other problems as well. In Operations Research there are entire
courses devoted to network flow and its variants.

Objectives of this lecture

In this lecture, we will:

- Define the maximum network flow problem

- Derive and analyze the Ford-Fulkerson algorithm for maximum network flow

- Prove the famous max-flow min-cut theorem

- See how to solve the bipartite matching problem by reducing it to a maximum flow
problem

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 26, Maximum Flow

- DPV, Algorithms, Chapter 7.2, Flows in Networks

11.1 The Maximum Network Flow Problem

We begin with a definition of the problem. We are given a directed graph G , a source node s ,
and a sink node t . Each edge e in G has an associated non-negative capacity c (e ), where for all
non-edges it is implicitly assumed that the capacity is 0. For instance, imagine we want to route
message traffic from the source to the sink, and the capacities tell us how much bandwidth
we’re allowed on each edge. For example, consider the graph below.
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Lecture 11. Network Flows I

Our goal is to push as much flow as possible from s to t in the graph. The rules are that no edge
can have flow exceeding its capacity, and for any vertex except for s and t , the flow in to the
vertex must equal the flow out from the vertex. That is,

Definition: Flow constraints

Capacity constraint: On any edge e we have 0≤ f (e )≤ c (e ).

Flow conservation: For any vertex v ̸∈ {s , t }, flow in equals flow out:
∑

u

f (u , v ) =
∑

u

f (v, u ).

A flow that satisfies these constraints is called a feasible flow. Subject to these constraints, we
want to maximize the net flow from s to t . We can measure this formally by the quantity

| f |=
∑

u∈V

f (s , u )−
∑

u∈V

f (u , s )

Note that what we are measuring here is the net flow coming out of s . It can be proved, due
to conservation, that this is equal to the net flow coming into t . So, in the above graph, what
is the maximum flow from s to t ? Answer: 5. Using the notation“flow/capacity”, a maximum
flow looks like this. Note that the flow can split and rejoin itself.

11.1.1 Improving a flow: s -t paths
Suppose we start with the simplest possible flow, the all-zero flow. This flow is feasible since it
meets the capacity constraints, and all vertices have flow in equal to flow out (zero!). But for
the network above, the all-zero flow is clearly not optimal. Can we formally reason about why it
isn’t optimal? One way is to observe that there exists a path from s to t in the graph consisting
of edges with available capacity (actually there are many such paths). For example, the path
s → a → c → t has at least 2 capacity available, so we could add 2 flow to each of those edges
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11.1. The Maximum Network Flow Problem

without violating their capacity constraints, and improve the value of the flow. This gives us
the flow below

An important observation we have just made is that if we add a constant amount of flow to all
of the edges on a path, we never violate the flow conservation condition since we add the same
amount of flow in and flow out to each vertex, except for s and t . As long as we do not violate
the capacity of any edge, the resulting flow is therefore still a feasible flow.

This observation leads us to the following idea: A flow is not optimal if there exists an s -t path
with available capacity. In the above graph, we can observe that the path s → b → d → t has
2 more units of available capacity, and hence add 2 units of flow to the edges. Lastly, we could
find the s → a → c → b → d → t path has 1 more unit of available capacity, and we would
arrive at the maximum flow from before.

11.1.2 Certifying optimality of a flow: s -t cuts
We just saw how to convince ourselves that a flow was not maximum, but how can you see that
the above flow was really maximum? We can’t be certain yet that we didn’t make a bad decision
and send flow down a sub-optimal path. Here’s an idea. Notice, this flow saturates the a → c
and s → b edges, and, if you remove these, you disconnect t from s . In other words, the graph
has an “s -t cut” of capacity 5 (a set of edges of total capacity 5 such that if you remove them, this
disconnects the sink from the source). The point is that any unit of flow going from s to t must
take up at least 1 unit of capacity in these pipes. So, we know we’re optimal. Let’s formalize this
idea of a “cut” and use it to formalize these observations.

Definition: s -t cut

An s -t cut is a set of edges whose removal disconnects t from s . Equivalently, a cut is a
partition of the vertex set into two pieces S and T where s ∈ S and t ∈ T . (The edges of
the cut are then all edges going from S to T ).

The capacity of a cut (S , T ) is the sum of the capacities of the edges crossing the cut, i.e.,
the sum of the capacities of the edges going from S to T :

cap(S , T ) =
∑

u∈S

∑

v∈T

c (u , v )

Note importantly that the definition of the capacity of a cut does not include any edges that go
from T to S , for example, the edge (c , b ) above would not be included in the capacity of the cut
({s , a , b },{c , d , t }).
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Definition: Net flow

The net flow across a cut (S , T ) is the sum of flows going from S to T minus any flows
coming back from T to S , or

f (S , T ) =
∑

u∈S

∑

v∈T

f (u , v )−
∑

u∈S

∑

v∈T

f (v, u )

From this definition, we can see that the value of a flow | f | is equivalent to the net flow across
the cut ({s }, V \ {s }). In fact, using the flow conservation property, we can prove that the net
flow across any cut is equal to the flow value | f |. This should make intuitive sense, because no
matter where we cut the graph, there is still the same amount of flow making it from s to t .

Now to formalize our observation from before, what we noticed is that the value of any s -t flow
is less than the value of any s -t cut. Since every flow has a value that is at most the maximum
flow, we can argue that in general, the maximum s-t flow ≤ the capacity of the minimum s-t
cut, or

the value of any s -t flow≤maximum s -t flow≤minimum s -t cut≤ capacity of any s -t cut

This means that if we can find an s -t flow whose value is equal to the value of any cut, then we
have proof that is must be a maximum flow!

11.1.3 Finding a maximum flow
How can we find a maximum flow and prove it is correct? We should try to tie together the two
ideas from above. Here’s a very natural strategy: find a path from s to t and push as much flow
on it as possible. Then look at the leftover capacities (an important issue will be how exactly
we define this, but we will get to it in a minute) and repeat. Continue until there is no longer
any path with capacity left to push any additional flow on. Of course, we need to prove that this
works: that we can’t somehow end up at a suboptimal solution by making bad choices along
the way. Is this the case for a naive algorithm that simply searches for s -t paths with available
capacity and adds flow to them? Unfortunately it is not. Consider the following graph, where
the algorithm has decided to add 1 unit of flow to the path s → a → b → t

Are there any s -t paths with available capacity left? No, there are not. But is this flow a max-
imum flow? Also no, because we could have sent 1 unit of flow from s → a → t and 1 unit
of flow from s → b → t for a value of 2. The problem with this attempted solution was that
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sending flow from a to b was a “mistake” that lowered the amount of available capacity left. To
arrive at an optimal algorithm for maximum flow, we therefore need a way of “undoing” such
mistakes. We achieve this by defining the notion of residual capacity, which accounts for both
the remaining capacity on an edge, but also adds the ability to undo bad decisions and redirect
a suboptimal flow to a more optimal one. This leads us to the Ford-Fulkerson algorithm.

11.2 The Ford-Fulkerson algorithm
The magic idea behind the Ford-Fulkerson algorithm is going to be “undoing” bad previous
decisions by redirecting flow along a different path. To enable this, we define the concept of
the residual graph. Residual capacity is just the capacity left over given the existing flow and
also accounts for the ability to push existing flow back and along a different path, in order to
undo previous bad decisions. Paths in the residual graph are called augmenting paths, because
you use them to augment the existing flow.

Definition: Residual capacity

Given a flow f in graph G , the residual capacity c f (u , v ) is defined as

c f (u , v ) =

¨

c (u , v )− f (u , v ) if (u , v ) ∈ E ,

f (v, u ) if (v, u ) ∈ E .

Definition: Residual graph

Given a flow f in graph G , the residual graph G f is the directed graph with all edges
of positive residual capacity, each one labeled by its residual capacity. Note: this may
include reverse-edges of the original graph G .

When (u , v ) ∈ E , the residual capacity on the edge corresponds to our existing intuitive notion
of “remaining/leftover” capacity, it is the amount of additional flow that we could put through
an edge before it is full. The second case is the key insight that makes the Ford-Fulkerson algo-
rithm work. If f (v, u ) flow has been sent down some edge (v, u ), then we are able to undo that
by sending flow back in the reverse direction (u , v )! For example, if we consider the suboptimal
flow from earlier, the residual graph looks like the following.
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Unlike before, there is now an s -t path with capacity 1! The path s → b → a → t “undoes” the
flow that was originally pushed through a → b and redirects it to a → t , thus improving the
flow and making it optimal.

The Ford-Fulkerson algorithm is then just the following procedure.

Algorithm: Ford-Fulkerson Algorithm for Maximum Flow

while (there exists an s → t path P of positive residual capacity)
push the maximum possible flow along P

Remark: Handing anti-parallel edges

The definition of residual capacity becomes a little funny if we suppose that the graph
contains anti-parallel edges. Recall that parallel edges are those with the same endpoints
u and v that point in the same direction, while anti-parallel edges are those with the
same endpoints but point in opposite directions. In this case, it might be the case that
both (u , v ) ∈ E and (v, u ) ∈ E , so how do we handle this? One option is to simply disallow
it and not admit these kinds of graphs (this is what the textbook does!) Another valid
answer is that we should use both. We have the choice of either combining both into a
single edge with the sum of their capacities, or including a pair of parallel edges in the
residual graph. Both of these options are fine and will work in theory and practice.

Let’s see another example. Consider the graph we started with and suppose we push two units
of flow on the path s → b → a → c → t . We then end up with the following flow (left) and
residual graph (right).

If we continue running Ford-Fulkerson, we might find the augmenting path s → a → c → b →
d → t which has capacity 1, bringing the flow value to 3, and yielding the following flow (left)
and residual graph (right).
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Finally, there is one more augmenting path, s → a → b → d → t of capacity 2. This gives us the
maximum flow that we saw earlier (left). At this point there is no longer a path from s to t in
the residual graph (right) so we know we are done.

We can think of Ford-Fulkerson as at each step finding a new flow (along the augmenting path)
and adding it to the existing flow. The definition of residual capacity ensures that the flow found
by Ford-Fulkerson is legal (doesn’t exceed the capacity constraints in the original graph). We
now need to prove that in fact it is maximum. We’ll worry about the number of iterations it
takes and how to improve that later.

Note that one nice property of the residual graph is that it means that at each step we are left
with same type of problem we started with. So, to implement Ford-Fulkerson, we can use any
black-box path-finding method (e.g., DFS or BFS).

11.2.1 The Analysis
For now, let us assume that all the capacities are integers. If the maximum flow value is F , then
the algorithm makes at most F iterations, since each iteration pushes at least one more unit of
flow from s to t . We can implement each iteration in time O (m +n ) using DFS. If we assume
the graph is simple, which is reasonable, m ≥ n − 1, so this is O (m ), so we get the following
result.

Theorem: Runtime of the Ford-Fulkerson Algorithm

If the given graph G has integer capacities, Ford-Fulkerson terminates in time O (m F )
where F is the value of the maximum s -t flow.

Now the important result that proves the correctness of the algorithm and comes with a pow-
erful corollary.

Theorem: Optimality of the Ford-Fulkerson Algorithm

When it terminates, the Ford-Fulkerson algorithm outputs a flow whose value is equal
to the minimum cut of the graph.

Proof. Let’s look at the final residual graph. Since Ford-Fulkerson loops until there is no longer
a path from s to t , this graph must have s and t disconnected, otherwise the algorithm would
keep looping. Let S be the set of vertices that are still reachable from s in the residual graph,
and let T be the rest of the vertices.
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It must be that t ∈ T since otherwise s would be connected to t , so this is a valid s -t cut. Let
c = cap(S , T ), the capacity of the cut in the original graph. From our earlier discussion, we know
that | f | = f (S , T ) ≤ c . The claim is that we in fact did find a flow of value c (which therefore
implies it is maximum). Consider all of the edges of G (the original graph) that cross the cut in
either direction. We consider both cases:

1. Consider edges in G that cross the cut in the S → T direction. We claim that all of these
edges are at maximum capacity (the technical term is saturated). Suppose for the sake of
contradiction that there was an edge crossing from S to T that was not saturated. Then, by
definition of the residual capacity, the residual graph would contain an edge with positive
residual capacity from S to T , but this contradicts the fact that T contains the vertices that
we can not reach in the residual graph, since we would be able to use this edge to reach
a vertex in T . Therefore, we can conclude that every edge crossing the cut from S to T is
saturated.

2. Consider edges in G that cross the cut in the T to S direction. We claim that all such edges
are empty (their flow is zero). Again, suppose for the sake of contradiction that this was not
true and there is a non-zero flow on an edge going from T to S . Then by the definition of
the residual capacity, there would be a reverse edge with positive residual capacity going
from S to T . Once again, this is a contradiction because this would imply that there is a way
to reach a vertex in T in the residual graph. Therefore, every edge crossing from T to S is
empty.

Therefore, we have for every edge crossing the cut from S to T that f (u , v ) = c (u , v ), and for
every edge crossing from T to S that f (u , v ) = 0, so the net flow across the cut is equal to the
capacity of the cut c . Since every flow has a value that is at most the capacity of the minimum
cut, this cut must in fact be the minimum cut, and the value of the flow is equal to it.

As a corollary, this also proves the famous maximum-flow minimum-cut theorem.

Theorem: Max-flow min-cut theorem

In any flow network G , for any two vertices s and t , the maximum flow from s to t equals
the capacity of the minimum (s , t )-cut.
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Proof. For any integer-capacity network, Ford-Fulkerson finds a flow whose value is equal to
the minimum cut. Since the value of any flow is at most the capacity of any cut, this must be a
maximum flow.

We can also deduce integral-flow theorem. This turns out to have some nice and non-obvious
implications.

Theorem: Integral flow theorem

Given a flow network where all capacities are integer valued, there exists a maximum
flow in which the flow on every edge is an integer.

Proof. Given a network with integer capacities, Ford-Fulkerson will only find integer-capacity
augmenting paths and will never create a non-integer residual capacity. Therefore it finds an
integer-valued flow, and this is maximum flow, so there always exists an integer-valued maxi-
mum flow.

It is not necessarily the case that every maximum flow is integer valued, only that there exists
one that is. Lastly, the proof also sneakily teaches us how to actually find a minimum cut, too!

Remark: Min-cut max-flow for non-integer capacities

Technically, we only proved the min-cut max-flow theorem for integer capacities. What
if the capacities are not integers? Firstly, if the capacities are rationals, then choose the
smallest integer N such that N · c (u , v ) is an integer for all edges (u , v ). We see that
at each step we send at least 1/N amount of flow, and hence the number of iterations
is at most N F , where F is the value of the maximum s -t flow. (One can argue this by
observing that scaling up all capacities by N will make all capacities integers, whence
we can apply our above argument.) And hence we get min-cut max-flow for rational
capacities as well.

What if the capacities are irrational? In this case Ford-Fulkerson may not terminate.
And the solution it converges to (in the limit) may not even be the max-flow! But the
maxflow-mincut theorem still holds, even with irrational capacities. There are several
ways to prove this; here’s one. Suppose not, and suppose there is some flow network with
the maxflow being ε > 0 smaller than the mincut. Choose integer N such that 1

N ≤
ε

2m ,
and round all capacities down to the nearest integer multiple of 1/N . The mincut with
these new edge capacities may have fallen by m/N ≤ ε/2, and the maxflow could be
the same as the original flow network, but still there would be a gap of ε/2 between
maxflow and mincut in this rational-capacity network. But this is not possible, because
used Ford-Fulkerson to prove maxflow-mincut for rational capacities in the previous
paragraph.

Alternatively, in the next lecture we’ll see that if we modify Ford-Fulkerson to always
choose an augmenting path with the fewest edges on it, it’s guaranteed to terminate.
This proves the max-flow min-cut theorem for arbitrary capacities.
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In the next lecture we will look at methods for reducing the number of iterations. For now, let’s
see how we can use an algorithm for the max flow problem to solve other problems as well: that
is, how we can reduce other problems to the one we now know how to solve.

11.3 Bipartite Matching
Say we wanted to be more sophisticated about assigning groups to homework presentation
slots. We could ask each group to list the slots acceptable to them, and then write this as a
bipartite graph by drawing an edge between a group and a slot if that slot is acceptable to that
group. For example:

Group Slot

a

b

c

1

2

3

This is an example of a bipartite graph: a graph with two sides L and R such that all edges go
between L and R . A matching is a set of edges with no endpoints in common. What we want
here in assigning groups to time slots is a perfect matching: a matching that connects every
point in L with a point in R . For example, what is a perfect matching in the bipartite graph
above?

More generally (say there is no perfect matching) we want a maximum matching: a matching
with the maximum possible number of edges. We can solve this as follows:

Algorithm: Bipartite Matching

1. Set up a source node s connected to all vertices in L . Connect all vertices in R to a
sink node t . Orient all edges left-to-right and give each a capacity of 1.

2. Find a max flow from s to t using Ford-Fulkerson.

3. Output the edges between L and R containing nonzero flow as the desired matching.

Let’s run the algorithm on the above example. We first build this flow network.

a

b

c

1

2

3

s t
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Then we use Ford-Fulkerson. Say we start by pushing flow on s -a -1-t and s -c -3-t , thereby
matching a to 1 and c to 3. These are bad choices, since with these choices b cannot be
matched. But the augmenting path s -b -1-a -2-t automatically undoes them as it improves
the flow! Amazing. Matchings come up in many different problems like matching up suppliers
to customers, or cell-phones to cell-stations when you have overlapping cells. They are also a
building block of other algorithmic problems.

Proof of correctness We will prove correctness in two parts. First we will show that for any
valid matching, there exists a corresponding feasible flow, and for any feasible flow, there exists
a valid matching. First, consider any valid matching, and create a flow by assigning a flow value
of 1 to each edge in the matching, and a flow value of 1 to each s and t edge adjacent to a
matched edge. We claim that this flow is feasible. The capacity constraints are satisfied because
we assign a flow of at most 1 per edge. What about conservation? We assign a flow of 1 only
to s edges and t edges that are adjacent to a matched edge, and furthermore, since it is a valid
matching, every matched vertex has one and only one matching edge, hence there is exactly 1
flow in and 1 flow out of every matched vertex, so the conservation constraint is satisfied.

Now consider any feasible flow, and construct a matching by taking all of the edges in the mid-
dle with flow value of 1. We claim this is a valid matching. Why? Because of the capacity con-
straint, each matched vertex has at most 1 flow coming in. Then because of the conservation
constraint, it has at most 1 flow going out, so no vertex is matched multiple times. Lastly, in
both of the above correspondences, the cardinality of the matching is equal to the value of the
flow, hence the value of the maximum flow is equal to cardinality of the maximum matching.

Runtime What about the number of iterations of Ford-Fulkerson? This is at most the number
of edges in the matching since each augmenting path gives us one new edge. There can be at
most n edges in the matching, so we have F ≤ n , and hence the runtime is O (nm ).
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Exercises: Flow Fundamentals

Problem 27. Prove that the net flow across any (S , T ) cut is equal to the value of the flow | f |.
You should use the flow conservation constraint to do so. This also proves our earlier statement
that the flow value | f | is equal to the net flow into t .

Problem 28. Give an example of a flow network with all integer capacities and a maximum
flow on that network which has a non-integer value on at least one edge.

Problem 29. Finding a minimum cut Explain how to construct a minimum s -t cut given a
maximum s -t flow of a network. Hint: The answer is hidden in the proof of the min-cut max-
flow theorem.
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Network Flows II

The Ford-Fulkerson algorithm discussed in the last class takes time O (m F ), where F is the
value of the maximum flow, when all capacities are integral. This is fine if all edge capacities are
small, but if they are large numbers then this could even be exponentially large in the descrip-
tion size of the problem. In this lecture we examine some improvements to the Ford-Fulkerson
algorithm that produce much better (polynomial) running times regardless of the value of the
max flow or capacities.

Objectives of this lecture

In this lecture, we will:

- See an algorithm for max flow with polynomial running time (Edmonds-Karp)

- Analyze an even better algorithm for max flow that runs in polynomial time (Dinic’s)

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 26, Maximum Flow

- DPV, Algorithms, Chapter 7.2, Flows in Networks

12.1 Network flow recap
Recall that in the maximum flow proble, we are given a directed graph G , a source s , and a
sink t . Each edge (u , v ) has some capacity c (u , v ), and our goal is to find the maximum flow
possible from s to t . Last time we looked at the Ford-Fulkerson algorithm, which we used
to prove the min-cut max-flow theorem, as well as the integrality theorem for flows. The Ford-
Fulkerson algorithm is a greedy algorithm: we find a path from s to t of positive capacity and we
push as much flow as we can on it (saturating at least one edge on the path). We then describe
the capacities left over in a “residual graph”, which accounts for remaining capacity as well as
the ability to redirect existing flow (and hence “undo” bad previous decisions) and repeat the
process, continuing until there are no more paths of positive residual capacity left between s
and t . We then proved that this in fact finds the maximum flow.

Assuming capacities are integers, the basic Ford-Fulkerson algorithm could make up to F iter-
ations, where F is the value of the maximum flow. Each iteration takes O (m ) time to find a path
using DFS or BFS and to compute the residual graph. (We assume that every vertex in the graph
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is reachable from s , so m ≥ n −1.) So, the overall total time is O (m F ). This is fine if F is small,
like in the case of bipartite matching (where F ≤ n). However, it’s not good if capacities are
large and F could be very large. Here’s an example that could make the algorithm take a very
long time. If the algorithm selects the augmenting paths s → A→ B → t , then s → B → A→ t ,
repeating..., then each iteration only adds one unit of flow, but the max flow is 2101, so the algo-
rithm will take 2101 iterations. If the algorithm selected the augmenting paths s → A→ t then
s → B → t , it would be complete in just two iterations! So the question on our minds today is
can we find an algorithm that provably requires only polynomially many iterations?
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12.2 Shortest Augmenting Paths Algorithm (Edmonds-Karp)
There are several strategies for selecting better augmenting paths than arbitrary ones. Here’s
one that is quite simple and has a provable polynomial runtime. Its called the Shortest Aug-
menting Paths algorithm, or the Edmonds-Karp algorithm. The name of the algorithm might
give away a slight hint of what it does.

Algorithm: Shortest Augmenting Paths (Edmonds-Karp)

Edmonds-Karp implements Ford-Fulkerson by selecting the shortest augmenting path
each iteration.

Unsurprisingly, the Shortest Augmenting Paths (Edmonds-Karp) algorithm works by always
picking the shortest path in the residual graph (the one with the fewest number of edges). By
example, we can see that this would in fact find the max flow in the graph above in just two
iterations, but what can we say in general? In fact, the claim is that by picking the shortest
paths, the algorithm makes at most mn iterations. So, the running time is O (nm 2) since we
can use BFS in each iteration. The proof is pretty neat too.

Theorem: Runtime of Edmonds-Karp

The Shortest Augmenting Paths algorithm (Edmonds-Karp) makes at most mn itera-
tions.

Proof. Let d be the distance from s to t in the current residual graph. We’ll prove the result by
showing:

Claim (a): d never decreases Consider one iteration of the algorithm. Before adding flow to
the augmenting path, every vertex v in G has some distance dv from the source vertex s in the
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residual graph. Suppose the augmenting path consists of the vertices v1, v2, . . . vk . What can
we say about the distances of the vertices? Since the path is by definition a shortest path, it
must be true that dvi

= dvi−1
+ 1, that is, every vertex is one further from s . Now perform the

augmentation and consider what changes in the residual graph. Some of the edges (at least
one) become saturated, which means that the flow on the edge reaches its capacity. When this
happens, that edge will be removed from the residual graph. But another edge might appear
in the residual graph! Specifically, when e = (u , v ) is saturated, e ′ = (v, u ) may appear in the
residual graph as a back edge (if it doesn’t exist already). Can this lower the distance of any
vertex? No, dv = du +1, so adding an edge from v to u can’t make a shorter path from s to t .

Therefore, since the distance to any vertex can not decrease, d can not decrease.

Claim (b): every m iterations, d has to increase by at least 1 Each iteration saturates (fills
to capacity) at least one edge. Once an edge is saturated it can not be used because it will not
appear in the residual graph. For the edge to become usable again, it must be the case that its
back edge in the residual graph is used, which means that the back edge needs to appear on the
shortest path. However, if dv = du + 1, then it is not possible for the back edge (v, u ) to be on
a shortest path, so this can only occur if d increases. Since there are m edges, d must increase
by at least one every m iterations.

Since the distance between s and t can increase at most n times, in total we have at most nm
iterations.

This shows that the running time of this algorithm is O (nm 2). Note that this is true for any
capacities, including large ones and non-integer ones. So we really have a polynomial-time
algorithm for maximum flow!

12.3 Dinic’s Algorithm
The Edmonds-Karp algorithm already gives us polynomial runtime, but now we will try to do
better. The key idea is going to be to eliminate some redundancy in the Edmonds-Karp algo-
rithm. Here are two observations that can guide us towards a better algorithm. Let d be the
distance from s to t in the current residual graph:

- Our analysis above implies that there are up to mn iterations, but d can only increase n times,
so there could be up to m iterations for each value of d
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- The breadth-first search algorithm, which we use to find a shortest path, doesn’t only return
a single shortest path. It finds all of the distances in the graph from s , which means it encodes
every possible shortest path of length d .

So maybe we don’t actually need to do a BFS for every augmenting path. Could we do a BFS
and use the resulting information to find multiple shortest augmenting paths such that any
additional paths would contain at least one saturated edge and hence not be usable? That is
exactly the idea of Dinic’s algorithm.

12.3.1 The layered graph

Our tool for finding many shortest paths at once is going to be a way of visualizing all of the
shortest paths in the graph, called the layered graph. Suppose we run a BFS from s to compute
the shortest path distance dv for every vertex v ∈ V . By definition, d = dt . Now we visualize
the graph in the following way: lay out all of the vertices of distance one in a “layer”, followed
by all vertices of distance two, and so on. The following diagram illustrates the idea.

The layered graph L only includes the edges that go from one distance layer to the next higher
layer. Note that there can not exist any edges that go from a layer to a layer more than one
higher (because then the distance to that vertex would actually be lower than our layered graph
implies). There can be edges in the original graph that go from a vertex to a vertex in a lower
layer, but we ignore those because they can not be part of a shortest path.

Once we have build the layered graph, our goal is to find a set of paths in it such that we can
not find any more capcitated paths, i.e., we want to find a maximal set of shortest augmenting
paths. This general concept turns out to be extremely useful in the theory of network flow, so
it even has a name. Its called a blocking flow.
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12.3.2 Blocking flows

Definition: Blocking Flow

A blocking flow in a network H is a flow such that every path in H has at least one edge
that gets saturated (filled to capacity).

Another way to think of it is that a blocking flow is a collection of paths that saturate at least one
edge of every possible path in the network. Note that this is not the same thing as a maximum
flow! Every maximum flow is also a blocking flow, since otherwise there would exist an aug-
menting path, but not every blocking flow is a maximum flow. Blocking flows can be thought
of informally as “maximal flows”, i.e., they can not be made larger with any capacitated s − t
path. Yet another way to think of them is that a blocking flow is what you would get if you ran
Ford-Fulkerson but you forgot to include the back edges in the residual graph!

In the layered graph specifically, this means that we are looking for a collection of shortest paths
of length d such that after augmenting all of them, there are no more paths in the residual
graph of length d , which is exactly what we want. It completely “uses up” distance d . If we
find a blocking flow and augment along it, then d must increase, and hence we can only find n
blocking flows before we are done. Our goal is therefore reduced to designing a fast algorithm
for finding blocking flows!

12.3.3 An algorithm for blocking flows
We can compute the layered graph implicitly with a BFS from s in O (n +m ) time. Although it
doesn’t matter in theory, in practice, it is a nice optimization to realize that you don’t actually
have to make an explicit copy of the layered graph, rather, you can just read it out of the original
graph by ignoring all edges (u , v ) that don’t satisfy dv = du+1. In other words, the layered graph
is just the original graph but only counting edges that are actually on a shortest path from s .

Key Idea: Implicit layered graph

The layered graph is the subgraph of G f containing only (u , v ) that satisfy dv = du +1.

Once we have the layered graph, at a high level, we are just going to find augmenting paths in
it using DFS. How fast would this be with a naive implementation? Well, each DFS could cost
O (m ) and there could be up to m augmenting paths in a blocking flow since each of them satu-
rates one edge, so this could take O (m 2) time. This so far isn’t an improvement over Edmonds-
Karp since the whole algorithm would take O (nm 2) time to find up to n blocking flows. Some-
how we need to speed this up and make finding the augmenting paths in the blocking flow
more efficient.

Lets consider what actually happens during a DFS that is searching for an augmenting path
in the layered graph. The search has to follow two rules: It can only use edges in the layered
graph (i.e., dv = du +1) and the edge must not already be saturated, so f (u , v )< c (u , v ). Here’s
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a key idea. A successful augmenting path will always contain at most n − 1 edges, otherwise
there would be repeat vertices which is pointless. But the naive DFS could take O (n +m ) time,
why? Because it might visit a bunch of edges that end up not actually being part of the final
augmenting path, because the search reached a dead end.

Here’s a diagram illustrating the idea. Suppose the green path is the successful augmenting path
found. The red edges/paths represent unsuccessful branches of the DFS that did not manage
to find an unsaturated path to t . If the DFS could magically only take the correct branches
every time, it would take O (n ) and we would be very happy! So here’s the idea. Any time our
DFS finds an unsuccessful branch, like the ones marked in red above, we know that future DFS
iterations shouldn’t bother to try those paths, because they didn’t work last time and they won’t
work this time either! So, once an edge has been searched and found to be unsuccessful, we
can mark it as “dead” and never search it in future iterations.

12.3.4 Runtime analysis
Given the strategy above, we claim that we can find a blocking flow faster than the naive strat-
egy.

Theorem: Runtime of blocking flows

A blocking flow can be found in O (nm ) time.

Proof. First, we do a BFS to find all of the distances to each vertex and establish the layered
graph. This takes O (n +m ) time. Now, we do up to m DFS’s to find augmenting paths in the
layered graph. Naively, these take O (m ) time each and we are in trouble. Instead, we use the
strategy above of marking edges on unsuccessful search paths as “dead” and never search them
in a future DFS. Each edge in the graph can only be searched unsuccessfully once across all DFS
iterations, and the running time of each DFS is therefore

n +number of new edges marked dead
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Summing this up over m DFS’s, the total running time is

m
∑

i=0

�

n +number of new edges marked dead in iteration i
�

,

= nm +
m
∑

i=0

�

number of new edges marked dead in iteration i
�

,

= nm + total number of new edges ever marked dead,

= nm +m ,

= O (nm ).

What we have basically done here is an aggregate amortized analysis to show that the amortized
cost of each DFS in the blocking flow is at most O (n ). Therefore, we can find a blocking flow in
O (nm ) time.

Remark: Implementing the blocking flow algorithm

How should we actually implement the blocking flow algorithm in practice? Its not ob-
vious how we actually mark edges as “dead” during a search. We could copy the entire
graph and then delete the edges that are marked dead from the adjacency list, but this
is quite inefficient since it requires (a) copying the entire graph and (b) deleting edges
from the adjacency list is not efficient if it is stored as an array-based list, so we’d have
to use a linked list, BST, or dynamic hash table. Here’s a common alternative that can
be used to get a fast and practical implementation. For each vertex, store a counter that
marks the index of the current edge that we are searching from.

When the search arrives at vertex v , search from c u r r e n t _e d g e [v ] and if successful,
do not modify c u r r e n t _e d g e [v ] (it may still be useful to use the same edge again in
the next augmenting path if it is not yet saturated). If the edge is saturated, or the search
is unsuccessful and backtracks, then increment c u r r e n t _e d g e [v ], which marks the
edge as dead, and continue searching from the next edge.

By using this algorithm for blocking flows, we get an algorithm for max flow in O (n 2m ) time,
which is an improvement over Edmonds-Karp’s O (nm 2).

12.4 Dinic’s algorithm for unit-capacity graphs
A remarkable thing about Dinic’s algorithm is that it seems to perform really well in practice –
much better than the O (n 2m )bound would suggest. In fact, we can prove that for many classes
of common real-world graphs, it is actually asymptotically faster!
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Lemma 12.1: Finding a blocking flow in a unit-capacity graph

If every edge in the graph has capacity one, then a blocking flow can be found in O (m )
time.

Proof. First note that the unit capacity property is preserved in all residual graphs. We now
just make a slight modification to the analysis above. Previously, we said that there can be up
to O (m ) augmenting paths, and each of them is at most n − 1 edges long, so the total runtime
of finding a blocking flow was O (nm ) (the total length of all the augmenting paths), plus the
cost of visiting the dead-end edges at most once which was O (m ). We can be tighter when the
edges are all unit capacity.

Since the edges have capacity one, no edge can be used in multiple augmenting paths (they
will all be edge disjoint now), so the total length of all augmenting paths is at most m . The cost
of finding the blocking flow is the sum of the lengths of the augmenting paths, which is m , plus
the cost of visiting the dead-end edges, which is an additional O (m ), so the whole blocking flow
takes O (m ).

Lemma 12.1 shows that in unit-capacity graphs, we can therefore find the max flow in at most
O (mn ) time since we need at most n blocking flows. It turns out that we’re not done and we
can still improve more!

Lemma 12.2: Number of blocking flows in a unit-capacity graph

If every edge in the graph has capacity one, then we need at most 2
p

m blocking flows.

Proof. Let us consider the state of the residual network after k blocking flows have been found,
for any arbitrary value of k . At this point, d must be at least k since each blocking flow increases
the distance. Now we ask, what is the max flow of this residual graph, i.e., how much more flow
can we augment in the graph before we hit the max flow? Well, since the distance is currently at
least k , every augmenting path has length at least k , and there are m total edges in the graph.
Since the edges are unit capacity, each can only be used in one path, so we can form at most
m/k augmenting paths. Each augmenting path has capacity one, and hence the max flow in
the residual network is at most m/k .

Since each blocking flow adds at least one unit of flow, this means that we need at most m/k
additional blocking flows. Since we have already done k blocking flows, the total number of
blocking flows across the whole algorithm is at most

k +
m

k
.

Now what was k again? Well it could be any arbitrary constant we like, so if we can pick k to
minimize this expression, we get a good bound on the number of blocking flows needed. We
could do calculus to find the minimum, but that’s too hard, so here’s an easier trick that is quite
a nice one to know. We want to minimize the sum of a term that is increasing with k and a term
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that is decreasing with k . Asymptotically (within a factor of two), we can minimize such an
expression by finding when they are equal1. So when k =m/k , we have k =

p
m , and therefore

number of blocking flows is at most 2
p

m .

This shows that on a unit-capacity network, Dinic’s algorithm runs in time O (m
p

m ). For
sparse graphs (m = Θ(n )), this is an improvement over O (nm ). For dense graphs (m = Θ(n 2)),
it is about the same.

1This trick works because f (k ) + g (k ) ≤ 2 max( f (k ), g (k )), and the maximum is minimized when the two are
equal.
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Lecture 13

Minimum-cost Flows

We have discussed max flows, min cuts, their applications, and several algorithms for it. Today,
we consider a generalization of max flow called minimum-cost flows, where edges have costs
as well as capacities, and the goal is to find flows with low cost. This problem has a lot of nice
theoretical properties, and is also highly practical since it generalizes the max flow problem.
We will give two algorithms for the problem that illustrate a nice duality in algorithm design.

Objectives of this lecture

In this lecture, we will:

- Define and motivate the minimum-cost flow problem

- Analyze the properties of minimum-cost flows such as how to determine when they
are optimal

- Derive and analyze some algorithms for minimum-cost flows

13.1 Minimum-Cost Flows
We talked about the problem of assigning groups to time-slots where each group had a list
of acceptable versus unacceptable slots. This was the bipartite matching problem. A natural
generalization is to ask: what about preferences? E.g, maybe group A prefers slot 1 so it costs
only $1 to match to there, their second choice is slot 2 so it costs us $2 to match the group here,
and it can’t make slot 3 so it costs $infinity to match the group to there. And, so on with the
other groups. Then we could ask for the minimum-cost perfect matching. This is a perfect
matching that, out of all perfect matchings, has the least total cost.

The generalization of this problem to flows is called the minimum-cost flow problem.

Problem: Minimum-cost flow

We are given a directed graph G where each edge has a cost, $(e ), and a capacity, c (e ).
As before, an s -t flow is an assignment of values to edges that satisfy the capacity and
conservation constraints, and the value of a flow is the net outflow of the source s . The
cost of a flow is then defined as the sum over all edges, of the cost per unit of flow:

cost( f ) =
∑

e∈E

$(e ) f (e ).
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Remark: Cost is per unit of flow

Note importantly that the cost is charged per unit of flow on each edge. That is, we are
not paying a cost to “activate” an edge and then send as much flow through it as we like.
This similar problem turns out to be NP-Hard.

The goal of the minimum-cost flow problem is to find feasible flows of minimum possible cost.
There are a few different variants of the problem.

- We will consider the minimum-cost maximum flow problem, where we seek to find the
minimum-cost flow out of all possible maximum flows.

- An alternative formulation is to try to find the minimum-cost flow of value k for some given
parameter k , rather than a maximum flow.

These problems can be reduced to each other so they are all equivalent. There are also many
other variants of the problem, but we won’t consider those for now. Formally, the min-cost max
flow problem is defined as follows. Our goal is to find, out of all possible maximum flows, the
one with the least total cost. What should we assume about our costs?

- In this problem, we are going to allow negative costs. You can think of these as rewards or
benefits on edges, so that instead of paying to send flow across an edge, you get paid for it.

- What about negative-cost cycles? It turns out that minimum-cost flows are still perfectly well
defined in the presence of negative cycles, so we can allow them, too! Some algorithms for
minimum-cost flows however don’t work when there are negative cycles, but some do. We
will be explicit about which ones do and do not.

Min-cost max flow is more general than plain max flow so it can model more things. For exam-
ple, it can model the min-cost matching problem described above.

13.1.1 The residual graph for minimum-cost flows
Let’s try to re-use the tools that we used to solve maximum flows for minimum-cost flows. Re-
member that our key most important tool there was the residual graph, which we recall has
edges with capacities

c f (u , v ) =

¨

c (u , v )− f (u , v ) if (u , v ) ∈ E ,

f (v, u ) if (v, u ) ∈ E .

We will re-use the residual graph to attack minimum-cost flows. We need to generalize it,
though, because our current definition of the residual graph has no ideas about the costs of the
edges. For forward edges e in the residual graph (i.e., those corresponding to e = (u , v ) ∈ E ),
the intuitive value to use for their cost is $(e ), the cost of sending more flow along that edge.
What about the reverse edges, though? That’s less obvious. Let’s think about it, when we send
flow along a reverse in the residual graph, we are removing or redirecting the flow somewhere
else. Since it cost us $(e ) per unit to send flow down that edge initially, when we remove flow
on an edge, we can think of getting a refund of $(e ) per unit of flow – we get back the money
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that we originally paid to put flow on that edge. Therefore, the right choice of cost for a reverse
edge in the residual graph is −$(e ), the negative of the cost of the corresponding forward edge!

Definition: The residual graph for minimum-cost flows

The residual graph G f for a minimum-cost flow problem has the same capacities as the
original maximum flow problem, but now has costs of $(e ) on a forward edge, and−$(e )
on a back edge. That is, suppose we denote by

←
e , the corresponding reverse edge of e in

the residual graph. We have

c f (e ) = c (e )− f (e ),

c f (
←
e ) = f (e )

$ f (e ) = $(e ),

$ f (
←
e ) =−$(e )

The definitions on the left are the same as regular max flow.

13.2 An augmenting path algorithm for minimum-cost
flows

Now that we have defined a suitable residual graph for minimum-cost flows, we can build an
algorithm based on augmenting paths in the same spirit as Ford-Fulkerson. If we just try to
pick arbitrary augmenting paths, then it is unlikely that we will find the one of minimum cost,
so how should we select our paths in such a way that the costs are accounted for? The most
intuitive idea would be to select the cheapest augmenting path, i.e., the shortest augmenting
path with respect to the costs as the edge lengths. This is not to be confused with the shortest
augmenting path algorithm that selects the path with the fewest edges (i.e., the Edmonds-Karp
algorithm).

Since the edges are weighted by cost, a breadth-first search won’t work anymore. How about
our favorite shortest paths algorithm, Dijkstra’s? Well, that won’t quite work since the graph is
going to have negative edge costs (note that even if the input graph does not have any negative
costs, the residual graph will, so Dijkstra’s will not work here). So, let’s use our next-favorite
shortest paths algorithm that is capable of handling negative edges: Bellman-Ford! It is impor-
tant to note here that since the algorithm makes use of shortest path computations, if there is
a negative-cost cycle, this algorithm will not work.

Algorithm: Cheapest augmenting paths

Implement Ford-Fulkerson by selecting the cheapest augmenting path with respect to
residual costs.

While there exists any augmenting path in the residual graph G f , find the augmenting path
with the cheapest cost and augment as much flow as possible along that path. Since this is just
a special case of Ford-Fulkerson, the fact this algorithm finds a maximum flow is immediate,
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right? Well, not quite. Remember that since shortest paths only exist if there is no negative-cost
cycle, we need to prove that our algorithm never creates one after performing an augmentation,
or the next iteration’s shortest path computation will fail.

This result will be a direct corollary of a cool lemma. This lemma should seem familiar and
intuitive since it is really just the weighted version of the lemma used to prove the correctness
of the Edmonds-Karp algorithm last time!

Lemma 13.1: Cheapest path does not decrease

Consider a flow network with costs G and a flow f such that G f contains no negative-
cost cycles. The cost of the cheapest path from s to t in G f does not decrease after
augmenting f with a cheapest augmenting path.

Proof. Let G be a flow network with costs and f be a flow such that G f contains no negative-
cost cycles. Let us denote by c (v ), the cost of the cheapest path in G f from s to v for any v .
Suppose we augment f with a cheapeast augmenting path to obtain a new flow f ′ and denote
by c ′(v ), the cheapest path from s to v in G f ′ .

Suppose for the sake of contradiction that c ′(t ) < c (t ), i.e., the cost of the cheapest s − t path
has decreased. Let v be the earliest vertex on the cheapest s − t path such that c ′(v ) < c (v ),
and let u be the vertex preceding v on the path. Since u precedes v on the path, the cost of v
is c ′(v ) = c ′(u ) +$ f ′ (u , v ).

Since v is the earliest vertex on the path with c ′(v ) < c (v ), we know that c ′(u ) ≥ c (u ) (it might
be greater because an edge that was previously on the cheapest path got saturated), so

c ′(v )≥ c (u ) +$ f ′ (u , v ).

Now, if (u , v ) had the same residual cost before the augmentation (i.e., $ f ′ (u , v ) = $ f (u , v )),
then c ′(v ) ≥ c (u ) + $ f (u , v ) ≥ c (v ), which would contradict c ′(v ) < c (v ), so it must be that the
residual cost of (u , v ) changed. This means that the augmenting path must have used (v, u )
and activated the corresponding back edge (u , v ). Therefore $ f ′ (u , v ) =−$ f (v, u ).

So, we have c ′(v )≥ c (u )−$ f (v, u ), however, in G f note that since c (u ) = c (v )+$ f (v, u ), we also
have c (v ) = c (u )−$ f (v, u ), which would imply that c ′(v )≥ c (v ), a contradiction.
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Corollary 13.1: Maintenance of minimum-cost flows

If G f contains no negative-cost cycles, then after augmenting with a cheapest augment-
ing path, it still contains no negative-cost cycles.

Proof. If there were a negative-cost cycle, then we could use that cycle to create paths of arbi-
trarily low cost, which would immediately imply that the cheapest path to t would be cheaper
than before (or undefined).

So, we have successfully proven that the algorithm will terminate, and since it is a special case
of Ford-Fulkerson, we already know that it terminates with a maximum flow! We can also argue
about the runtime using the same logic that we used for Ford-Fulkerson. At every iteration of
the algorithm, at least one unit of flow is augmented, and every iteration has to run the Bellman-
Ford algorithm which takes O (nm ) time. Therefore, the worst-case running time of cheapest
augmenting paths is O (nm F ), where F is the value of the maximum flow, assuming that the
capacities are integers.

What we still have to prove, however, is that this algorithm truly finds a minimum-cost flow.

13.3 An optimality criteria for minimum-cost flows
When studying maximum flows, our ingredients for proving that a flow was maximum were
augmenting paths and the minimum cut. We’d like to find a similar tool that can be used to
prove that a minimum-cost flow is optimal. First, let’s be specific about what we mean by op-
timality.

Definition: Cost optimality of flows

We will say that a flow f is cost optimal if it is the cheapest of all possible flows of the
same value.

That is to say we don’t compare the costs of different flows if they have different values. Our
goal is to find a tool to help us analyze the cost optimality of a flow. To do so, we’re going to
think about what kinds of operations we can do to modify a flow and change its cost without
changing its value.

When finding maximum flows, our key tool was the augmenting path. If there existed an aug-
menting path in G f , then by adding flow to it, we could transform a given flow into a more
optimal one that was still feasible because adding flow to an s -t path preserved the flow con-
servation condition, and didn’t violate the capacity constraint as long as we added an appro-
priate amount of flow. Therefore, the existence of an augmenting path proved that a flow was
not maximum, and we were able to later prove that the lack of existence of an augmenting path
was sufficient to conclude that a flow was maximum. We want to discover something similar
for cost optimality of a flow. Augmenting paths were just one way to modify a flow while keep-
ing it feasible. I claim that there is one other way that we can modify a flow while still preserving
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feasibility, but that also doesn’t change its value. Instead of adding flow to an s -t path, what if
we instead add flow to a cycle in the graph? Let’s call this an augmenting cycle.

Since a cycle has an edge in and an edge out of every vertex, adding flow to a cycle in the residual
graph preserves flow conservation, and hence feasibility. Furthermore, since the same amount
of flow goes in and out of each vertex, the flow value is unaffected! However, adding flow to a
cycle may in fact change the cost of the flow, which is what we wanted! Suppose the costs of
the edges e1, e2, ..., ek on the cycle are $1, $2, ..., $k for some cycle of length k . Then, adding ∆
units of flow to the cycle will change the cost by

k
∑

i=1

∆ ·$i =∆ ·
k
∑

i=1

$i .

Now, note that
∑

$i is just the weight of the cycle! So, we can say that if we add∆ units of flow
to a cycle of weight W , then the cost of the flow changes by∆ ·W . If∆ ·W is negative, then we
have just shown that the cost of the flow can be decreased, so it wasn’t optimal!

It turns out that this is the key ingredient for analyzing minimum-cost flows. Even better, we are
getting a two-for-one deal because a lack of negative-cost cycles was what we already argued
was required for our cheapest augmenting path algorithm to produce a maximum flow. It turns
out that this same condition allows us to prove that the flow is cost optimal.

Theorem 13.1: Cost optimality and negative cycles

A flow f is cost optimal if and only if there is no negative-cost cycle in G f .

Proof. We pretty much already proved the first direction in the previous paragraph. Suppose
that there exists a negative cost cycle in the residual graph. Then by adding flow to this cycle,
the value of the flow doesn’t change, but the cost changes by ∆ ·W , where ∆ is the amount of
flow we can add, and W is the cost/weight of the cycle. Since W is negative, the cost decreases,
and hence the flow f was not cost optimal.

Now suppose that a flow f is not cost optimal. We need to prove that there exists a negative-
cost cycle in its residual graph G f . This case is much trickier. Since f is not cost optimal, there
exists some other flow f ′ of the same value but which has a cheaper cost. Let’s now consider
the flow f ′− f . Hang on, what does this even mean? Let’s work that out. For each edge (u , v ),
consider two cases:

- if f ′(u , v )− f (u , v )≥ 0, then we will say that (u , v ) has f ′(u , v )− f (u , v ) flow,

- if f ′(u , v )− f (u , v )< 0, then we will say that (v, u ) has a flow of f (u , v )− f ′(u , v ).
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Lets try to make this clearer with an example. Here is a network with two flows: red, above; and
green, below, such that the two overlap on the path from s to u and v to t , but take a different
path from u to v . Suppose they both have value one. If we take the difference of these flows,
then the flows from s to u and v to t cancel, but the flow from u to v gets reversed, so we end
up with the following.

We’ve created a flow that just contains a cycle! Now the claim is that this is what always happens:
the difference between two flows of the same value is a collection of (possibly multiple) cycles.
But how would we prove this, and how do we know that it is even a valid flow? Well, since
both f ′ and f are feasible flows, they satisfy the flow conservation property, and hence their
difference f ′− f also satisfies the flow conservation property (for example, if some vertex has
5 flow in and out in f ′ and 3 flow in and out in f , then their difference has 2 flow in and out).
What is the value of this flow? By assumption, the values of f ′ and f are the same, hence their
net flows out of s are the same. By taking the difference between the two, we can see that the
net flow out of s in f ′− f is actually zero. So, we have a flow of value zero, but it isn’t the all-zero
flow, so what does this look like? Well, every vertex including the source and sink have flow in
equal to flow out, which means that the flow is indeed a collection of cycles. For this reason,
such a flow is often called a circulation.

What about capacity constraints? Actually, it looks like this flow might not satisfy the capacity
constraints of G , because it could send flow along a reverse edge that doesn’t even exist in G .
What actually matters to us is that f ′ − f is a valid flow in the residual graph G f . If f ′(e )−
f (e ) ≥ 0, then the forward edge e has flow f ′(e )− f (e ) ≤ c (e )− f (e ) which is the definition of
the residual capacity c f (e ). Alternatively, if f ′(e )− f (e ) < 0, then the reverse edge e⃗ has flow
f (u , v )− f ′(u , v ) ≤ f (u , v ), which is the definition of the residual capacity of c f (e⃗ ). Therefore,
f ′− f is a feasible flow in the residual graph!

Lastly, we should think about the cost of this flow. Some algebra will show us that

cost( f ′− f ) = cost( f ′)− cost( f ).

Since we assumed that cost( f ′)< cost( f ), this must be a negative cost. So, we have a collection
of cycles of flow whose total cost is negative, therefore at least one of those cycles must have a
negative cost. Since f ′− f is feasible in the residual graph, this negative-cost cycle exists in the
residual graph.
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Corollary: Optimality of cheapest augmenting paths

Since we already argued in Corollary 13.1 that the cheapest augmenting path algorithm
never creates a negative-cost cycle in the residual graph, this proves that the resulting
flow is also cost optimal. Therefore we can conclude that the cheapest augmenting path
algorithm successfully finds the minimum-cost maximum flow!

13.4 Cycle canceling: Another algorithm for min-cost flow

Finally, lets talk about another algorithm for minimum-cost flows that demonstrates a really
nice duality in algorithm design. We’re going to derive and analyze an algorithm that solves the
min-cost flow problem in rather the “opposite” way to the cheapest augmenting paths problem.

At a high level, the cheapest augmenting paths algorithm works by beginning with a flow that
is cost optimal (the all zero flow, assuming no negative-cost cycles) but not maximum, and
then iteratively making the flow more maximum via augmenting paths while maintaining the
invariant that it is always cost optimal. What if we did the opposite and started with a flow that
is maximum but not cost optimal, and then iteratively made it cheaper while maintaining the
invariant that it is maximum? That is the idea of cycle canceling.

Recall that a flow is maximum if and only if there are no augmenting paths (we proved this
implicitly while analyzing the Ford-Fulkerson algorithm). Theorem 13.1 gives an analogous
tool for cost optimality. A flow is cost optimal if and only if it has no negative cycles. So, just
like the Ford-Fulkerson algorithm works by identifying augmenting paths and adding flow to
them until none exist, we can write an algorithm that does the same but for negative-cost cycles.
We just need an algorithm that finds a negative-cost cycle or reports that none exist. Luckily,
the Bellman-Ford algorithm does exactly this. If the algorithm finds a negative cycle, it can use
it as an augmenting cycle to to decrease the cost of the flow. Remember that adding flow to a
cycle maintains feasibility, doesn’t affect the flow value, and if the cost of the cycle is negative,
it results in a decrease to the cost of the flow.

Algorithm: Cycle-canceling for minimum cost flows

find a maximum flow f with any max flow algorithm
while there exists a negative−cost cycle in G f

augment the maximum possible amount of flow along the cycle

A great thing about this is that we don’t really need to do any more analysis either. Theorem 13.1
immediately proves that this algorithm, if it terminates, is correct. Another huge plus of this
algorithm is that it works even when there are negative-cost cycles in the original graph!
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Remark: Minimum-cost flow with negative-cost cycles

Unlike the cheapest augmenting path algorithm, the cycle-canceling algorithm works
when the input graph has negative-cost cycles!

How can we prove that it terminates? Well, lets proceed similarly to Ford-Fulkerson where we
simplify a bit and assume that the costs are all integers. If so, every augmenting cycle lowers
the cost by at least one, so as long as the problem is well defined (the minimum cost is finite),
the algorithm will eventually terminate!

Theorem: Running time of cycle canceling

Assume that the graph has integer capacities between 1 and U , and integer costs be-
tween −C and C . Then the cycle-canceling algorithm runs in O (nm 2U C ).

Proof. Then, the maximum possible cost of any flow is
∑

e∈E

c (e )max(0, $(e ))≤U C m ,

Since the minimum cost could be negative, the cycle-canceling algorithm could take up to
2U C m iterations. Each iteration takes O (nm ) time with Bellman-Ford, so the total runtime
is at most O (nm 2U C ).

Just like we improved the Ford-Fulkerson algorithm from non-polynomial time to polynomial
time by picking better augmenting paths rather than arbitrary ones, the cycle canceling algo-
rithm can also be improved to polynomial time by picking better cycles rather than arbitrary
ones, but we don’t have time to cover the details here. There are also other techniques for solv-
ing minimum-cost flow problems in polynomial time and for non-integer capacities and costs,
so just know that it can be done even though we won’t cover how.
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Lecture 14

Matrix Games

Today, we’ll talk about game theory and some of its connections to computer science. Game
theory is the study of how people behave in social and economic interactions, and how they
make decisions in these settings. It is an area originally developed by economists, but given its
general scope, it has applications to many other disciplines, including computer science.

Objectives of this lecture

In this lecture, we will:

- Define two-player zero-sum games, and the concept of minimax-optimal strategies.

- Some techniques for solving two-player zero-sum games.

- See the connection of two-player zero-sum games to randomized algorithms.

14.1 Introduction to Game Theory
A clarification at the very beginning: a game in game theory is not just what we traditionally
think of as a game (chess, checkers, poker, tennis, or football), but is much more inclusive —
a game is any interaction between parties, each with their own interests. And game theory
studies how these parties make decisions during such interactions.1

Since we very often build large systems in computer science, which are used by multiple users,
whose actions affect the performance of all the others, it is natural that game theory would
play an important role in many CS problems. For example, game theory can be used to model
routing in large networks, or the behavior of people on social networks, or auctions on Ebay,
and then to make qualitative/quantitative predictions about how people would behave in these
settings.

In fact, the two areas (game theory and computer science) have become increasingly closer to
each other over the past two decades — the interaction being a two-way street — with game-
theorists proving results of algorithmic interest, and computer scientists proving results of in-
terest to game theory itself.

1Robert Aumann, Nobel prize winner, has suggested the term “interactive decision theory” instead of “game
theory”.
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14.2 Definitions and Examples
In a game, we have

- A collection of participants, often called players.

- Each player has a set of choices, called actions, from which players choose about how to play
(i.e., behave) in this game.

- Their combined behavior leads to payoffs (think of this as the “happiness” or “satisfaction
level”) for each of the players.

In this lecture we’ll consider a class of games called matrix games. These games are powerful
enough to model interesting problems, but also amenable to theoretical analysis. These involve
just two players, and a payoff matrix.

14.2.1 The Shooter-Goalie Game
This game abstracts what happens in a game of soccer, when some team has a penalty shot.
There are two players in this game. One called the shooter, the other is called the goalie.

The shooter has two choices: either to shoot to her left, or shoot to her right. The goalie has
two choices as well: either to dive to the shooter’s left, or to the shooter’s right. Hence, in this
case, both the players have two actions, denoted by the set {L,R}.2

Now for the payoffs. If both the shooter and the goalie choose the same strategy (say both
choose L, or both choose R) then the goalie makes a save. Note this is an abstraction of the
game: for now we assume that the goalie always makes the save when diving in the correct
direction. This brings great satisfaction for the goalie, not so much for the shooter. On the
other hand, if they choose different strategies, then the shooter scores the goal (again, we are
modeling a perfect shooter). This brings much happiness for the shooter, but the goalie is dis-
appointed.

Being mathematically-minded, suppose we say that the former two choices lead to a payoff of
+1 for the goalie, and −1 for the shooter. And the latter two choices lead to a payoff of −1 for
the goalie, and+1 for the shooter. We can write it in a matrix (called the payoff matrix M ) thus:

goalie

L R

shooter
L (−1, 1) (1,−1)

R (1,−1) (−1, 1)

The rows of the game matrix are labeled with actions for one of the players (in this case the
shooter), and the columns with the actions for the other player (in this case the goalie). The

2Note carefully: we have defined things so that left and right are with respect to the shooter. From now on, when
we say the goalie dives left, it should be clear that the goalie is diving to the shooter’s left.
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entries are pairs of numbers, indicating who wins how much: e.g., theL,L entry contains (−1, 1),
the first entry is the payoff to the row player (shooter), the second entry the payoff to the column
player (goalie). In general, the payoff is (r, c ) where r is the payoff to the row player, and c the
payoff to the column player.

In this case, note that for each entry (r, c ) in this matrix, the sum r +c = 0. Such a game is called
a zero-sum game. The zero-sum-ness captures the fact that the game is the amount that one
player wins is the amount that the other player loses. (Matrix games that are not zero-sum are
discussed in section 14.6 of these notes.)

Note that being zero-sum does not mean that the game is “fair” in any sense—a game where
the payoff matrix has (1,−1) in all entries is also zero-sum, but is clearly unfair to the column
player.

Lastly, for 2-player games, we will define the row-payoff matrix R which consists of the pay-
offs to the row player, and the column-payoff matrix C consisting of the payoffs to the column
player. The tuples in the payoff matrix M contain the same information, i.e.,

Mi j = (Ri j , Ci j ).

The game being zero-sum now means that R = −C , or R +C = 0. In the example above, the
matrix R is

goalie

L R

shooter
L −1 1

R 1 −1

Note that the row payoff matrix R has all of the information about the game, since we can
deduce the column player’s payoff by taking the negative of the row player’s payoff. We will
generally omit the C values when writing a matrix for a zero-sum game.

14.2.2 Pure and Mixed Strategies
Now given a game with payoff matrix M , the two players have to choose strategies, i.e., decide
how to play.

One strategy would be for the row player to decide on a row to play, and the column player to
decide on a column to play. Say the strategy for the row player was to play row I and the column
player’s strategy was to play column J , then the payoffs would be given by the tuple (RI J , CI J )
in location I , J :

payoff RI J to the row player, and CI J to the column player

In this case both players are playing deterministically. (E.g., the goalie decides to always go left,
etc.) A strategy that decides to play a single action is called a pure strategy.
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Definition: Pure strategy

A pure strategy for a player is one in which the player deterministically selects a single
action to always play, e.g., always shoot left.

But as will become obvious vary soon, pure strategies in these games are not what we play. We
are trying to compete with the worst adversary, and we may like to “hedge our bets”. Hence
we may use a randomized algorithm: e.g., the players dive/shoot left or right with some prob-
ability, or when playing the classic game of Rock-Paper-Scissors the player choose one of the
options with some probability. This is called a mixed strategy

Definition: Mixed strategy

A mixed strategy for a player consists of a non-negative real probability pi for each action
such that

∑

i pi = 1, i.e., a probability distribution over the actions for the player.

When talking about a pair of mixed strategies (one for the row player and one for the column
player), we will usually write pi for each row, such that

∑

i pi = 1 for the row player, and similarly,
a qi ≥ 0 for each column, such that

∑

i qi = 1 for the column player. The probability distribu-
tions p, q are called the mixed strategies for the row and column player respectively. And then
we look at the expected payoff

Claim: Expected payoff

The expected payoff to the row player is

VR (p, q) :=
∑

i , j

Pr[row player plays i and column player plays j ] ·Ri j =
∑

i j

pi q j Ri j ,

and the expected payoff to the column player is

VC (p, q) :=
∑

i , j

pi q j Ci j

This being a two-player zero-sum game, we know that VR (p, q) =−VC (p, q), so we will just men-
tion the payoff to one of the players (say the row player). For instance, if p = (0.5, 0.5) and
q = (0.5, 0.5) in the shooter-goalie game, then VR = 0, whereas p = (0.75, 0.25) and q = (0.6, 0.4)
gives VR = 0.45−0.55=−0.1.

14.2.3 Minimax-Optimal Strategies
What does the row player want to do? She wants to find a vector p⋆ that maximizes the expected
payoff to her, over all choices of the opponent’s strategy q. The mixed strategy that maximizes
the minimum payoff.
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Definition: Lower bound for the row player

Consider a strategy p for the row player. After picking p we then allow the column player
to pick q, the best strategy for the column player who knows the row player is playing p.
So we write:

lb(p) :=min
q

VR (p, q)

This is the minimum amount that the row player is guaranteed to achieve using strategy
p. We can then define:

lb∗ :=max
p

lb(p)

which is the highest possible lower bound over all row strategies.

Make sure you parse this correctly:

lb∗ :=

mixed strategy that maximizes
the minimum expected payoff
︷ ︸︸ ︷

max
p

min
q

VR (p, q)
︸ ︷︷ ︸

payoff when opponent
plays the optimal response

against our choice p

Loosely, the row player can guarantee to herself this much payoff no matter what the column
player does. The quantity lb is a lower bound on the row-player’s payoff.

What about the column player? She wants to find some q⋆ that maximizes her own expected
payoff, over all choices of the opponent’s strategy p. She wants to optimize

max
q

min
p

VC (p, q)

But this is a zero-sum game, so this is the same as

max
q

min
p
(−VR (p, q))

And pushing the negative sign through, we get the column player is trying to optimize her own
worst-case payoff, which is

−min
q

max
p

VR (p, q)

So the payoff in this case to the row player is
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Definition: Upper bound for the row player

Consider a strategy q for the column player. After picking q we then allow the row player
to pick p, the best strategy for the row player who knows the column player is playing p.
So we write:

ub(q) :=max
p

VR (p, q)

This is the maximum amount that the row player can achieve, given that the column
player is using strategy q. We can then define:

ub∗ :=min
q

ub(q)

which is the lowest possible upper bound over all column strategies.

The column player can guarantee that the row player does not get more than ub∗ in payoff, no
matter what the row-player does. This is an upper bound on the row player’s payoff.

Claim 14.1: Lower bounds are below upper bounds

For any p and any q we have:

lb(p) ≤ ub(q)

Proof. The left hand side is an amount that the row player can achieve. The right hand side is
an amount that the row player cannot exceed. The result follows.

This is a very useful approach, as we’ll see later. In order to actually evaluate a game we’ll find
two strategies p and q such that lb(p) = ub(q), which will be the value of the game.

Now we can make a powerful observation which will make it much easier to actually evaluate
these lower and upper bounds.

Claim 14.2: A pure response is optimal

To evaluate the lb(p)we can assume that the column player plays a pure strategy.
That is:

lb(p) = min
q

VR (p, q) = min
j

∑

i

pi Ri , j

Proof. Once the row player fixes a mixed strategy p, the column player then has no reason
to randomize: her payoffs will be some average of the payoffs from playing the individual
columns, so she can just pick the best column for her.
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More fomally we have:

lb(p) = min
q

VR (p, q) = min
q

∑

i , j

pi q j Ri , j

= min
q

∑

j

q j

�

∑

i

pi Ri , j

�

= min
j

∑

i

pi Ri , j

The last equation follows because the term in parentheses is just a function of j . It is the value
of column j to the row player. So the optimum choice for q is to have q j = 1 for the index j
where formula in parentheses is minimum, and zero for other indices.

Corollary: Alternate definition for upper and lower bounds

The quantity lb∗ can be equivalently defined as

lb∗ =max
p

min
j

∑

i

pi Ri j .

Similarly ub∗ can be written as

ub∗ =min
q

max
i

∑

j

q j Ri j .

The Shooter-Goalie Game Example

For the shooter-goalie game, we claim that the minimax-optimal strategies for both players is
(0.5, 0.5).

Example: Lower and upper bounds for the shooter-goalie game

Row Player: For the row player (shooter), suppose p = (p1, p2) is the mixed strategy. Note that
p1 ≥ 0, p2 ≥ 0 and p1+p2 = 1. So it is easier to write the strategy as p= (p , 1−p )with p ∈ [0, 1].

OK. If the column player (goalie) plays L, then this strategy gets the shooter a payoff of

p · (−1) + (1−p ) · (1) = 1−2p .

If the column player (goalie) plays R, then this strategy gets the shooter a payoff of

p · (1) + (1−p ) · (−1) = 2p −1.

So we want to choose some value p ∈ [0, 1] to maximize

lb(p ) =min(1−2p , 2p −1)

In this case, this maximum is achieved at p = 1/2. (One way to see it is by drawing these two
lines.) And the minimax-optimal expected payoff to the shooter is lb∗ = 0.
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Column Player: The calculation for the column player (goalie) is similar in this case. We let q be
the probability of the goalie going left, and 1−q the probability of going right.

ub(q ) =max(1−2q , 2q −1)

We take the minimum of this for q ∈ [0, 1]. This is achieved at q = 1/2, and the value is 0, so
ub∗ = 0.

An observation: the shooter can guarantee a payoff of lb∗ = 0, and the goalie can guarantee
that the shooter’s payoff is never more than ub∗ = 0. Since lb= ub, in this case the “value of the
game” is said to be lb= ub= 0.

An Asymmetric Goalie Example

Let’s change the game slightly. Suppose the goalie is weaker on the left. For example, what
happens if the payoff matrix is now:

goalie

L R

shooter
L − 1

2 1

R 1 −1

Example: Asymmetric shooter-goalie game

Row Player: For the row player (shooter), suppose p = (p , 1−p ) is the mixed strategy, with p ∈
[0, 1]. If the column player (goalie) plays L, then this strategy gets the shooter a payoff of

p · (−1/2) + (1−p ) · (1) = 1− (3/2)p .

If the column player (goalie) plays R, then this strategy gets the shooter a payoff of

p · (1) + (1−p ) · (−1) = 2p −1.

So we want to choose some value p ∈ [0, 1] to maximize

lb(p ) =min(1− (3/2)p , 2p −1)

In this case, this maximum is achieved at p = 4/7. And the minimax-optimal expected payoff to
the shooter is lb∗ = 1/7. Note that the goalie being weaker means the shooter’s payoff increases.

Column Player: What about the calculation for the column player (goalie)? If her strategy is
q= (q , 1−q )with q ∈ [0, 1], then if the shooter plays L then the shooter’s payoff is

q · (−1/2) + (1−q ) · (1) = 1− (3/2)q .

If she plays R, then it is 2q −1. So the goalie will try to minimize

ub(q ) =max(1− (3/2)q , 2q −1)

which will again give (4/7, 3/7) and guarantees that the expected loss is never more than ub∗ =
1/7.
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Again, the shooter guarantees a payoff of lb∗ = 1/7, and the goalie can guarantee that the
shooter’s payoff is never more than ub∗ = 1/7. In this case the value of the game is said to
be lb∗ = ub∗ = 1/7.

Problem 30. What if both players have somewhat different weaknesses? What if the payoffs
are:





− 1
2

3
4

1 − 3
2





Show that minimax-optimal strategies are p= (2/3, 1/3), q= (3/5, 2/5) and value of game is 0.

Problem 31. For the game with payoffs:




− 1
2

3
4

1 − 2
3





Show that minimax-optimal strategies are p = ( 47 , 3
7 ), q = ( 17

35 , 18
35 ) and the value of the game is

1
7 .

Problem 32. For the game with payoffs:





− 1
2 −1

1 2
3





Show that minimax-optimal strategies are p= (0, 1), q= (0, 1) and value of game is 2
3 .

14.3 Von Neumann’s Minimax Theorem
In all the above examples of 2-player zero-sum games, we saw that the row player has a strategy
p⋆ that guarantees some payoff lb∗ for her, no matter what strategy q the column player plays.
And the column player has a strategy q⋆ that guarantees that the row player cannot get payoff
more than ub∗, no matter what strategy p the row player plays. The remarkable fact in the ex-
amples was that lb∗ = ub∗ in all these cases! Was this just a coincidence? No: a celebrated result
of von Neumann3 shows that we always have lb∗ = ub∗ in (finite) 2-player zero-sum games.

Theorem 14.1: Minimax Theorem (von Neumann, 1928)

Given a finite 2-player zero-sum game with payoff matrices R =−C ,

lb∗ =max
p

min
q

VR (p, q) =min
q

max
p

VR (p, q) = ub∗.

This common value is called the value of the game.

3John von Neumann, mathematician, physicist, and polymath.
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The theorem implies that in a zero-sum game, both the row and column players can even “pub-
lish” their minimax-optimal mixed strategies (i.e., tell the strategy to the other player), and it
does not hurt their expected performance as long as they play optimally.4

Von Neumann’s Minimax Theorem is an important result in game theory, but it has beautiful
implications to computer science as well — as we see in the next section.

14.4 Techniques for Solving Games
If you’re confronted with a zero-sum matrix game how do you solve it? Sometimes it’s possible
by trial and error, and intuition, or luck, to come up with strategies (p, q) such that lb(p) = ub(q).

In the upcoming lectures on linear programming, we show how to solve games using an LP
solver. In the remainder of this section, we give some methods that are often effective at solving
small games by hand.

14.4.1 Removing Dominated Rows or Columns
Suppose there’s a row that is dominated by another row, that is, every element of row j is at
least the corresponding element of row k . Then we can just delete row k from the game, and
its value stays the same. For example:





2 3 1
3 3 5
7 1 8





We can immediately delete the first row, because the 2nd one dominates it.

The same idea applies to columns. So, after deleting the first row of the above matrix, look at
the resulting matrix. Now it’s clear that the first column. is always better for the column player
than the 3rd column. So the 3rd column can be deleted.

14.4.2 Convex Combinations of Rows or Columns
Consider the following game:





10 0
0 10
3 3





In this case, no one row dominates another. However adding 1
2 of the first row to 1

2 of the second
row is equivalent to having (5 5) as a row. This dominates the last row (3 3), so we can just delete
it. Any solution that puts any weight on the (3 3) row would be better off putting half that weight
on the (10 0) and the other half on the (0 10) row.

4It’s like telling your rock-paper-scissors opponent that you will play each action with equal probability, it does
not buy them anything to know your strategy. This is not true in general non-zero-sum games; there if you tell your
opponent the mixed-strategy you’re playing, she may be able to do better. Note carefully that you are not telling
them the actual random choice you will make, just the distribution from which you will choose.
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In general, a row can be removed it is dominated by a convex combination of the other rows.

14.4.3 A General Method for Solving 2-Row Games
In this section we give a general method for solving games with two rows (or, by symmetry, two
columns). We’ll develop the method with the following example:

column player

A B C

row 1 2 6 3

player 2 6 2 4

The game we’ll analyze is shown in the 2×3 matrix above with values for the row player. We’ll
call the three options for the column player A, B , and C , and the two options for the row player
1 and 2.

The general mixed strategy for the row player is to choose option 1 with probability p and op-
tion 2 with probability 1−p . For any choice of p , the column player can respond with A, B , or
C . We can plot the payoff to the row player with respect to every possible choice of p and use
this to analyze the game.
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In the diagram above, the horizontal axis represents p , and the vertical axis represents the pay-
off to the row player. The three lines in the diagram correspond to the three options for the
column player. For example, the line labeled B , which is the graph of the function 2+4p , is the
expected value of the game for the row player (as a function of p ) if the column player chooses
column B .

So what does the actual payoff consist of for the row player? Whatever value of p they pick,
their opponent, if playing optimally, will play whichever of A, B and C gives the lowest payoff,
so the row player’s payoff at any point looks like the lowest of the three lines. We can represent
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this on the diagram as follows. Its called the lower envelope of the three options for the column
player.
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This concave function represents the expected payoff for the row player if he chooses option
1 with probability p , assuming that the column player plays optimally knowing the value of p .
Thus, it represents a lower bound on the value of the game for the row player for each value of
p . By inspection of this graph, the concave function achieves its maximum value at the point
of intersection between B and C . This point is p = 2

5 , and with that choice of p the value of the
game is 3+ 3

5 . That’s the lower bound on the game’s value.

What’s a good strategy for the column player? Consider the convex combination of B and C
chosen such that the result is a horizontal line. This is 4

5 C + 1
5 B , and corresponds to a mixed

strategy of picking B with probability 1/5 and C with probability 4/5. With this mixed strategy,
the value of the game for the row player is 3+ 3

5 , no matter what the row player does. So this is
an upper bound on the value of the game for the row player. Since the lower and upper bound
are equal, we know that this is the value of the game.

The same technique can be applied to any game with two rows. The value of the game is ob-
tained by constructing the concave function and finding where it achieves its maximum.

14.5 Lower Bounds for Randomized Algorithms
In order to prove lower bounds, we thought of us coming up with algorithms, and the adversary
coming with some inputs on which our algorithm would perform poorly—take a long time, or
make many comparisons, etc. We can encode this as a zero-sum game with row-player payoff
matrix R . We will, unsurprisingly, use sorting in the comparison model as an example.

- The columns are all deterministic algorithms for sorting n elements.

- The rows are all the possible inputs (all n ! of them).
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14.5. Lower Bounds for Randomized Algorithms

- The entry Ri j is the cost of the algorithm j on the input i (say the number of comparisons).

This may be a huge matrix, but we’ll never actually write it down; it’s just a conceptual guide
which we will use to reason about lower bounds. It may be huge, but for it to be a valid matrix
it does have to be finite. Is that the case here?

Remark: There are a finite number of (sensible) algorithms

Remember that in the comparison model, every deterministic algorithm can be en-
coded as a decision tree which encodes the comparisons made by the algorithm. Al-
though there are technically an infinite number of possible algorithms and hence de-
cision trees for the problem, there are only a finite number of them that never perform
any redundant comparisons. This is because after performing

�n
2

�

comparisons, one has
compared every pair of elements and definitely knows the answer, so the decision trees
can have depth at most

�n
2

�

.

Since this is finite, the number of possible decision tree configurations is finite. Lastly,
since every algorithm that performs redundant comparisons only has a strictly worse
cost than one that does not, we can ignore these algorithms when thinking about lower
bounds and efficient algorithms.

So, we know that the matrix is finite and hence valid to interpret as a zero-sum game. What
does it tell us? A lot, as it turns out.

- A deterministic algorithm with good worst-case guarantee is a column that does well against
all rows: all entries in this column are small.

- A randomized algorithm with good expected guarantee is a probability distribution q over
columns, such that the expected cost for each row i is small. This is a mixed strategy for the
column player. It gives an upper bound.

This second claim is actually subtle and not at all obvious. Why can we say that a randomized
algorithm is just a distribution over deterministic algorithms?

Remark: Randomized algorithms ≡ randomly choosing a deterministic algorithm

A randomized algorithm is just a deterministic algorithm that may also read from a
source of randomness and base some of its decisions on that. If we imagine pre-generating
the results of all randomness in the algorithm and “hardcode” it in, the algorithm just
becomes a deterministic algorithm! So, given the distribution of the source of random-
ness, we can infer a distribution on resulting (deterministic) algorithms.

So, a randomized algorithm is essentially a mixed strategy q for the column player in this zero-
sum game! How would we find the best randomized algorithm? That would correspond to an
upper bound strategy q∗ (which would be the minimax-optimal strategy)!

What is a lower bound for randomized algorithms? It is a mixed-strategy over rows (a probabil-
ity distribution p over the inputs) such that for every column (i.e., deterministic algorithm j ),
the expected cost of j (under distribution p) is high.
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Key Idea: Lower bounds

To prove a lower bound for randomized algorithms, if suffices to show that lb∗ is high for
this game. i.e., give a strategy for the row player (a distribution over inputs) such that
every column (deterministic algorithm) incurs a high cost on it.

14.5.1 A Lower Bound for Sorting Algorithms
Recall from Lecture 2 we showed that any deterministic comparison-based sorting algorithm
must perform log2 n ! = n log2 n −O (n ) comparisons in the worst case. The next theorem ex-
tends this result to randomized algorithms.

Theorem

LetA be any randomized comparison-based sorting algorithm (that always outputs the
correct answer). Then there exist inputs on whichA performs Ω(lg n !) comparisons in
expectation.

Proof. Suppose we construct a matrix R as above, where the columns are possible (determin-
istic) sorting algorithms for n elements, the rows are the n ! possible inputs, and entry Ri j is the
number of comparisons algorithm j makes on input i . We claim that the value of this game
is Ω(lg n !): this implies that the best distribution over columns (i.e., the best randomized algo-
rithm) must suffer at least this much cost on some column (i.e., input).

To show the value of the game is large, we show a probability distribution over the rows (i.e., in-
puts) such that the expected cost of every column (i.e., every deterministic algorithm) isΩ(lg n !).

This probability distribution is the uniform distribution: each of the n ! inputs is equally likely.
Now consider any deterministic algorithm: as in Lecture 2, this is a decision tree with at least
n ! leaves. No two inputs go to the same leaf.

In this tree, how many leaves can have depth at most (lg n !)−10? At most the number of nodes
at depth at most (lg n !)−10 in a complete binary tree. Which in turn is

1+2+4+8+ . . .+2(lg n !)−10 ≤ 1+2+4+8+ . . .+
n !

1024
≤

n !

512

So 511
512 ≥ 0.99 fraction of the leaves in this tree have depth more than (lg n !)−10. In other words,

if we pick a random input, it will lead to a leaf at depth more than (lg n !)− 10 with probability
0.99. Which gives the expected depth of a random input to be ≥ 0.99((lg n !)−10) =Ω(lg n !).
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14.6 General-Sum Two-Player Games

Optional content — Not required knowledge for the exams

In general-sum games, we don’t deal with purely competitive situations, but cases where there
are win-win and lose-lose situations as well. For instance, the coordination game of “chicken”,
a.k.a. what side of the street to drive on? It has the payoff matrix:

Bob

L R

Alice
L (1, 1) (−1,−1)

R (−1,−1) (1, 1)

Note that we are now using the convention that a player choosing L is driving on their left.
Note that if both players choose the same side, then both win. And if they choose opposite
sides, both crash and lose. (Both players can choose to drive on the left—like Britain, India,
etc.—or both on the right, like the rest of the world, but they must coordinate. Both these are
stable solutions and give a payoff of 1 to both parties.)

Consider another coordination game that we call “which movie?” Two friends are deciding
what to do in the evening. One wants to see Citizen Kane, and the other Dumb and Dumber.
They’d rather go to a movie together than separately (so the strategy profiles C , D and D , C
have payoffs zero to both), but C , C has payoffs (8, 2) and D , D has payoffs (2, 8).

Bob

C D

Alice
C (8, 2) (0, 0)

D (0, 0) (2, 8)

Finally, yet another game is “Prisoner’s Dilemma” (or “to pollute or not?”) with the payoff ma-
trix:

Bob

C D

Alice
C (2, 2) (−1, 3)

D (3,−1) (0, 0)
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14.6.1 Nash Equilibria
In this case, a good notion is to look for a Nash Equilibrium5 which is a stable set of (mixed)
strategies for the players. Stable here means that given strategies (p∗, q∗), neither player has any
incentive to unilaterally switch to a different strategy. I.e., for any other mixed strategy p for the
row player

row player’s new payoff =
∑

i j

pi q ∗j Ri j ≤
∑

i j

p ∗i q ∗j Ri j = row player’s old payoff

and for any other possible mixed strategy q for the column player

column player’s new payoff =
∑

i j

p ∗i q j Ci j ≤
∑

i j

p ∗i q ∗j Ci j = column player’s old payoff.

Here are some examples of Nash equilibria:

- In the chicken game, both (p∗ = (1, 0), q∗ = (1, 0)) and (p∗ = (0, 1), q∗ = (0, 1)) are Nash equilibria,
as is (p∗ = ( 12 , 1

2 ), q∗ = ( 12 , 1
2 )).

- In the movie game, the only Nash equilibria are (p∗ = (1, 0), q∗ = (1, 0)) and (p∗ = (0, 1), q∗ =
(0, 1)).

- In prisoner’s dilemma, the only Nash equilibrium is to defect (or pollute). So we need extra
incentives for overall good behavior.

It is easy to come up with games where there are no stable pure strategies—this is even true for
zero-sum games. But what about mixed-strategies? The main result in this area was proved by
Nash in 1950 (which led to his name being attached to this concept)

Theorem 14.2: Existence of Stable Strategies

Every finite player game (with each player having a finite number of strategies) has at
least one (mixed-strategy) Nash equilibrium.

This theorem implies the Minimax Theorem (Theorem 14.1) as a corollary.

Proof. Take any two-player zero-sum game. Let (p∗, q∗) be a Nash equiblibrum. We have:

lb(p∗) =min
q

VR (p
∗, q) =VR (p

∗, q∗)

The latter equality follows from the fact that there is no better option for the column player
than q∗.

Similarly we have:
ub(q∗) =max

p
VR (p, q∗) =VR (p

∗, q∗)

It immediately follows that lb(p∗) = ub(q∗), which proves the minimax theorem.

5Named after John Nash: CMU graduate, mathematician, and Nobel prize winner.
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Lecture 15

Linear Programming I

In this lecture, we describe a very general problem called linear programming that can be
used to express a wide variety of different kinds of problems. We can use algorithms for lin-
ear programming to solve the max-flow problem, solve the min-cost max-flow problem, find
minimax-optimal strategies in games, and many other things. We will primarily discuss the set-
ting and how to code up various problems as linear programs (LPs). At the end, we will briefly
describe some of the algorithms for solving LPs.

Objectives of this lecture

In this lecture, we will cover

- The definition of linear programming and simple examples.

- Using linear programming to solve max flow and min-cost max flow.

- Using linear programming to solve for minimax-optimal strategies in games.

- Linear programs in standard form.

15.1 Introduction
In recent lectures we have looked at the following problems:

- Maximum bipartite matching

- Maximum flow (more general than bipartite matching).

- Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. Linear Programming is important because it is so expressive: many, many prob-
lems can be coded up as linear programs (LPs). This especially includes problems of allocat-
ing resources and business supply-chain applications. In business schools and Operations Re-
search departments there are entire courses devoted to linear programming. There are also
commercial software packages charging tens of thousands of dollars per license for solving lin-
ear programs (okay they also solve more general problems too, but linear programming is the
basis for most of them)! Today we will mostly say what they are and give examples of encoding
problems as LPs. We will only say a tiny bit about algorithms for solving them.
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15.2 Definition of Linear Programming
Formally, a linear programming problem is specified as follows.

Definition: Linear program

Given:

- n real-valued variables x1, . . . , xn .

- A linear objective function. e.g., 2x1+3x2+ x3.

- m linear inequalities in these variables (equalities are OK too).

e.g., 3x1+4x2 ≤ 6, or 0≤ x1 ≤ 3, etc.

Goal:

- Find values for the xi ’s that satisfy the constraints and maximize or minimize the
objective function.

Remark: No strict inequalities

Linear programs can not contain strict inequalities, e.g., x1 < 3 or x2 > 5. Why? Suppose
we wrote maximize x1 such that x1 < 3, then there does not exist an optimal solution.

Remark: Variables are real-valued

This is super important to remember!! Linear program variables take on real values, i.e.,
the variables can not be guaranteed to take integer values!

An LP may also come without an objective function, in which case we simply wish to find any
value for the xi ’s that satisfy all of the constraints. Such an LP is called a “feasibility problem”.
You can think of this as a special case of a linear program where the objective value is just a
constant (e.g., zero). We can write either minimization problems or maximization problems.

A set of xi ’s that satisfies all of the constraints is called a feasible solution. Not all linear programs
have a solution; it may be impossible to find any xi ’s that satisfy the constraints. Alternatively, it
may be the case that there is no optimal objective value because there exists feasible solutions
of arbitrarily high value. We can classify all LPs this way into three categories.

Definition: Classification of LPs

Every LP falls into one of three categories:

- Infeasible (there is no point that satisfies the constraints)

- Feasible and Bounded (there is a feasible point of maximum objective function value)

- Feasible and Unbounded (there are feasible points of arbitrarily large value)
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An algorithm for LP should classify the input LP into one of these categories, and find the op-
timum feasible point when the LP is feasible and bounded.

15.3 Modeling problems as Linear Programs

15.3.1 An Operations Research Problem
Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms
of labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We
have 3300 hours of labor and 4000 units of material available. We are allowed to produce 12000
units of pollution, and we want to maximize the number of cars produced. How can we model
this?

To model a problem like this, it helps to ask the following three questions in order: (1) what
are the variables, (2) what is our objective in terms of these variables, and (3) what are the con-
straints. Let’s go through these questions for this problem.

Variables: x1, x2, x3, x4, where xi denotes the number of cars at plant i .
Objective: maximize x1+ x2+ x3+ x4.
Constraints:

xi ≥ 0 for all i

x3 ≥ 400

2x1+3x2+4x3+5x4 ≤ 3300

3x1+4x2+5x3+6x4 ≤ 4000

15x1+10x2+9x3+7x4 ≤ 12000

Note that we are not guaranteed the solution will be integral. For problems where the numbers
we are solving for are large (like here), it is usually not a very big deal because you can just round
them down to get an almost-optimal solution. However, we will see problems later where it is
a very big deal.

15.3.2 Modeling Maximum Flow
We can model the max flow problem as a linear program too. In fact, when we wrote down
the definitions of the max flow problem, like the capacity and conservation constraints, and
defined the net s -t flow, we pretty much did write down a linear program already!
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Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: maximize
∑

u∈V

fs u −
∑

u∈V

fu s . (the net s -t flow)

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ̸∈ {s , t },
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation)

For instance, consider this example:

In this case, our LP is: maximize fs a + fs b subject to the constraints:

Capacity Conservation
0≤ fs a ≤ 4 fs a = fa c

0≤ fa c ≤ 3 fs b + fc b = fb c + fb d

0≤ fc t ≤ 2 fa c + fb c = fc b + fc t

0≤ fs b ≤ 2 fb d = fd t

0≤ fb d ≤ 3
0≤ fc b ≤ 1
0≤ fb c ≤ 2
0≤ fd t ≤ 4

15.3.3 Modeling Minimum-cost Max Flow
Recall that in min-cost max flow, each edge (u , v ) has both a capacity c (u , v ) and a cost $(u , v ).
The goal is to find out of all possible maximum s -t flows the one of least cost, where the cost
of a flow f is defined as

∑

(u ,v )∈E

$(u , v ) fu v .

Approach #1: Maximize flow first One simple way to do this is to first solve for the maximum
flow f , ignoring costs. Then, set up a new linear program and add the constraint that flow must
equal f , i.e.

∑

u∈V

fs u −
∑

u∈V

fu s = f
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(plus the original capacity and flow conservation constraints), then set the objective to mini-
mize the cost

minimize
∑

(u ,v )∈E

$(u , v ) fu v

Note that we have used a minimization objective function rather than a maximization this time.
This is allowed. If you want to stick strictly to maximization problems, then you can maximize
the negative of the cost instead, as this will give you the same solution.

Approach #2: Combine the two objectives The reason that min-cost max-flow is annoying
to write as an LP is that it kind of has two objectives, to maximize flow then to minimize cost,
and we can’t directly encode two objectives into an LP. However, in some cases, it is possible to
combine two objectives into one (but not always).

To simplify the presentation, lets add two new variables, one representing the net flow and
another representing the total cost:

f =
∑

u∈V

fs u −
∑

u∈V

fu s ,

C =
∑

(u ,v )∈E

$(u , v ) fu v

How can we represent the idea of maximizing the flow while tiebreaking by costs using these
variables? One way is to multiply the cost by a very small constant ϵ, small enough that it is
definitely less than the difference between the values of any two feasible flows. Then, we can
use it to tiebreak since it will only ever matter if two feasible flows have the same value! So our
objective function becomes:

maximize f − ϵC

Approach #3: Reduce to “Minimum-cost circulation” As our last idea, instead of trying to
encode the problem with two objective functions, we can instead reduce the problem to a sim-
ilar one that only has one objective, and model that problem as a linear program.

To do so, lets forget about “producing” flow at s and “consuming” it at t and imagine that in-
stead we take all of the flow into t and “circulate” it back to s , forming a big cycle of flow instead.
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A circulation is the same thing as a flow, except that we now require that s and t also satisfy
the conservation constraint. In this problem, there is no such concept as “net-flow” anymore,
because the net flow should always be zero, so we can’t directly ask about maximum flow. How-
ever, if we have costs on the edges, then we can write an LP for a minimum-cost circulation,
which finds a circulation of minimum possible cost.

Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: minimize
∑

(u ,v )∈E

$(u , v ) fu v

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ,
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation, includes s and t!)

To reduce minimum-cost max flow to a minimum-cost circulation problem, we draw the graph
as above where we connect an infinite-capacity edge from t to s , and then give that edge a very
negative cost. By giving (t , s ) a very negative cost, the solution is encouraged to send as much
flow as possible along (t , s ), which we can observe is equivalent to maximizing the s -t flow!
There are other variants of the minimum-cost circulation problem but we won’t cover those.

15.3.4 2-Player Zero-Sum Games
Suppose we are given a 2-player zero-sum game with n rows and n columns, and we want to
compute a minimax optimal strategy. For instance, perhaps a game like this (say payoffs are
for the row player):

column player

row
player

20 -10 5

5 10 -10

-5 0 10

Let’s see how we can use linear programming to solve this game. Informally, we want the vari-
ables to be the things we want to figure out, which in this case are the probabilities to put on
our different choices p1, . . . , pn . These have to form a legal probability distribution, and we can
describe this using linear inequalities: namely, p1+ . . .+pn = 1 and pi ≥ 0 for all i .

Our goal is to maximize the worst case (minimum), over all columns our opponent can play,
of our expected gain. This is a little confusing because we are maximizing a minimum. How-
ever, we can use a trick: we will add one new variable v (representing the minimum), put in
constraints that our expected gain has to be at least v for every column, and then define our
objective to be to maximize v . Assume our input is given as an array m where mi j represents
the payoff to the row player when the row player plays i and the column player plays j . Putting
this all together we have:
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Variables: p1, . . . , pn and v .
Objective: Maximize v .
Constraints:

- pi ≥ 0 for all 1≤ i ≤ n ,

-
n
∑

i=1

pi = 1. (the pi form a probability distribution)

-
n
∑

i=1

pi mi j ≥ v for all columns 1≤ j ≤m

15.4 Linear Programming Terminology and Notation
It’s going to be useful as we discuss algorithms for LP in future lectures, as well as for the concept
of duality, to introduce some terminology and notation for linear programs.

Definition: Standard Form

A linear program (LP) over n variables x1, . . . , xn , with m constraints written in the fol-
lowing form is said to be in Standard Form:

maximize c1 x1+ . . .+ cn xn ,

subject to a11 x1+ . . .+a1n xn ≤ b1,

a11 x1+ . . .+a1n xn ≤ b2,

...

am1 x1+ . . .+amn xn ≤ bm ,

xi ≥ 0 for all i .

In other words, the objective is maximization, the constraints are all f (x )≤ b for a con-
stant b and the variables are required to be non-negative.

Another way to write this in a much more compact form is to package the c and b values
into vectors and the a values into a matrix so we can write:

maximize c T x

subject to Ax ≤ b

x ≥ 0

Here there are n non-negative variables x1, x1, . . . , xn , and m linear constraints encapsulated
in the m × n matrix A and the m × 1 matrix (vector) b . Note that in standard form, the non-
negativity constraints xi ≥ 0 are not counted towards the number of constraints m . The objec-
tive function to be maximized is represented by the n ×1 matrix (vector) c .
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F it

Standard form turns out to be convenient and useful, especially when we will discuss duality
later. For it to be useful, we should convince ourselves that we can actually always use it!

Claim: Any LP can be written in standard form

Given an LP not in standard form, we can write an equivalent LP in standard form.

- Converting min to max Suppose we have a minimization LP. Then we can negate the objec-
tive function and make it a maximization problem instead.

- Handling equality constraints Suppose we have linear equalities in our LP.

– We can replace LHS = RHS with two inequalities: LHS ≤ RHS and LHS ≥ RHS

– We negate the second inequality to get -LSH ≤ -RHS. Now we have only ≤ inequalities

- Handling unbounded variables If we have a variable xi which can take on any real value, we
can replace it by two variables, x+i and x−i , and substitute xi with x+i − x−i everywhere. The
LP is equivalent, but we can constrain x+i ≥ 0 and x−i ≥ 0.

15.4.1 Polytopes, Convexity, and Vertices
It’s sometimes helpful to visualize linear programs geometrically. The set of points that satisfy a
linear inequality is all the points on, or on one-side of a “plane” inRd . This set of points is called
a half-space. The points satisfying all the inequalities of an LP is therefore the intersection of
a finite number of half-spaces. Such a set of points is called a convex polytope. (Figures from
Wiktionary, and Geometry Junkyard.)

Given two points a and b in Rd , we can define the convex combination of a and b as follows:

Conv(a , b ) = {αa + (1−α)b | 0≤α≤ 1}
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Conv(a , b ) is simply the all the points on the straight line in Rd between points a and b . A set
S in Rd is convex iff for all a , b ∈ S we have that Conv(a , b ) ⊆ S . Note that the intersection of
two convex sets is convex, because if a and b are in both of the convex sets, then the convex
combination is also in both of the sets. It follows that the polytope of an LP is a convex set.

Polytopes have many other interesting properties. They can be decomposed as a collection of
interrelated facets of dimensions varying from 0 to d . (In three dimensions these are vertices,
edges, faces, and volumes.) We’re not going to discuss that rich theory here except to talk about
the vertices of a polytope, that is, the facets of dimension 0.

A point q is a vertex of a polytope P if the following hold:

- q ∈ P
- For any v ∈Rd with v ̸= 0 then at least one of q + v or q − v is not in P .

Put another way, if you’re at a point for which there exist two opposite directions such that you
can move in these directions and still stay inside the polytope, then you’re not at a vertex.

Vertices are important because any LP has an optimum solution that is on a vertex. The intu-
ition for this is that if you’re at a non-vertex and you can move in directions v and −v , then
moving in at least one of these directions will not cause the objective function to decrease. So
you move in that direction as far as you can go. When you stop you must be entering a facet of
a lower dimension. This process is then repeated until you reach a vertex.

15.5 Algorithms for Linear Programming
How can we solve linear programs? The standard algorithm for solving LPs is the Simplex Al-
gorithm, developed in the 1940s. It’s not guaranteed to run in polynomial time, and you can
come up with bad examples for it, but in general the algorithm runs pretty fast. Only much
later in 1980 was it shown that linear programming could be done in polynomial time by some-
thing called the Ellipsoid Algorithm (but it tends to be fairly slow in practice). Later on, a faster
polynomial-time algorithm called Karmarkar’s Algorithm was developed. There are many com-
mercial LP packages, for instance LINDO, CPLEX, and others.

We won’t have time to describe any of these algorithms in detail. Instead, we will just give
some intuition and the high-level idea of how they work by viewing linear programming as a
geometrical problem.

Think of an n-dimensional space with one coordinate per variable. A solution is a point in this
space. An inequality, like x1 + x2 ≤ 6 is saying that we need the solution to be on a specified
side of a certain hyperplane. The feasible region is the convex region in space defined by these
constraints. Then we want to find the feasible point that is farthest in the “objective” direction.
We can use this geometric view to motivate the algorithms.

15.5.1 The Simplex Algorithm
The earliest and most common algorithm in use is called the Simplex method. The idea is
to start at some “corner” of the feasible region (to make this easier, we can add in so-called
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“slack variables” that will drop out when we do our optimization). Then we repeatedly do the
following step: look at all neighboring corners of our current position and go to the best one
(the one for which the objective function is greatest) if it is better than our current position.
Stop when we get to a corner where no neighbor has a higher objective value than we currently
have. The key fact here is that (a) since the objective is linear, the optimal solution will be at a
corner (or maybe multiple corners). Furthermore, (b) there are no local maxima: if you’re not
optimal, then some neighbor of you must have a strictly larger objective value than you have.
That’s because the feasible region is convex. So, the Simplex method is guaranteed to halt at
the best solution. The problem is that it is possible for there to be an exponential number of
corners and it is possible for Simplex to take an exponential number of steps to converge. But,
in practice this usually works well.

15.5.2 The Ellipsoid Algorithm
The Ellipsoid Algorithm was invented by Khachiyan in 1980 in Russia. This algorithms solves
just the “feasibility problem,” i.e., whether or not there exists a feasible solution to the LP, but
such an algorithm can always be used to find the optimal objective (see exercises).

The idea is to start with a big ellipse (called an ellipsoid in higher dimensions) that we can
be sure contains the feasible region. Then, try the center of the ellipse to see if it violates any
constraints. If not, you’re done. If it does, then look at some constraint violated. So we know
the solution (if any) is contained in the remaining at-most-half-ellipse. Now, find a new smaller
ellipse that contains that half of our initial ellipse. We then repeat with the new smaller ellipse.
One can show that in each step, you can always create a new smaller ellipse whose volume is
smaller, by at least a (1−1/n ) factor, than the original ellipse. So, every n steps, the volume has
dropped by about a factor of 1/e . One can then show that if you ever get too small a volume,
as a function of the number of bits used in the coefficients of the constraints, then that means
there is no solution after all.

One nice thing about the Ellipsoid Algorithm is you just need to tell if the current solution vio-
lates any constraints or not, and if so, to produce one. You don’t need to explicitly write them
all down. There are some problems that you can write as a linear program with an exponential
number of constraints if you had to write them down explicitly, but where there is an fast al-
gorithm to determine if a proposed solution violates any constraints and if so to produce one.
For these kinds of problems, the Ellipsoid Algorithm is a good one.

15.5.3 Karmarkar’s Algorithm
Karmarkar’s Algorithms sort of has aspects of both. It works with feasible points but doesn’t go
from corner to corner. Instead it moves inside the interior of the feasible region. It was one of
first of a whole class of so-called “interior-point” methods.

The development of better and better algorithms is a big ongoing area of research. In practice,
for all of these algorithms, you get a lot of mileage by using good data structures to speed up
the time needed for making each decision.
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Exercises: Linear Programming Fundamentals

Problem 33. Our second approach to modeling minimum-cost maximum flow as an LP was
to introduce a small ϵ constant and use it to make the maximum flows be tiebroken by costs.
What would be a suitable value for ϵ that would guarantee that this method works?

Problem 34. The simplex algorithm starts at a vertex and then iteratively moves to neighboring
vertices with better objective value until it arrives at the maximum. How does it actually find
the starting point, though? This requires finding a feasible point of the LP, but that is just as
hard of a problem!

Let’s try a bootstrapping approach: We can write a second LP such that:

1. It has a trivial feasible solution that can be used as a starting point

2. The solution to this LP must be some feasible point of the original LP (it doesn’t have to
be the maximum, just any feasible point!)

Describe an LP that has these properties. We can solve this LP using simplex and then use the
result it finds as the starting point for our actual LP!

Hint: Introduce a new variable s and add it to each constraint. How does this make finding a
feasible point easier? What should the objective function for the new LP be?

Problem 35. Suppose you have an algorithm that can tell you whether an LP is feasible, but
does not give you the optimal objective value (e.g., Ellipsoid). Describe a simple method for
determining the optimal objective value using the feasibility algorithm as a black box.
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Lecture 16

Linear Programming II

In this lecture we describe a nice algorithm due to Seidel for Linear Programming in low-dimensional
spaces. We will also briefly discuss using linear programming to model some non-linear prob-
lems, such as ones containing absolute values.

Objectives of this lecture

In this lecture, we will

- See an example of how to use linear programming to model some non-linear prob-
lems.

- See Seidel’s algorithm for linear programming, an example of a randomized incremen-
tal algorithm

- Learn how to apply backwards analysis to analyze randomized incremental algorithms

16.1 Modeling non-linear problems as linear programs
Sometimes we encounter non-linear objectives or constraints in problems we would like to
solve, so we can’t use linear programming directly, but, we might be able to model them as
a linear program anyway by cleverly converting the non-linear stuff into linear stuff! We will
look at one example here where we can sometimes model problems containing absolute values,
even though absolute values are not linear and hence can not be part of a legal linear program.

Problem: L 1 regression

We are given an n ×d matrix A where n is larger than d , and an n ×1 vector b . We’d like
to find an x such that Ax = b , but since n > d , it is not likely that there exists any such
x . Instead, we can try to find x that is close to satisfying Ax = b , or, more specifically

minimize
x

∥Ax − b ∥1 :=minimize
x

n
∑

i=1

|Ai · x − bi |,

where Ai · x :=
∑

j Ai j x j .

The definition of the problem almost looks like an LP, except that it contains absolute values
which are not legal in an LP. Lets try to convert the expressions containing absolute values into
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legal linear constraints instead. We can start by defining variables si for 1 ≤ i ≤ n . The idea is
that si is going to model the expression |Ai · x − bi |. So we would love to write the constraint

si = |Ai · x − bi |,

but of course we can’t because this isn’t a valid linear constraint (absolute value is not a linear
function). But remember what the absolute value function means. If Ai ·x −bi is positive, then
si = Ai x − bi . Otherwise, if it is negative, then si = −(Ai · x − bi ). The absolute value is just the
larger of these two, so we could therefore rewrite our constraint for si as

si =max(Ai x − bi ,−(Ai · x − bi )).

Is this any better? Well not quite, because we still can not legally write max in a constraint of
a linear program, its not a linear function either. However, one more step will get us to a valid
linear program. max just means the larger of the two, so what if we wrote a pair of constraints:

si ≥ Ai · x − bi ,

si ≥−(Ai · x − bi ).

This is equivalent to si ≥ |Ai · x − bi |, so we’ve successfully eliminated the absolute value, but
we have also changed the desired equality into an inequality. Could this be bad and lead to si

being too large? No! Because our objective function is now

minimize
x ,s

n
∑

i=1

si ,

so if si was ever larger than |Ai · x −bi |, we could make it smaller and lower the objective, so for
any optimal solution, the inequalities are all tight and we have si = |Ai ·x −bi | as desired. So we
can solve L1 regression as a linear program like so. Note that the xi variables still exist in the
program and its constraints even though they are not preset in the objective.

Variables: Create variables xi and si for 1≤ i ≤ n

Objective: minimize
x ,s

n
∑

i=1

si ,

Constraints:
- si ≥ Ai · x − bi for all 1≤ i ≤ n

- si ≥−(Ai · x − bi ) for all 1≤ i ≤ n

Remark: Absolute values are not legal in linear programs

Its worth repeating a few times just to make sure. Remember that absolute values are
not legal linear constraints or objectives for an LP. In this particular scenario, we were
able to convert the absolute values into something manageable, but this is not possible
for every such problem.
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16.2 Seidel’s LP algorithm
We now describe a linear-programming algorithm due to Raimund Seidel that solves the 2-
dimensional (i.e., 2-variable) LP problem in O (m ) time (recall, m is the number of constraints),
and more generally solves the d -dimensional LP problem in time O (d !m ).

Setup We have 2 variables x1, x2. We are given m linear constraints in these variables a1 ·
x ≤ b1, . . . , am · x ≤ bm along with an objective c · x to maximize. (Using boldface to denote
vectors.) Our goal is to find a solution x= (x1, x2) satisfying the constraints that maximizes the
objective. In the example below, the region satisfying all the constraints is given in gray, the
arrow indicates the direction in which we want to maximize, and the cross indicates the x that
maximizes the objective.

(You should think of sweeping the green dashed line, to which the vector c is perpendicular, in
the direction of c, until you reach the last point that satisfies the constraints. This is the point
you are seeking.)

Key Idea: Seidel’s algorithm / incremental algorithms

Here is the idea of Seidel’s algorithm. Let’s add in the constraints one at a time, and keep
track of the optimal solution for the constraints so far. This is more broadly called an
incremental algorithm.

Bounding the feasible region To keep things simple, we’d like to be able to assume that the
problem is always bounded. Of course it might not be bounded when we have only added
some of the constraints so far, or worse, the problem might not actually be bounded at all! So
here’s what we can do, let’s just add a giant bounding box around the feasible region, of the form
−M ≤ xi ≤M for a sufficiently large value of M . As long as we pick M large enough, we can
ensure that it encloses all of the vertices of the feasible region, so this won’t remove any feasible
points unless the problem is unbounded. We can then choose one of the four corners of the
box (the one with maximum objective value) as the starting point. If we end up finding that the
corner of the box is the answer, then we know the original problem is unbounded.
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The vertices of the feasible region can be written as the intersection of two constraints a1 x1 +
b1 x2 = c1 and a2 x1+ b2 x2 = c2. The solution x= (x1, x2) is the solution of

�

a1 b1

a2 b2

��

x1

x2

�

=

�

c1

c2

�

If the input numbers are all L-bit numbers, then the solution to this equation can be specified
with (2L +1)-bit numbers (you could convince yourself that this is true with Cramer’s rule, for
example), so we can pick an M that is larger than any (2L + 1)-bit number and we know that
it will definitely bound the vertices of the feasible region (and the introduction of M will not
change the bit complexity of the problem).

The algorithm Now we get into the actual algorithm. Remember that our idea is to add con-
straints one at a time, and see how that changes the current optimal solution. Suppose, for
instance, we have found the optimal solution x∗ for the first m−1 constraints, and now we add
in the mth constraint am ·x≤ bm . There are two cases to consider:

Case 1: If x∗ satisfies the constraint, then x∗ is still optimal. Time to perform this test: O (1).

Case 2: If x∗ doesn’t satisfy the constraint, then the new optimal point will be on the line am ·x=
bm , or else there is no feasible point.

As an example, consider the situation below, before and after we add in the linear constraint
am ·x≤ bm colored in red. This causes the feasible region to change from the light blue region
to the smaller gray region, and the optimal point to move.
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The equation am · x = bm is just a line, so let’s call one direction “right” and the other “left”.
We can now scan through all the other constraints, and for each one, compute its intersection
point with this line and whether it is “facing” right or left (i.e., which side of that point satisfies
the constraint). We find the rightmost intersection point of all the constraints facing to the
right and the leftmost intersection point of all that are facing left. If they cross, then there is no
solution. Otherwise, the solution is whichever endpoint gives a better value of c ·x (if they give
the same value – i.e., the line am ·x= bm is perpendicular to c – then say let’s take the rightmost
point). In the example above, the 1-dimensional problem is the one in the figure below, with the
green constraints “facing” one direction and the blue ones facing the other way. The direction
of c means the optimal point is given by the “lowest” green constraint.

The total time taken here is O (m ) since we have m −1 constraints to scan through and it takes
O (1) time to process each one. Right now, this looks like an O (m 2)-time algorithm since we
have potentially taken O (m ) time to add in a single new constraint if Case 2 occurs.

16.2.1 Improving the algorithm with randomization

Key Idea: Use randomization with incremental algorithms

Adding the constraints one at a time could lead to O (m 2)worst-case time if they happen
to always change the objective value. So lets lower the probability of this happening by
randomly shuffling the constraints and adding them in a random order! This is called a
randomized incremental algorithm.

So suppose we add the constraints in a random order? What is the expected running time of
the algorithm? Consider a random permutation π1, . . . ,πm of the constraints, and denote the
prefix of the first i constraints in the shuffled order as Pi .

The runtime to insert the i th constraint is O (1) if the optimum does not change, or O (i ) if the
optimum does change. So let’s define an indicator random variable

X i =

¨

1 if the optimum given constraints Pi is different from Pi−1,

0 otherwise.
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This leads to a running time of

T =O

�

m
∑

i=2

(1+X i · i )

�

.

By linearity of expectation, the expected running time is

E[T ] =O

�

m +
m
∑

i=2

i ·E[X i ]

�

=O

�

m +
m
∑

i=2

i ·Pr[X i = 1]

�

.

So, what is the probability that the optimum changes when we insert the i th constraint? i.e.,
what is the probability that we are in Case 2?

Notice that the optimum (assuming the LP is feasible and bounded) is at a corner of the feasible
region, and this corner is defined by two constraints, namely the two sides of the polygon that
meet at that point. If both of those two constraints are in Pi−1, then the optimum can’t change so
the probability is zero. So, since we are inserting constraints in a random order, the probability
we are in Case 2 when we get to constraint i is at most the probability that the i th constraint is
one of these two corner constraints, which is at most 2/i .

This means that the expected runtime of the algorithm is is at most:

E[T ] =O

�

m +
m
∑

i=2

i ·Pr[X i = 1]

�

=O

�

n +
m
∑

i=2

i ·
2

i

�

=O (m +2m ) =O (m ).

Remark: More than two constraints in the intersection?

In the proof above, we noted that the optimum is defined by the intersection of two
constraints, but what if more than two constraints intersect at that point? Does this hurt
our analysis? No, if many constraints intersect at the same point, at most two of them, if
removed, would change the answer. Here are two examples to illustrate. The objective
direction is up, and the feasible region is shaded.

In the first, three constraints intersect at the optimal point (red), but only one of them
(the dotted one) would change the optimum if removed. In the second example, none of
them would change the optimum if removed! So the possible probabilities of changing
the optimum when removing a random constraint are 2/m , 1/m , or 0, which are all at
most 2/m . Extra constraints help us, not hurt us!
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16.2.2 Handling Special Cases, and Extension to Higher Dimensions
Optional content — Not required knowledge for the exams

Handling infeasability What if the LP is infeasible? There are two ways we can analyze this.
One is that if the LP is infeasible, then it turns out this is determined by at most 3 constraints.
So we get the same as above with 2/m replaced by 3/m . Another way to analyze this is imagine
we have a separate account we can use to pay for the event that we get to Case 2 and find that
the LP is infeasible. Since that can only happen once in the entire process (once we determine
the LP is infeasible, we stop), this just provides an additive O (m ) term. To put it another way, if
the system is infeasible, then there will be two cases for the final constraint: (a) it was feasible
until then, in which case we pay O (m ) out of the extra budget (but the above analysis applies
to the the (feasible) first m − 1 constraints), or (b) it was infeasible already in which case we
already halted so we pay 0.

Handling unboundedness symbolically What about unboundedness? We had said for sim-
plicity we could put everything inside a bounding box −M ≤ xi ≤M . E.g., if all ci are positive
then the initial x∗ = (M , . . . , M ). In the 2D case we argued that we can find an appropriate M by
looking at the bit complexity of the input numbers. In higher dimensions, however, its not clear
how to do the same. Instead, we could actually do the calculations viewing M symbolically as
a limiting quantity which is arbitrarily large. For example, in 2-dimensions, if c = (0, 1) and we
have a constraint like 2x1 + x2 ≤ 8, then we would see it is not satisfied by (M , M ), and hence
intersect the constraint with the box and update to x∗ = (4−M /2, M ).

Runtime in higher dimensions So far we have shown that for d = 2, the expected running
time of the algorithm is O (m ). For general values of d , there are two main changes. First, the
probability that constraint m enters Case 2 is now d /m rather than 2/m . Second, we need
to compute the time to perform the update in Case 2. Notice, however, that this is a (d − 1)-
dimensional linear programming problem, and so we can use the same algorithm recursively,
after we have spent O (d m ) time to project each of the m − 1 constraints onto the (d − 1)-
dimensional hyperplane am · x = bm . Putting this together we have a recurrence for expected
running time:

T (d , m ) ≤ T (d , m −1) +O (d ) +
d

m
[O (d m ) +T (d −1, m −1)].

This solves to T (d , m ) = O (d !m ). Good for very small values of d , but completely impractical
otherwise.
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Exercises: Linear Programming II

Problem 36. Absolutely overpowered Show that if we allowed arbitrary use of absolute value
constraints in a linear program, then we would be able to solve NP-Complete problems (Hint:
consider constraints like |x |= 1.)

This shows that we can not hope to always handle absolute value problems with linear pro-
gramming (unless P =N P ), even though we saw some scenarios above where we could.
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Linear Programming Duality

In this lecture we discuss the general notion of Linear Programming Duality, a powerful tool
that can allow us to solve some linear programs easier, gain theoretical insights into the proper-
ties of a linear program, and has many more applications that we might see later in the course.
We will show how duality connects to some topics we have already seen, like minimax optimal
strategies in zero-sum games.

Objectives of this lecture

In this lecture, we will

- Motivate and define the idea of the dual of a linear program

- See how to convert a linear program into its dual program

- Learn some powerful theorems that tell us about the behavior of a linear program and
its dual

- See how duality can teach us about minimax optimal strategies for zero-sum games

17.1 The Dual Program

Consider the following LP which is written in standard form.

maximize 2x1+3x2

s.t. 4x1+8x2 ≤ 12

2x1+ x2 ≤ 3

3x1+2x2 ≤ 4

x1, x2 ≥ 0

(17.1)

Here it is in a diagram which shows each constraint, the feasible region shaded in gray, and the
objective direction as a red arrow.
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4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

Rather than try to solve the LP using an algorithm directly, we are going to do an experiment.
Lets see if we can figure out some bounds on the objective value, and use those to hone in on
the optimal value. How can we bound the objective? Well the only other information that we
have are the constraints, so lets use them! Lets refer to the optimal objective value as OPT.

- First, since x1, x2 ≥ 0, we can notice that the left-hand equation of the first constraint (4x1+
8x2) must be bigger than the objective (2x1+3x2), in other words, we can write

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 4x1+8x2 ≤ 12
︸ ︷︷ ︸

first constraint

Note that the left-hand side is the objective function and the right hand side is the first con-
straint. So we therefore know that OPT≤ 12. That’s a start. Can we get a tighter bound?

- Yes, the first constraint is more than double the objective function, so we can write a tighter
bound by using just half of the constraint

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 1
2 (4x1+8x2)≤ 6
︸ ︷︷ ︸

half of the
first constraint

This gives us a bound of OPT ≤ 6. Can we do better? Maybe by combining multiple con-
straints!

- We want to combine some constraints such that we get as close to a coefficient of 2 for x1

and a coefficient of 3 for x2. By inspection, we can see that if we add the first and second
constraint, we will have 6x1+9x2, which is exactly three times our objective function, so lets
try one third of that combination.

2x1+3x2
︸ ︷︷ ︸

objective
function

≤ 1
3 ((4x1+8x2) + (2x1+ x2))≤ 5
︸ ︷︷ ︸

one third of the
first two constraints
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Note that we get 5 on the right-hand side because we sum the right-hand sides of the original
constraints to get 12+3= 15, then take one third of it. So we know that OPT≤ 5.

In each of these cases we take a positive linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3x2. Why positive? Because if we
multiply by a negative value, the sign of the inequality changes.

17.1.1 The tightest possible bound
After playing with this experiment for a bit, the natural question that arises is how do we find
the tightest lower bound that can be achieved with this method, i.e., by writing down a a linear
combination of the constraints? This is just another algorithmic problem, and we can system-
atically solve it, by letting y1, y2, y3 be the (unknown) coefficients of our linear combination. So
our goal is to write the combination like so

y1(4x1+8x2) + y2(2x1+ x2) + y3(3x1+2x2)≤ 12y1+3y2+4y3,

such that the value on the right-hand side is as small as possible. This sounds like just another
linear program! To bound the original objective function, we require that the coefficients of x1

add up to at least 2, and the coefficients of x2 add up to at least 3. We can write these require-
ments down as a linear program.

minimize 12y1+3y2+4y3

s.t. 4y1+2y2+3y3 ≥ 2

8y1+ y2+2y3 ≥ 3

y1, y2, y3 ≥ 0

(17.2)

This is indeed an LP! We refer to this LP (17.2) as the “dual” and the original LP (17.1) as the
“primal”. We designed the dual to serve as a method of constructing an upper bound on the
optimal value of the primal, so if y is a feasible solution for the dual and x is a feasible solution
for the primal, then 2x1+3x2 ≤ 12y1+3y2+4y3.

This serves as an upper bound, but what happens if we make it tight? If we can find two feasible
solutions x and y, that make these equal, then we know we have found the provably optimal
values of these LPs. In this case the feasible solutions x1 =

1
2 , x2 =

5
4 and y1 =

5
16 , y2 = 0, y3 =

1
4

give us a value and matching upper bound of 4.75, which therefore must be the optimal value.

17.1.2 An alternate motivating example – the carpenter
Suppose you are a humble carpenter; you spend your days making tables, chairs, and shelves,
all out of wood, nails, and paint. Each item you make requires a specific amount of each of the
three materials and can be sold at the market for a specific price. Given the amount of material
you have, you would like to determine the best way to use them to make the most money.

Item Wood Nails Paint Sale Price
Table 8 20 5 $50
Chair 4 15 3 $30
Shelf 3 5 3 $20
Stock 100 300 80
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Ignoring rounding issues, since we don’t want to deal with integrality, we can write this problem
as a linear program. This leads us to the following. Lets define the variables x , y , z to be the
number of tables, chairs, and shelves, respectively, that we should make.

maximize 50x +30y +20z

subject to 8x +4y +3z ≤ 100

20x +15y +5z ≤ 300

5x +3y +3z ≤ 80

x , y , z ≥ 0

If we use a computer program to solve this, we will find that an optimal solution is x ≈ 1.82, y ≈
14.55, z ≈ 9.09, with an objective value of $709.09.

Along comes a merchant A merchant approaches you, the humble carpenter, with the prospect
of buying your materials, i.e., all of your wood, nails, and paint. You consider selling them at
a fair price, but what should that be? You’d like to make sure that you sell them for at least as
much as you could make if you turned them into furniture, but you know that the merchant
will try to get the lowest price from you, so you’ll settle for that.

If we denote by w , s , p , the price of wood, nails, and paint, respectively, we can model this
problem as another LP as follows:

minimize 100w +300s +80p

subject to 8w +20s +5p ≥ 50

4w +15s +3p ≥ 30

3w +5s +3p ≥ 20

w , s , p ≥ 0

This LP has an optimal solution of w ≈ 2.73, s ≈ 0.73, p ≈ 2.73, and an objective value of $709.09.
What a coincidence! The objective value is the same as the previous LP. Perhaps that should not
be so surprising... we were not willing to sell the materials for less than we could turn them into
items, so we would expect it to be at least as much, but the fact that they are exactly equal is not
quite so obvious in advance...

The structure of this pair of LPs is very special, and if we look closely at them we will see that
they are made up of the same exact ingredients, just laid out a little differently. Since the first
LP is in standard form, we can write it in matrix form with

A =





8 4 3
20 15 5
5 3 3



 , b=





100
300
80



 , c=





50
30
20



 , x=





x
y
z





This way, the LP can be written as

maximize cT x (17.3)

subject to Ax≤ b

x≥ 0.
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Looking closely at the pricing LP, we see that if we define the variable vector y= [w s p ]T , then
it can be written as

minimize bT y (17.4)

subject to AT y≥ c

y≥ 0.

We happened to derive this particular LP by intuition, but in fact, given any LP in standard
form, one could apply this transformation to obtain this second program. It turns out to be a
wildly useful and powerful concept, so it has a name – its called the dual program!

17.2 A General Formulation of the Dual

Definition 17.1: The dual of a linear program

The dual of the standard form LP (17.3) is

minimize bT y

subject to AT y≥ c

y≥ 0.

The original standard form LP (17.3) is referred to as the primal problem.

And if you take the dual of (17.4) , what do you think you will get back? You’ll get (17.3). The
dual of the dual is the primal. Because of this, which program we refer to as the primal and
which we refer to as the dual is just a matter of convention, it is completely symmetric. Think
about how you would actually take the dual of the dual as an exercise. Since the dual as written
is not in standard form, it would need to first be converted to standard form.

17.2.1 The Theorems
Our intuitive derivation of the dual program as a pricing problem for the carpenter implied that
the value of the dual solutions should be at least as large as the profit the carpenter could make
from turning the materials into furniture, i.e., it should always give at least as large of a value
as the primal problem.

We can formally prove that it indeed always does just that. This fact is called weak duality.

Theorem 17.1: Weak Duality

If x is a feasible solution to the primal (17.3) and y is a feasible solution to the dual (17.4)
then

cT x≤ bT y.
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Proof. This follows by applying the constraints of the primal and dual LPs in (17.3) and (17.4)
and the fact that x≥ 0 and y≥ 0. Since AT y≥ c, we can plug this into the objective cT x and get

cT x≤ (AT y )T x= (yT A)x

Now we can move the brackets (associativity), and use the fact that Ax≤ b, to get

(yT A)x= yT (Ax)≤ yT b= bT y.

The amazing (and deep) result here is to show that the dual actually gives not just an upper
bound on the primal, but, assuming some mild conditions, it perfectly equals the primal!

Theorem 17.2: Strong Duality Theorem

Suppose the primal LP (17.3) is feasible (i.e., it has at least one solution) and bounded
(i.e., the optimal value is not∞). Then the dual LP (17.4) is also feasible and bounded.
Moreover, if x∗ is the optimal primal solution, and y∗ is the optimal dual solution, then

cT x∗ = bT y∗.

In other words, the maximum of the primal equals the minimum of the dual.

We will not prove Theorem 17.2 in this course, since the proof is a bit long, though it isn’t too
difficult (feel free to look it up if interested). Why is this useful? If I wanted to prove to you
that x∗ was an optimal solution to the primal, I could give you the solution y∗, and you could
check that x∗ was feasible for the primal, y∗ feasible for the dual, and they have equal objective
function values.

This relationship is like in the case of s -t flows: the max flow equals the minimum cut. Or like
in the case of zero-sum games: the payoff for the optimal strategy of the row player equals the
(negative) of the payoff of the optimal strategy of the column player. Indeed, both these things
are just special cases of strong duality!

17.2.2 Using duality to determine feasibility and boundedness
In addition to helping us bound feasible solutions to our LPs, duality can also be used as a tool
to determine when certain programs are feasible or infeasible, or perhaps show that they are
bounded or unbounded.

- If the primal is feasible and bounded, strong duality says the dual is also feasible and bounded.

- Suppose the primal (maximization) problem is unbounded. What can duality tell us? Weak
duality says cT x ≤ bT y ... If there existed any feasible y for the dual, this would imply that
the primal is bounded, and hence by the contrapositive, if the primal is unbounded, then the
dual must be infeasible.
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- By the exact same logic (reversed), if the dual is unbounded, since the primal is a lower bound
on the dual, the primal must be infeasible.

- Can both the primal and dual be unbounded? No, because as the two previous points show,
if one of them is unbounded, then the other is infeasible, and if a program is infeasible, it
certainly can not be unbounded.

We can use these facts to represent all of the possible situations in a table like so:

Dual

Inf F&B Unb

P
ri

m
al

Inf ✓ X ✓

F&B X ✓ X

Unb ✓ X X

Here, Inf means infeasible, F&B means feasible and bounded, and Unb means unbounded.
The only scenario that duality does not cover for us is the top-left cell. You can figure that out
as an exercise.

Remark: Usefulness

This table has some very useful implications. If we have an LP for some problem, we
might want to prove conditions on when it is feasible or infeasible. Directly proving that
the LP is infeasible might be too difficult. Instead, if we can write the dual program and
give a proof that the dual is unbounded, then we have indirectly proven that the primal
is infeasible! A useful trick.

17.3 Example: Zero-Sum Games

Consider a 2-player zero-sum game defined by an n-by-m payoff matrix R for the row player.
To simplify things a bit, let’s assume that all entries in R are positive (this is without loss of
generality since as pre-processing we can always translate values by a constant and this will
just change the game’s value to the row player by that constant). The lower bound for the row
player was defined to be

lb∗ =max
p

min
j

∑

i

pi Ri j ,

We can solve for the lower bound by writing it as an LP.
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Variables: p1, . . . , pn and v .
Objective: Maximize v .
Constraints:

- pi ≥ 0 for all 1≤ i ≤ n ,

-
n
∑

i=1

pi = 1. (the pi form a probability distribution)

-
n
∑

i=1

pi Ri j ≥ v for all columns 1≤ j ≤m

To apply our techniques for duality, we need to put it in standard form. To do so, we can do the
following:

- we can replace
∑

i pi = 1 with
∑

i pi ≤ 1 since we said that all entries in R are positive, so the
maximum will occur with

∑

i pi = 1,

- since all entries in R are positive, we can also safely add in the constraint v ≥ 0,

- we can also rewrite the third set of constraints as v −
∑

i pi Ri j ≤ 0.

This then gives us an LP in the form of (17.3) with

x=

v
p1

p2

. . .
pn

, c=

1
0
0

. . .
0

, b=

0
0

. . .
0
1

, and A =

1
1 −R T

. . .
1
0 1 . . . 1

.

i.e., maximizing cT x subject to Ax≤ b and x≥ 0.

We can now write the dual, following (17.4). Let yT = (q1, q2, . . . , qm , v ′). We now are asking to
minimize bT y subject to AT y ≥ c and y ≥ 0. Writing out the objective function, we get b · y =
[0 0 · · · 0 1] · [q1 q2 · · · qm v ′] = v ′, so the objective is just minimizev ′. If we transpose A, we get

AT =

1 · · · 1 0
1

−R
...
1

Now we can write out the constraints, we have

1. q1+ . . .+qm ≥ 1,

2. −q1Ri 1−q2Ri 2− . . .−qm Ri m +qm+1 ≥ 0 for all rows i ,

Since the objective is to minimize, and all R entries are positive, we can make a similar argu-
ment to the primal case that q1 + . . .+ qm = 1, i.e., this constraint must be tight because in-
creasing any of the q values would only further increase the objective. Some algebra turns the
second constraint into q1Ri 1+q2Ri 2+ . . .+qm Ri m ≤ v ′ for all rows i , so we obtain the LP:
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Variables: q1, . . . , qm and v ′.
Objective: Minimize v ′.
Constraints:

- qi ≥ 0 for all 1≤ i ≤m ,

-
m
∑

i=1

qi = 1.

-
m
∑

j=1

q j Ri j ≤ v ′ for all rows 1≤ i ≤ n

This LP look an awful lot similar to the primal LP, which was computing lb∗ for the row player.
What is this LP saying? We can interpret v ′ as being the value of the game to the row player once
again, and q1, . . . , qm as the randomized strategy of the column player this time, and we want
to find a randomized strategy for the column player that minimizes v ′ subject to the constraint
that the row player gets at most v ′ no matter what row he plays. In other words, we’ve just found
an LP for the upper bound ub∗ to the row player!

Notice that the fact that the maximum value of v in the primal is equal to the minimum value
of v ′ in the dual follows from strong duality. Therefore, the minimax theorem is a corollary to
the strong duality theorem!

Corollary 17.1: Minimax Theorem

Given a finite 2-player zero-sum game with payoff matrices R =−C ,

lb∗ =max
p

min
q

VR (p, q) =min
q

max
p

VR (p, q) = ub∗.

This common value is called the value of the game.

Proof. Follows from strong duality and the argument above, where we showed that the dual
problem to computing lb∗ is a linear program that computes ub∗.
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17.4 The Geometric Intuition for Strong Duality

Optional content — Not required knowledge for the exams

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize cT x

subject to Ax≤ b

x≥ 0

For concreteness, let’s take the following 2-dimensional LP:

maximize x2

subject to − x1+2x2 ≤ 3

x1+ x2 ≤ 2

−2x1+ x2 ≤ 4

x1, x2 ≥ 0

If c := (0, 1), then the objective function wants to maximize c·x, i.e., to go as far up in the vertical
direction as possible. As we have already argued before, the optimal point x∗ must be obtained
at the intersection of two constraints for this 2-dimensional problem (n tight constraints for n
dimensions). In this case, these happen to be the first two constraints.

If a1 = (−1, 2), b1 = 3 and a2 = (1, 1), b2 = 2, then x∗ is the (unique) point x satisfying both a1 ·x= b1

and a2 · x = b2. Indeed, we’re being held down by these two constraints. Geometrically, this
means that c= (0, 1) lies “between” these the vectors a1 and a2 that are normal (perpendicular)
to these constraints.
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17.4. The Geometric Intuition for Strong Duality

Consequently, c can be written as a positive linear combination of a1 and a2. (It “lies in the
cone formed by a1 and a2.”) I.e., for some positive values y1 and y2,

c= y1a1+ y2a2.

Great. Now, take dot products on both sides with x∗. We get

c ·x∗ = (y1 a1+ y2 a2) ·x∗

= y1(a1 ·x∗) + y2(a2 ·x∗)
= y1b1+ y2b2

Defining y= (y1, y2, 0, . . . , 0), we get

optimal value of primal= c ·x∗ = b ·y≥ value of dual solution y.

The last inequality follows because

- the y we found satisfies c = y1a1 + y2a2 =
∑

i yi ai = AT y, and hence y satisfies the dual
constraints yT A ≥ cT by construction.

In other words, y is a feasible solution to the dual, has value b · y ≤ c · x∗. So the optimal dual
value cannot be less. Combined with weak duality (which says that c · x∗ ≤ b · y), we get strong
duality

c ·x∗ = b ·y.

Above, we used that the optimal point was constrained by two of the inequalities (and that
these were not the non-negativity constraints). The general proof is similar: for n dimensions,
we just use that the optimal point is constrained by n tight inequalities, and hence c can be
written as a positive combination of n of the constraints (possibly some of the non-negativity
constraints too).
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Exercises: Linear Programming Duality

Exercises: Linear Programming Duality

Problem 37. Using the definitions we gave, show that the dual of the dual is the primal prob-
lem.

Problem 38. Find an LP that is infeasible such that its dual is also infeasible.

Problem 39. (Hard - optional) Prove the min-cut max-flow theorem using strong duality.
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Lecture 18

Approximation-Algorithms

While we have good algorithms for many optimization problems, the unfortunate reality eluci-
dated by theoretical computer science is that so very many important real-world optimization
problems are NP-hard. What do we do? Suppose we are given an NP-hard problem to solve.
Assuming P ̸= NP, we can’t hope for a polynomial-time algorithm for these problems. But can
we get polynomial-time algorithms that always produce a “pretty good” solution? (a.k.a. ap-
proximation algorithms)

Objectives of this lecture

In this lecture, we will

- define and motivate approximation algorithms

- derive two greedy algorithms for scheduling jobs on multiple machines to minimize
their makespan (a.k.a. stacking blocks to minimize the height of the tallest stack)

- see how rounding linear programs can give us an approximate vertex cover

- analyze an approximation algorithm for metric traveling salesperson that works by
just solving some graph problems that we already know how to solve

18.1 Introduction
Given an NP-hard problem, we don’t hope for a fast algorithm that always gets the optimal
solution — if we had such a polynomial algorithm, we would be able to use it to solve everything
in NP, and that would imply that P=NP, something we expect is false. But when faced with an
NP-hard problem, giving up is not the only reasonable solution! There are several ways that we
might try to move forward

- First approach: find a polynomial-time algorithm that guarantees to get at least a “pretty
good” solution? E.g., can we guarantee to find a solution that’s within 10% of optimal? If not
that, then how about within a factor of 2 of optimal? Or, anything non-trivial?

- Second approach: find a faster algorithm than the naïve one. There are a bunch of ideas that
you can use for this, often related to dynamic programming. You already saw an example: in
Lecture II on Dynamic programming, we gave an algorithm for TSP that ran in time O (n 22n ),
which is much faster than the naive brute force O (n ·n !)≥ n n/2 time algorithm.

Today’s lecture focuses on the first idea, to derive polynomial-time approximation algorithms.
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18.1.1 Formal definition

Definition: Approximation Algorithm

Given some optimization problem with optimal solution value OPT, and an algorithm
which produces a feasible solution with value ALG, we say that the algorithm is a c -
approximation algorithm if ALG is always within a factor of c of OPT. The convention
differs depending on whether the optimization problem is a minimization or maximiza-
tion problem.

Minimization An algorithm is a c -approximation (c > 1) if for all inputs, ALG≤ c ·OPT.

Maximization An algorithm is a c -approximation (0 < c < 1) if for all inputs, ALG ≥
c ·OPT.

18.2 Scheduling Jobs on Multiple Machines to Minimize
Load

Problem: Scheduling jobs on multiple machines to minimize the makespan

You have m identical machines on which you want to schedule some n jobs. Each job
i ∈ {1, 2, . . . , n} has a processing time pi > 0. You want to partition the jobs among the
machines to minimize the load of the most-loaded machine. In other words, if Sj is the
set of jobs assigned to machine j , define the makespan of the solution to be

max
1≤ j≤m

 

∑

i∈Si

pj

!

You want to minimize the makespan of the solution you output.

This is the formal definition of the problem that is usually used in textbooks, but here’s a nicer
and (subjectively) more intuitive way to describe the problem.

Problem: Stacking blocks to minimize the height

You have n blocks, the i th of which has height pi . You want to arrange the blocks into m
stacks such that the height of the tallest stack is as short as possible.

Observe that these two problems are exactly the same, just with a different story, but the latter
(I think) is easier to visualize and think about.

Example Here’s an example input to the job scheduling / block stacking problem. Say we
have p = {1, 3, 2, 4, 5, 2, 5} and m = 3. The blocks are shown on the left, and two possible ways
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to stack them are shown on the right. The makespan is the height of the tallest stack, which is
9 for the first example, and 8 for the second example.

1
3

2
4

5

2

5
3

2

1

5

4

5

2

Makespan = 9

3

4

1

5

2

5

2

Makespan = 8

The second example turns out to be optimal. Can you think of a proof of why?

Problem 40. Give a concise argument that a makespan of 8 is optimal for the block stacking
example above.

18.2.1 Algorithms for job scheduling / block stacking
Our first approach to the solve the block stacking problem is a greedy algorithm. Recall that
greedy algorithms are those that just look for some locally best choice and make that at each
step, rather than planning ahead in any way. Greedy algorithms are often very good for pro-
ducing approximations.

Algorithm: Greedy job scheduling / block stacking

Start with m empty stacks, then, for each block, place it on the current shortest stack.

Applying this to the example above, we would get the following configuration, which has a
makespan of 10, which is only 25% more than the optimal, so not too bad.

1
3

2
4

5

2

5

1

4

5

3

2

2

5

ALG = 10
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But that was just one example, how bad can it get in general? We need to prove that this algo-
rithm always gives us something that is pretty good, or near optimal.

Theorem 18.1: Quality of greedy job scheduling

The greedy approach outputs a solution with makespan at most 2 times the optimum,
i.e., it is a 2-approximation algorithm.

· · ·
L

p ∗i

· · ·

ALG = p ∗i + L

Proof. Let’s start by looking at the height of the tallest stack in our solu-
tion, since this is what defines the makespan (the answer). Call the last
block added to the tallest stack i ∗, so its height is pi ∗ . Now call the remain-
ing height of the tallest stack L . So we have by definition ALG = L +pi ∗ .
The hardest part of these greedy algorithm proofs is relating the value of
ALG to the value of OPT.

First, note that since every block must be placed somewhere, OPT ≥ pi

for all i and specifically, OPT ≥ pi ∗ . What can we say about L? Remem-
ber that the algorithm always chooses the shortest stack to place the next
block, so when it decided to place i ∗ on the stack, it was because L was
the height of the shortest stack at the time. This means that every stack has height at least L ,
which means that OPT≥ L .

So, combining these two inequalities, we get

ALG= L +pi ∗ ≤OPT+OPT= 2OPT

18.2.2 A worst-case example
Is this analysis tight? Sadly, yes. Suppose we have m (m − 1) jobs of size 1, and 1 job of size m ,
and we schedule the small jobs before the large jobs. The greedy algorithm will spread the small
jobs equally over all the machines, and then the large job will stick out, giving a makespan of
2m −1, whereas the right thing to do is to spread the small jobs over m −1 machines and get a
makespan of m .

m

(m −1)×m

ALG = 2m −1

m m × (m −1)

OPT =m
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The approximation ratio in this case is 2m−1
m = 2(1− 1

m )≈ 2, so this looks almost tight. It can be
made tight with a bit more analysis, but 2 is the tightest constant approximation ratio.

Problem 41. Improve the analysis slightly to show that the approximation ratio of the greedy
algorithm is actually 2(1− 1

m ), which makes the above example tight.

Can we get a better algorithm? The worst-case example helps us see the problem: when small
jobs come before big jobs they can cause big problems! So lets prevent this...

18.2.3 An improved greedy algorithm

Algorithm: Sorted greedy job scheduling / block stacking

Sort the blocks from biggest to smallest, then do the greedy algorithm.

This algorithm prevents the worst-case example that we showed before, but what does it do in
general? Let’s prove that it is in fact an improvement.

Theorem 18.2: Quality of sorted greedy job scheduling

The sorted greedy approach outputs a solution with makespan at most 1.5 times the
optimum, i.e., it is a 1.5-approximation algorithm.

Proof. Let’s use the same setup as before and say that i ∗ is the last block added to the tallest
stack, and L is the height of the rest of the stack underneath i ∗, so the makespan (tallest stack)
is L + pi ∗ . We still have the facts that OPT ≥ L and OPT ≥ pi ∗ . We need to make some new
observation in order to get the approximation ratio lower.

First, suppose L > 0, which means there are some blocks underneath i ∗. Since the blocks were
processed in sorted order (important), all of the blocks underneath are at least as large. Fur-
thermore, since L was the height of the shortest stack at the time that i ∗ was added, every other
stack is also non-empty and contains blocks that are at least as large as i ∗. From this, we can
deduce that there exists at least m + 1 blocks of size at least pi ∗ because there was at least one
in each of the m stacks before we processed i ∗. So, by the pigeonhole principle, since there are
only m stacks, for any possible configuration, there must always be a stack that contains two
blocks of size at least pi ∗ . Therefore OPT≥ 2pi ∗ , or equivalently pi ∗ ≤ 1

2 OPT.

Combining this with our original inequality, we get

ALG= L +pi ∗ ≤OPT+ 1
2 OPT= 1.5OPT.

Now we have an edge case to deal with. What if L = 0? Then we can’t say that there are any
blocks underneath i ∗ or make any argument about the number of large blocks. In this case, we
just have ALG = pi ∗ , but we know that OPT ≥ pi ∗ , so actually ALG = OPT, so we get the exact
answer in this case.
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So again we ask if this analysis is tight. In fact, this time it isn’t. We can further reason about
the properties of the sorted algorithm to get a better approximation ratio.

Problem 42. It is possible to show that the makespan of Sorted Greedy is at most 4
3 OPT, and

that this approximation ratio is indeed tight. Try it.

18.3 Vertex Cover via LP Rounding
Recall that a vertex cover in a graph is a set of vertices such that every edge is incident to (covers)
at least one of them. The minimum vertex cover problem is to find the smallest such set of
vertices.

Definition: Minimum Vertex Cover

Given a graph G , find a smallest set of vertices such that every edge is incident to at least
one of them.

For instance, this problem is like asking: what is the fewest number of guards we need to place
in a museum in order to cover all the corridors.

Problem 43. Find a vertex cover in the graphs above of size 3. Argue that there is no vertex
cover of size 2.

18.3.1 A linear-programming-based algorithm
We don’t expect to find the optimal solution in polynomial-time, but we will show in this section
that we can use linear programming to obtain a 2-approximate solution. That is, if the graph
G has a vertex cover of size k ∗, we can return a vertex cover of size at most 2k ∗. Let’s remind
ourselves of the LP relaxation of the vertex cover problem:

minimize
∑

v∈V

wv

s.t. wu +wv ≥ 1 ∀{u , v } ∈ E

wv ≥ 0 ∀v ∈V

Remember that in the integral version of the problem, the variables denote that a vertex v is
in the cover if xv = 1 and not in the cover if xv = 0. Solving the integral version is NP-hard, so
we settle for a relaxation, where we allow fractional values of xv , so a vertex can be “half” in
the cover. This is called an “LP relaxation” because any true vertex cover is a feasible solution,
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but we’ve made the problem easier by allowing fractional solutions too. So, the value of the
optimal solution now will be at least as good as the smallest vertex cover, maybe even better
(i.e., smaller), but it just might not be legal any more.

Since, in an actual vertex cover we can not take half of a vertex, our goal is to convert this frac-
tional solution into an actual vertex cover. Here’s a natural idea.

Algorithm: Relax-and-round for vertex cover

Solve the LP relaxation for xv for each v ∈V , then pick each vertex for which xv ≥ 1
2

This is called rounding the linear program (which literally is what we are doing here by round-
ing the fraction to the nearest integer — for other problems, the “rounding” step might not be
so simple).

Theorem: Relax-and-round is a 2-approximation

The above algorithm is a 2-approximation to VERTEX-COVER.

Proof. We need to prove two things. First, that we actually obtain a valid vertex cover (every
edge must be incident to a vertex that we pick) and that the size of the resulting cover is not too
large.

Feasibility Suppose for the sake of contradiction that there exists an edge (u , v ) that is not
covered. Then that means we did not pick either u or v , which means that xu <

1
2 and xv <

1
2 .

Therefore, xu + xv < 1, but this contradicts the LP constraint that xu + xv ≥ 1. So the algorithm
always outputs a vertex cover.

Approximation ratio Let LP denote the objective value of the relaxation. Since it is a re-
laxation, its solution can not be worse than the optimal integral solution (the actual mini-
mum vertex cover), so LP ≤ OPT. Furthermore, when we round the solution, in the worst
case, we increase variables from 1

2 to 1, so we double their value. Since the objective is
∑

xv ,
this at most doubles the objective value, so ALG ≤ 2LP. Combining these inequalities, we get
ALG≤ 2LP≤ 2OPT.

Again, we ask if this is analysis is tight. It in fact is, and a simple example to show that is the
graph with two vertices u and v connected by an edge. If the LP relaxation assigns xu = xv =

1
2 ,

we will pick both vertices for the cover, giving ALG= 2 when OPT= 1.

18.3.2 Hardness of Approximation
Interesting fact: nobody knows any approximation algorithm for vertex cover with approxima-
tion ratio 1.99. Best known is 2−O (1/

p

log n ), which is 2−o (1).

There are results showing that a good-enough approximation algorithm will end up show-
ing that P=NP. Clearly, a 1-approximation would find the exact vertex cover, and show this.
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Hrastad showed that if you get a 7/6-approximation, you would prove P=NP. This 7/6 was im-
proved to 1.361 by Dinur and Safra. Beating 2− ϵ has been related to some other problems (it
is “unique games hard”), but is not known to be NP-hard.

18.4 Metric Traveling Salesperson

The metric traveling salesperson (METRIC TSP) problem asks you to find the shortest path to
visit n cities, each exactly once, returning to where you started. You are given distances di j

between any pair of cities i and j (assume the graph is complete, you have all the distances).
The “metric” part of the problem is that these distances are symmetric and obey the triangle
inequality. That is, for any pair of vertices u , v and any intermediate vertex k , we always have
d (u , v )≤ d (u , k )+d (k , v ). In other words, its never worse to go somewhere directly rather than
via some other vertex.

To solve the problem, we’d like to re-use some previous problems that we already know how
to solve and relate their solution to the solution of the TSP problem. To gain some intuition
here, remember that the TSP problem is essentially asking for a cycle that visits every vertex of
the graph and has minimum possible weight. That sounds quite similar to another problem
we know... A problem where we want to pick a bunch of edges that connects the whole graph
but minimizes the total weight. It sounds a lot like the minimum spanning tree (MST) prob-
lem! The difference is that we now have to build a cycle rather than a tree so we are a bit more
constrained. Lets think about how we might pull a cycle out of an MST.

Here’s an idea. Root the MST arbitrarily, now just do a depth-first traversal, and record each
time we go down or up each edge. This uses each edge in the MST twice, but gives us a clean
cycle that starts at the root, visits each vertex (at least) once and returns to the root. Since it uses
the edges of the MST, it is hopefully not too expensive. Here’s a diagram to illustrate. Say the
MST of the graph is in blue, then we lay it out with an arbitrary root on the right and perform
the depth-first traversal.

This sounds pretty promising, but there’s a technicality we have to solve. This traversal visits
every vertex at least once, but it visits many vertices multiple times, which is not allowed in the
final TSP. What can we do about that? Well, the simplest solution is just to not do that. Any
time we encounter a duplicate vertex, lets just skip it and go to the next non-duplicate that the
traversal would visit. This looks like the following.
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We call the process of cutting out duplicates “shortcutting”. We are taking a shortcut from the
traversal and going straight to the next non-duplicate! Now here’s the last cool observation we
need. What did we just end up with? When we shortcutted the traversal, we ended up with a
sequence of vertices in a depth-first traversal order... Hmmm, this is nothing but the pre-order
of the vertices in the tree!

Algorithm: MST Approximation for Metric TSP

- Compute an MST M of the graph G

- Root M at an arbitrary vertex r

- Output a pre-order of M followed by r (return to the root)

Theorem: MST-TSP is a 2-approximation

This MST approach gives a 2-approximation to the METRIC TSP problem.

Proof. First, we want to compare the cost of the optimal TSP tour with the weight of the MST.
Consider any TSP tour (i.e., a cycle that visits every vertex). If we remove any one edge of the
tour, what are we left with? We will have n −1 edges that connect all n vertices... Oh, that’s just
a spanning tree! Since its a spanning tree, by definition its weight can not be less than that of
the MST, so

weight(M ST )≤weight(T SP −{e })≤weight(T SP ).

Now how costly is our solution? We started by traversing the MST depth-first, using each edge
twice, one down then once back up. Therefore the cost of this walk was 2weight(M ST ). Then
we had to shortcut out the duplicates to obtain a valid TSP tour. However, remember that the
triangle inequality says that going directly to a vertex is never worse than taking a detour, so
therefore this shortcutting process can only make the cost lower, so

ALG≤ 2 ·weight(M ST )≤ 2 ·weight(T SP ) = 2OPT.

The second step is where we needed the assumption that the distances were a metric. Without
it, we can not make the argument that the shortcuts do not increase the total cost.
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18.4.1 Worst Case Graphs
To prove tightness for this approximation ratio we will look at a certain type of graphs.

Consider for any odd n larger than 5, the wheel graph on n vertices Wn . On our complete graph,
we can make any edge on the wheel graph distance 1, and all other edges distance 2. Also, we
will label the vertices in a particular zig-zagging fashion. The reasoning for this will become
clear later. Here is such a graph on 7 vertices, where the red edges have distance 1 and the rest
have distance 2.

27

5

3 6

411111

It’s easy to see how these distances satisfy our distance metric. We can also see OPT is 7, fol-
lowing the tour {1, 2, 4, 6, 3, 5, 7, 1}.

Now, consider the MST on this graph that is the star graph centered on vertex 1. A preorder tour
of this MST will be {1, 2, 3, 4, 5, 6, 7, 1}. Here, our labeling comes into effect, because after short-
cutting, every edge this tour traverses except for the first and last is distance 2. If we had labeled
the vertices the obvious way, these shortcutted edges would still be distance 1. Therefore, ALG
is 12.

If we generalize this graph, we can see that OPT will always remain n , by using the wheel graph
edges. As mentioned, every edge the MST TSP traverses except for the first and last will be
distance 2, meaning ALG will be 2(n −2) +2= 2(n −1).

The approximation ratio in this case is 2(n−1)
n = 2(1− 1

n ). So as n grows larger this will tend to 2,
and we can see that 2 is indeed the tightest constant approximation ratio.
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18.5 Some more approximation algorithms
Optional content — Not required knowledge for the exams

18.5.1 Greedy Algorithm for Set Cover
The SET-COVER problem is defined as follows:

Definition 18.1: SET-COVER

Given a domain X of n points, and m subsets S1,S2, . . . ,Sm of these points, find the fewest
number of these subsets needed to cover all the points.

SET-COVER is NP-Hard. However, there is a simple algorithm that gets an approximation ratio
of ln n (i.e., that finds a cover using at most a factor ln n more sets than the optimal solution).

Algorithm: Greedy set cover

Pick the set that covers the most points. Throw out all the points covered. Repeat.

What’s an example where this algorithm doesn’t find the best solution?

Theorem: Greedy set cover is a ln n -approximation

If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
O (k ln n ) sets.

Proof. Since the optimal solution uses k sets, there must some set that covers at least a 1/k
fraction of the points. The algorithm chooses the set that covers the most points, so the first
set it chooses covers at least that many. Therefore, after the first iteration of the algorithm,
there are at most n (1 − 1/k ) points left. Again, since the optimal solution uses k sets, there
must some set that covers at least a 1/k fraction of the remainder (if we got lucky we might
have chosen one of the sets used by the optimal solution and so there are actually k − 1 sets
covering the remainder, but we can’t count on that necessarily happening). So, again, since
we choose the set that covers the most points remaining, after the second iteration, there are
at most n (1− 1/k )2 points left. Generally, after t rounds, there are at most n (1− 1/k )t points
left. After t = k ln n rounds, there are at most n (1− 1/k )k ln n < n (1/e )ln n = 1 points left, which
means we are done.

Also, you can get a slightly better bound by using the fact that after k ln(n/k ) rounds, there are
at most n (1/e )ln(n/k ) = k points left, and (since each new set covers at least one point) you only
need to go k more steps. This gives the somewhat better bound of k ln(n/k ) +k . So, we have:
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Theorem: Better bound for greedy set cover

If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
k ln(n/k ) +k sets.

This may be about the best you can do. Dinur and Steurer (improving on results of Feige)
showed that if you get a (1− ε) ln(n )-approximation algorithm for any constant ε > 0, you will
prove that P=NP.

18.5.2 Christofides’ Algorithm for Metric TSP
We can improve on the MST-based 2-approximation algorithm by looking at what we did in
a different way. What we did was: find the MST T , and create a new graph G ′ that contains
2 copies of each edge from T (that is, G ′ is a multigraph). We then found an Eulerian tour
of G . We transform the Eulerian tour into a TSP tour by skipping cities we’ve already visited
(shortcutting).

We can generalize this idea to other “spanning Eulerian multigraphs”.

Definition: Spanning Eulierian Multigraph

A spanning Eulerian multigraph of G is a multigraph that

1. contains a single component with all of the cities of G ,

2. contains some number (≥ 0) of copies of the edges between cities,

3. is Eulerian.

Theorem: Building TSP tours from Eulerian tours

If H is a spanning Eulerian multigraph of G and cost(H ) is the cost of the Eulerian tour
on H , then we can efficiently find a TSP tour of cost ≤ cost(H ).

Proof. Find the Eulerian tour on H (of cost(H )), turn it into a TSP tour via shortcuts of lower
cost.

For the MST-based algorithm, we used the “double MST” as the spanning Eulerian multigraph
(SEM), but if we can find a lower cost SEM, we could potentially do better. That leads to Christofides’1

algorithm.

1This algorithm was proposed in 1976 by Nicos Christofides, who was at Carnegie Mellon University at the time.
The result appeared as a technical report of the Graduate School of Industrial Administration (GSIA), which is now
part of the Tepper School of Business.
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Algorithm: Christofides’ Algorithm

Compute the MST T of G . Compute a minimum weight perfect matching M between
the vertices of odd degree in T . Construct the spanning Eulerian multigraph G ′ = T ∪M
(that is, G ′ contains the edges from T and the edges from the matching). Return the TSP
tour constructed from shortcutting an Eulerian tour on G ′.

Theorem

Christofides’ gives a 3/2-approximation algorithm for METRIC TSP.

Proof. We can always construct G : there are always an even number of odd-degree vertices in
T . (True for any undirected graph because

∑

v degree(v ) = 2|E |).

G is a spanning Eulerian multigraph: it contains all the vertices. Vertices that had even degree
in T have even degree in G . Vertices that have odd degree in T have 1 more edge incident on
them (from the matching) so now they have even degree. Since all the vertices in G have even
degree, G is Eulerian.

Let cost(E ) be the length of the Eulerian tour on G and cost(C ) be the cost of the TSP tour
extracted from it by shortcutting. Note that cost(C )≤ cost(E ) = cost(T ) + cost(M ).

We have cost(T )≤ cost(A∗) (same reason as before).

Let v1, . . . , vk be the odd degree vertices, listed in order that the appear in the optimal tour. Form
two matchings from these:

M1 = (v1, v2), (v3, v4), . . . , (vk−1, vk )

M2 = (v2, v3), (v4, v5), . . . , (vk , v1)

We then have cost(M1)+cost(M2)≤ cost(A∗) since M1∪M2 is a shortcutting of the optimal tour.
Since our matching M is the least weight, we have:

2cost(M )≤ cost(M1) + cost(M2)≤ cost(A∗)

This gives us:

cost(C )≤ cost(E ) = cost(T ) + cost(M )≤ cost(A∗) + (1/2)cost(A∗) = (3/2)cost(A∗)

A paper from 2020 by Karlin, Klein, and Oveis Gharan presents an improved algorithm, which
gives a 1.49999999999999999999999999999999999 approximation.2

2This is not an April fools joke. See https://arxiv.org/abs/2007.01409.
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Lecture 19

Online Algorithms

Today we’ll be looking at finding approximately-optimal solutions for problems where the dif-
ficulty is not that the problem is necessarily computationally hard but rather that the algorithm
doesn’t have all the information it needs to solve the problem up front.

Specifically, we will be looking at online algorithms, which are algorithms for settings where
inputs or data is arriving over time, and we need to make decisions on the fly, without knowing
what will happen in the future. This is as opposed to standard problems like sorting where you
have all inputs at the start. Data structures are one example of online algorithms (they need to
handle sequences of requests, and to do well without knowing in advance which requests will
be arriving in the future).

Objectives of this lecture

In this lecture, we will

- define and motivate online algorithms

- solve the rent-or-buy problem with an online algorithm and analyze its performance

- analyze various strategies for the list update problem. In particular, we will see how
potential functions are key ingredients in the analysis of online algorithms.

19.1 Framework and Definition

We are given a problem in which the input arrives over time rather than being known entirely
up front. At each point in time, we have to make some decision, and each such decision is
irrevocable, i.e., we can not change our mind later. Depending on the choices we make, we
incur some cost, depending on the cost model of the problem. The goal is to perform well
relative to an optimal omniscient algorithm, i.e., one that can predict the future and see the
entire input in advance.

This is similar to the way in which we analyze approximation algorithms, by comparing the
performance of our algorithm to that of the best possible algorithm (except that in this case,
our definition of “best” is that it can cheat and see the future). We define the competitive ratio
of an online algorithm very similarly to the approximation ratio.
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Definition: Competitive Ratio

An online algorithm is called c -competitive if for all possible inputsσ

ALG(σ)≤ c ·OPT(σ),

where ALG(σ) is the cost incurred by the online algorithm on the inputσ (which it does
not know in advance) and OPT(σ) is the cost of an optimal omnipotent algorithm that
can seeσ in advance. The factor c is called the competitive ratio of the algorithm.

19.2 Rent or buy?
Here is a simple online problem that captures a common issue in online decision-making,
called the rent-or-buy problem.

Problem: Rent or buy

Its the middle of the snow season and you are planning on going skiing. You can rent a
pair of skis at $r per day, or buy a pair for $b and keep them forever. You would like to
ski for as many days as possible, however, you do not know how many more days of the
season will be viable weather for skiing. Each day you find out whether the weather is
still good. At some point, you discover that the ski season is over. Your choice is to decide
whether to rent or buy skis on each day, with the goal of minimizing the total amount of
money that you spend.

Lets walk through a concrete example. You can either rent skis for $50 or buy them for $500. If
we know the future in advance, the solution is to buy immediately if we know that there are at
least 10 days of viable skiing weather, and if not, just always rent. The tricky part is designing an
online algorithm that doesn’t know the future. It has no idea how many days of viable whether
there will be. Lets start with some simple but sub-optimal strategies to illustrate:

- Always immediately buy: One valid online strategy is to immediate buy on the first day if the
weather is good. The worst case input for the this strategy is when we only get to go skiing
once, so we could have just paid $50, so the competitive ratio is 500/50 = 10, we paid 10×
more than we could have.

Rent forever: Another strategy is to never buy skis and just always rent. In this strategy, the
worst case input is that the ski season goes on arbitrarily long, and we end up paying an arbi-
trarily high amount of money, when the optimal choice would have been to buy immediately,
so the competitive ratio is actually∞ (or unbounded).

In general, since after buying the skis the algorithm has no more decisions to make, we can
characterize any online algorithm for the rent-or-buy problem by the day on which it decides
to buy. Now observe that in general, the worst-case input for such an algorithm is that the
weather is bad on the day after it buys the skis. With this in mind, here is one more bad strategy
before we hone in on the optimal one.
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- Rent five times then buy: How about we rent five times, then decide that it is time to buy. The
worst-case input is that the weather is good for six days, then bad. In this case, our algorithm
pays 5×50+500= 750, but the optimal algorithm would just always rent, which costs 5×60=
300, so this is 2.5-competitive.

Well that’s certainly a lot better than 10. It seems like if we hedge our bets by renting longer, we
get a better competitive ratio. At some point, this will stop being true, though. In particular,
it never makes sense to plan to rent for more than 10 days, because then we should have just
bought the skis for sure. So the most hedging we can do is to rent for 10 days then buy. This is
called the better-late-than-never algorithm.

Algorithm: Better-late-than-never

We rent for b /r −1 daysa, then we buy. In other words, we buy on day b /r .

aIf r does not divide b , then we should rent for ⌈b /r ⌉ − 1 days, but we will just assume that r divides b
for simplicity

Theorem: Better-late-than-never is 2-competitive

Better-late-than-never is a 2-competitive algorithm for the rent-or-buy problem.

Proof. Suppose the weather is good for n days. We have to consider two cases:

1. If n r < b (i.e., n < b /r ), then the optimal solution is to always rent, but in this case, our
algorithm doesn’t buy either, so it is optimal.

2. If n r ≥ b , the optimal solution buys immediately, but our algorithm first rents for b /r −1
days before buying, so the ratio is

�

b
r −1

�

r + b

b
=

b − r + b

b
= 2−

r

b
≤ 2

Now as we will naturally want to ask: can we do better?

Problem 44. Show that better-late-than-never has the best possible competitive ratio for the
rent-or-buy problem for deterministic algorithms when b is a multiple of r .

19.3 List Update
This is a nice problem that illustrates some of the ideas one can use to analyze online algo-
rithms. Here are the ground rules for the problem:
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Problem: List Update

- We begin with a list of n items 1, 2, . . . , n . Imagine a linked list starting with 1 and end-
ing with n .

- An item x can be accessed. The operation is called Access(x ). The cost is the position
of x .

- The algorithm can rearrange the list by swapping adjacent elements. The cost of a
swap is 1.

So an on-line algorithm is specified by describing which swaps are done and when. The goal is
to devise and analyze an on-line algorithm for doing all the accesses Access(σ1), Access(σ2),
Access(σ3), . . . with a small competitive factor. Here are several algorithms to consider.

Problem 45. Do no swaps Consider an online algorithm that does no swaps. What is a worst-
case input for this algorithm? What is the resulting competitive ratio?

Problem 46. Single exchange Consider an online algorithm that, for each accessed element,
swaps it one position closer to the front of the list. What is a worst-case input for this algorithm?
What is the resulting competitive ratio?

Problem 47. Frequency count Consider an online algorithm that remembers the frequency of
each element being accessed, and keeps the list sorted by frequency (largest to smallest). What
is a worst-case input for this algorithm? What is the resulting competitive ratio?

Okay, those were warm-ups, now its time for the real algorithm.

Algorithm: Move-to-front

After an access to an element x , do a series of swaps to move x to the front of the list.

Theorem 19.1: Competitive ratio of MTF

MTF is a 4-competitive algorithm for the list-update problem.

Proof. We’ll use the potential function method. There will be a potential function that depends
on the state of the MTF algorithm and the state of the “opponent” algorithm B , which can be
any algorithm, even one which can see the future. Using this potential, we’ll show that the
amortized cost to MTF of an access is at most 4 times the cost of that access to B .

What is the potential function Φ? Define

Φt = 2 · (The number of inversions between B ’s list and MTF’s list at time t )

Recall that an inversion is a pair of distinct elements (x , y ) that appear in one order in B ’s list
and in a different order in MTF’s list. It’s a measure of the similarity of the lists.
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We can first analyze the amortized cost to MTF of Access(x ) (where it pays for the list traversal
and its swaps, but B only does its access). Then we separately analyze the amortized cost to
MTF that is incurred when B does any swaps. (Note that in the latter case MTF incurs zero
cost, but it will have a non-zero amortized cost, since the potential function may change. To be
complete the analysis must take this into account.). In each case we’ll show that the amortized
cost to MTF (which is the actual cost, plus the increase in the potential) is at most 4 times the
cost to B .

For any particular step, let CM T F and CB be the actual costs of M T F and B on this step, and
ACM T F =CM T F +∆Φ be the amortized cost. Here∆Φ=Φne w −Φo l d is the increase inΦ. Hence
observe that∆Φmay be negative, and the amortized cost may be less than the actual cost. We
want to show that

ACM T F ≤ 4 ·CB

We can then sum the amortized costs, which would equal the actual cost of the entire sequence
of accesses to MTF plus the final potential (non-negative) minus the initial potential (zero).
This would be the four times total cost of B , which would give the result.

Analysis of Access(x ). First look at what happens when MTF accesses x and brings it to the
front of its list. Say the picture looks like this: 

B

I
MTF

MTF I

Look at the elements that lie before x in MTF’s list, and partition them as follows:

S = {y | y is before x in MTF and y is before x in B }
T = {y | y is before x in MTF and y is after x in B }

What is the cost of the access to MTF in terms of these sets?

CM T F = 1+ |S |+ |T |
︸ ︷︷ ︸

find cost

+ |S |+ |T |
︸ ︷︷ ︸

swap cost

= 1+2(|S |+ |T |).

On the other hand, since all of S lies before x in B , the cost of the algorithm B is at least

CB ≥ |S |+1.

What happens to the potential as a result of this operation? Well, here’s MTF after the operation:

 

B

I
MTF

MTF I
The only changes in the inversions involve element x , because all other pairs stay in the same
relative order. Hence, for every element of S the the number of inversions increases by 1, and

217



Lecture 19. Online Algorithms

for every element of T the number of inversions decreases by 1. Hence the increase in Φ is
precisely:

∆(Φ) = 2× (|S | − |T |)

Now the amortized cost is

ACMTF =CM T F +∆(Φ) = 2(|S | − |T |) +1+2(|S |+ |T |)
= 1+4|S | ≤ 4(1+ |S |)≤ 4 CB

This completes the amortized analysis of Access(x ).

Analysis of B swapping. As explained above, we view B doing a swap as an event in its own
right, not associated with any of the access events. For each such swap, observe that CMTF = 0
and CB = 1. Moreover, ∆(Φ) ≤ 2, since the swap may introduce at most one new inversion.
Hence,

ACM T F ≤ 2 CB ≤ 4 CB

Putting the parts together. Summing the amortized costs we get:

Total Cost to MTF +≤ 4(Total Cost to B )+Φinit−Φfinal

But Φinit = 0, since we start off with the same list as B . And Φfinal ≥ 0. Hence Φinit −Φfinal ≤ 0.
Hence,

Total Cost to MTF≤ 4× (Total Cost to B ).

Hence the MTF algorithm is 4-competitive.

Key Idea: Using a potential function to analyze online algorithms

We saw potential functions earlier in the course for coming up with amortized cost bounds.
Another powerful use of them is to analyze online algorithms. They help us relate the
cost of our algorithm to the cost of the optimal omniscient algorithm, which is often very
tricky to figure out without a potential function.
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Streaming Algorithms

Today we’ll talk about a topic that is both very old (as far as computer science goes), and very
current. It’s a model of computing where the amount of space we have is much less than the
amount of data we examine, and hence we can store only a “summary” or “sketch” of the data.
Back at the dawn of CS, data was stored on tapes and the amount of available RAM was very
small, so people considered this model. And now, even when RAM is cheap and our machines
have gigabytes of RAM and terabytes of disk space, it may be listening to an Ethernet cable
carrying gigabytes of data per second. What can we compute in this model?

Objectives of this lecture

In this lecture, we will:

- Introduce the data streaming model, and its concerns.

- Analyze an algorithm for heavy hitters in the arrivals-only model.

- Analyze an algorithm for heavy hitters with both arrivals and departures.

20.1 Introduction
Today’s lecture will be about a slightly different computational model called the data streaming
model. In this model you see elements going past in a “stream”, and you have very little space to
store things. For example, you might be running a program on an Internet router, the elements
might be IP Addresses, and you have limited space. You certainly don’t have space to store
all the elements in the stream. The question is: which functions of the input stream can you
compute with what amount of time and space?

We will denote the stream elements by

a1, a2, a3, . . . , at , . . .

We assume each stream element is from alphabetΣ and takes b bits to represent. For example,
the elements might be 32-bit integers IP Addresses. We imagine we are given some function,
and we want to compute it continually, on every prefix of the stream. Let us denote a[1:t ] =
〈a1, a2, . . . , at 〉.

Let us consider some examples. Suppose we have seen the integers

3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, . . . (⋄)
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- Computing the sum of all the integers seen so far? F (a[1:t ]) =
∑t

i=1 ai . We want the outputs

3, 4, 21, 25, 16, 48, 149, 152,−570,−567, 333, 337, 369, . . .

If we have seen T numbers so far, the sum is at most T 2b and hence needs at most O (b+log T )
space. So we can keep a counter, and when a new element comes in, we add it to the counter.

- How about the maximum of the elements so far? F (a[1:t ]) = maxt
i=1 ai . Even easier. The

outputs are:
3, 1, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900

We just need to store b bits.

- The median? The outputs on the various prefixes of (⋄) now are

3, 1, 3, 3, 3, 3, 4, 3, . . .

Doing this with small space is a lot more tricky.

- The number of distinct elements seen so far?

- “heavy hitters”, i.e. the elements that have appeared at least ϵ fraction of the times so far?

You can imagine the applications of this model. An Internet router might see a lot of packets
whiz by, and may want to figure out which data connections are using the most space? Or how
many different connections have been initiated since midnight? Or the median (or the 90t h

percentile) of the file sizes that have been transferred. Which IP connections are “elephants”
(say the ones that have used more than 0.01% of your bandwidth)? Even if you are not working
at “line speed”,1 but just looking over the server logs, you may not want to spend too much time
to find out the answers, you may just want to read over the file in one quick pass and come up
with an answer. Such an algorithm might also be cache-friendly. But how to do this? Two of
the recurring themes will be:

- Approximate solutions: in several cases, it will be impossible to compute the function exactly
using small space. Hence we’ll explore the trade-offs between approximation and space.

- Hashing: this will be a very powerful technique.

Remark: Measuring space in terms of bits

In this lecture, we will be focusing on space bounds rather than runtime. Additionally, in
this model, we will be measuring the space usage of an algorithm in terms of the number
of bits needed, which may be different to how we have previously thought about space.
In many other models, we would think of the space required to store n integers as O (n ),
by assuming that each constant unit of space is large enough to store an integer. Storing
a sequence of n integers in the range 0 to n however requires O (n log n ) bits, because
each integer is O (log n ) bits. In general, in this model, storing n integers of b bits each
takes O (n b ) space. It is important to keep this in mind.

1Such a router might see tens of millions of packets per second.
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20.2 Finding ϵ-Heavy Hitters
Let’s formalize things a bit. We have a data stream with elements a1, a2, . . . , at seen by time t .
Think of these elements as “arriving” and being added to a multiset St , with S0 = ;, S1 = {a1},
. . . ,Si = {a1, a2, . . . , ai }, etc. Let

countt (e ) = {i ∈ {1, 2, . . . , t } | ai = e }

be the number of times e has been seen in the stream so far. The multiplicity of e in St .

Definition 20.1: ϵ-heavy-hitters

Element e ∈Σ is called an ϵ-heavy hitter at time t if countt (e )> ϵt . That is, e constitutes
strictly more than ϵ fraction of the elements that arrive by time t .

The goal is simple — given an threshold ϵ ∈ [0, 1], maintain a data structure that is capable of
outputting ϵ-heavy-hitters. At any point in time, we can query the data structure, and it outputs
a set of at most 1/ϵ elements that contains all the ϵ-heavy hitters. At any moment in time, there
are at most 1/ϵ elements that are ϵ-heavy-hitters, so this request is not unreasonable.

Remark

It’s OK to output “false positives” but we are not allowed “false negatives”, i.e., we’re not
allowed to miss any heavy-hitters, but we could output non-heavy-hitters. (Since we
only output 1/ϵ elements, there can be ≤ 1/ϵ-false positives.)

For example, if we’re looking for 1
3 -heavy-hitters, and the stream is

E , D , B , D , D 5, D , B , A, C , B 10, B , E , E , E , E 15, E · · ·

(the subscripts are not part of the stream, just to help you count) then

- at time 5, the element D is the only 1
3 -heavy-hitter,

- at time 11 both B and D are 1
3 -heavy-hitters, and

- at time 15, there is no 1
3 -heavy-hitter, and

- at time 16, only E is a 1
3 -heavy-hitter.

Note that as time passes, the set of frequent elements may change completely, so an algorithm
would have to be adaptive. We cannot keep track of the counts for all the elements we’ve seen
so far, there may be a lot of different elements that appear over time, and we have limited space.

Any ideas for how to find some “small” set containing all the ϵ-heavy-hitters?

Hmm, one trick that is useful in algorithm design, as in problem solving, is to try simple cases
first. Can you find a 1-heavy-hitter? (Easy: there is no such element.) How about a 0.99-heavy-
hitter? Random sampling will also work (maybe you’ll see this in a homework or recitation),
but let’s focus on a deterministic algorithm for right now.
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20.2.1 Finding a Majority Element

Let’s first try to solve the problem of finding a 0.5-heavy-hitter, a.k.a. a majority element, an
element that occurs (strictly) more than half the time. Keeping counts of all the elements is
very wasteful! How can we find a majority element while using only a little space? Here’s an
algorithm (due to R. Boyer and J.S. Moore) that keeps very little information.

Algorithm 20.1: Boyer-Moore Majority

We keep one element from Σ in a variable called memory, and a counter

memory = ⊥
counter = 0

When element at arrives
if (counter == 0)
set memory = at and counter = 1

else
if at == memory
counter++

else
counter−−
discard at

At the end, return the element in memory.

- Suppose there is no majority element, then we’ll output a false positive. As we said earlier,
that’s OK: we want to output a set of size 1 that contains the majority element, if any.

- If there is a majority element, we will indeed output it. Why? Observe: when we discard
an element at , we also throw away another (different) element as well. (Decrementing the
counter is like throwing away one copy of the element in memory.) So every time we throw
away a copy of the majority element, we throw away another element too. Since there are
fewer than half non-majority elements, we cannot throw away all the majority elements.

A different (albeit somewhat gruesome) way of looking at this is as a “gang war”. Every element
is a gang member. When we have two members from different gangs, they shoot each other
in the standoff. If there is a gang with more than n/2 members (a majority gang), it will be the
only one whose members survive.

20.2.2 Finding an ϵ-heavy-hitter

We can extend this idea to finding ϵ-heavy-hitters.2 Set k = ⌈1/ϵ⌉−1; for ϵ = 1/2, we’d get k = 1.

2The extension to finding ϵ-heavy-hitters was given by J. Misra and D. Gries, and independently by R.M. Karp,
C.H. Papadimitriou and S. Shenker.
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Algorithm 20.2: ϵ-heavy-hitters

We keep an array T [1 . . . k ], where each location can hold one element from Σ; and an
array C [1 . . . k ], where each location can hold a non-negative integer.

C [i ] = 0 for all 1≤ i ≤ k
T [i ] =⊥ for all 1≤ i ≤ k

When element at arrives.
if there exists j ∈ {1, 2, . . . , k} such that at == T [ j ], then C [ j ]++.
else if some counter C [ j ] == 0 then set T [ j ]← at and C [ j ]← 1.
else decrement all the counters by 1 (and discard element at).

Problem 48. Check that this algorithm is identical to the one above for ϵ = 1/2.

At any point t , we will maintain estimates of the counts. Our estimates are:

estt (e ) =

¨

C [ j ] if e == T [ j ]

0 otherwise

The main claim naturally extends the proof for the case of majority.

Lemma 20.1

The estimated counts satisfy:

0≤ countt (e )−estt (e )≤
t

k +1
≤ ϵt

Proof. The estimated count estt (e ) is at most the actual count, since we never increase a counter
for e unless we see e . So countt (e )−estt (e )≥ 0. (In other words, estt (e )≤ countt (e ), it is always
an underestimate.)

To prove the other inequality, think of the arrays C and T saying that we have C [1] copies of
T [1], C [2] copies of T [2], etc., in our hand. Look at some time when the difference between
countt (e ) and estt (e ) increases by 1. Each time this happens, we decrement k different coun-
ters by 1 and discard an element (which is not currently present in the array T ). This is like
dropping k + 1 distinct elements (one of which is e ). We can drop at most t elements until
time t . So the gap can be at most t /(k + 1). And since k = ⌈1/ϵ⌉ − 1 ≥ 1/ϵ − 1, we get that
t /(k +1)≤ ϵt .

Corollary 20.1

For every n , the set of items in the array T contains all the ϵ-heavy-hitters.
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Proof. After we’ve seen n elements, the ϵ-heavy-hitters have occurred at least countt (e ) > ϵt
times. If e is a ϵ-heavy-hitter, by Lemma 20.1, the estimate

estt (e )≥ countt (e )− ϵt > 0.

So element e must be in the array T .

To summarize: if we set k = ⌈1/ϵ⌉ − 1, we get an algorithm that gives us element counts on a
stream of length t to within an additive error of at most (ϵ · t ) with space O (1/ϵ) · (logΣ+ log t )
bits. As a corollary we get an algorithm to find a set containing the ϵ-heavy-hitters.

20.3 Heavy Hitters with Deletions
In the above problem, we assumed that the elements were only being added to the current set
at each time. We maintained an approximate count for the elements (up to an error of ϵt ). Now
suppose we have a stream where elements can be both added and removed from the current
set. How can we give estimates for the counts?

Formally, each time we get an update, it looks like (add, e ) or (del, e ). We will assume that for
each element, the number of deletes we see for it is at most the number of adds we see — the
running counts of each element is non-negative. As an example, suppose the stream looked
like:

(add, A), (add, B ), (add, A), (del, B ), (del, A), (add, C )

then the sets at various times are

S0 = ;,S1 = {A},S2 = {A, B },S3 = {A, A, B },S4 = {A, A},S5 = {A},S6 = {A, C }, . . .

The counts of the element are defined in the natural way: count3(A) = 2 and count5(A) = 1.
Observe that the “active” set St has size |St |=

∑

e∈Σ countt (e ), and its size can grow and shrink.

What do we want want now? We want a data structure to answer count queries approximately.
Specifically, at any point in time t , for any element, we should be able to ask “What is countt (e )?”
The data structure should respond with an estimate estt (e ) such that

Pr
�

�

�estt (e )− countt (e )
�

�

︸ ︷︷ ︸

error

≤ ϵ|St |
︸︷︷︸

is small

�

≥ 1−δ
︸︷︷︸

with high probability

.

Again, we would again like to use small space — perhaps even close to the

O (1/ϵ) · (logΣ+ log |St |) bits of space

we used in the above algorithm. (As you’ll see, we’ll get close.)

20.3.1 A Hashing-Based Solution: First Cut
We’re going to be using hashing for this approach, simple and effective. We’ll worry about what
properties we need for our hash functions later, for now assume we have a hash function h :
Σ→{0, 1, . . . , k −1} for some suitably large integer k .
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Algorithm 20.3: Approximate count

Maintain an array A[1 . . . k ] capable of storing non-negative integers.

when update a_t arrives
if (a_t == (add, e)) then
A[h(e)]++;

else // a_t == (del, e)
A[h(e)]−−;

This was the update procedure. And what is our estimate for the number of copies of element
e in our active set St ? It is

estt (e ) := A(h (e )).

In words, we look at the location h (e ) where e gets mapped using the hash function h , and
look at the count A[h (x )] stored at that location. What does it contain? It contains the current
count for element e for sure. But added to it is the current count for any other element that
gets mapped to that location. In math:

A(h (e )) =
∑

e ′∈Σ
countt (e

′) ·1(h (e ′) = h (e )),

where 1(some condition) is a function that evaluates to 1 when the condition in the parentheses
is true, and 0 if it is false. We can rewrite this as

A(h (e )) = countt (e ) +
∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e )),

or using the definition of the estimate, as

estt (e )− countt (e ) =
∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e )). (20.1)

A great situation will be if no other elements e ′ ̸= e hashed to location h (e ) and the error (i.e.,
the summation on the right) evaluates to zero. But that may be unlikely. On the other hand, we
can show that the expected error is not too much.

What’s the expected error? Now we need to assume something good about the hash functions.
Assume that the hash function h is a random draw from a universal family. Recall the definition
from Lecture 5.

Definition: Universal hashing

A familyH of hash functions from Σ→ [k ] is universal if for any pair of keys x1, x2 ∈ Σ
with x1 ̸= x2,

Pr[h (x1) = h (x2)]≤
1

k
.

In other words, if we just look at two keys, the probability that they collide is no more than if
we chose to map them randomly into the range [k ]. We gave a construction where each hash
function in the family used (lg k ) · (lg |Σ|) bits to specify.
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Good. So we drew a hash function h from this universal hash familyH , and we used it to map
elements to locations {0, 1, . . . , k −1}. What is its expected error? From (20.1), it is

E





∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e ))



=
∑

e ′ ̸=e

countt (e
′) ·E

�

1(h (e ′) = h (e ))
�

(20.2)

=
∑

e ′ ̸=e

countt (e
′) ·Pr[h (e ′) = h (e )]

≤
∑

e ′ ̸=e

countt (e
′) · (1/k ) (20.3)

=
|St | − countt (e )

k
≤
|St |
k

.

We used linearity of expectations in equality (20.2). To get (20.3) from the previous line, we
used the definition of a universal hash family. Let’s summarize:

Claim 20.1

The estimator estt (e ) = A(h (e )) ensures that

(a) estt (e )≥ countt (e ), and

(b) E [estt (e )]− countt (e )≤ |St |/k .

The space used is: k counters, and O ((log k )(logΣ)) to store the hash function.

That’s pretty awesome. (But perhaps not so surprising, once you think about it.) Note that if
we were only doing arrivals and no deletions, the size of St would be exactly t . So the expected
error would be at most t /k , which is about the same as we were getting in Section 20.2 using
an array of size (k −1). But now we can also handle deletions!

What’s the disadvantage? We only have a bound on the expected error E [estt (e )]−countt (e ). It
is no longer deterministic. Also, the expected error being small is weaker than saying: we have
small error with high probability. So let’s see how to improve things.

20.3.2 Amplification of the Success Probability

Any ideas how to amplify the probability that we are close to the expectation? The idea is
simple: independent repetitions. Let us pick m hash functions h1, h2, . . . , hm . Each hi : Σ →
{0, 1, . . . , k − 1}. How do we choose these hash functions? Independently from the universal
hash family H .3

3If we use the hash function construction given in Lecture #5 (Section 5.4.1), this means the (lg k ) · (lg |Σ|)-bit
matrices for each hash function must be filled with independent random bits.
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Algorithm: CountMin sketch

We have m arrays A1, A2, . . . , Am , one for each hash function. The algorithm now just uses
the i t h hash function to choose a location in the i t h array, and increments or decrements
the same as before.

when update a_t arrives
for each i from 1..m
if (a_t == (add, e)) then
A_i[h_i(e)]++

else // a_t == (delete, e)
A_i[h_i(e)]−−

And what is our new estimate for the number of copies of element e in our active set? It is

bestt (e ) :=
m

min
i=1

Ai (hi (e )).

In other words, each (hi , Ai ) pair gives us an estimate, and we take the least of these. It makes
perfect sense — the estimates here are all overestimates, so taking the least of these is the right
thing to do.

But how much better is this estimator? Let’s do the math.

What is the chance that one single estimator has error more than 2|St |/k ? Remember the ex-
pected error is at most |St |/k . So by Markov’s inequality

Pr
�

error> 2 ·
|St |
k

�

≤
1

2
.

And what is the chance that all of the m copies have “large” (i.e., more than 2|St |/k ) error? The
probability of m failures is

Pr[each of m copies have large error]

=
m
∏

i=1

Pr[i t h copy had large error]

≤ (1/2)m .

The first equality there used the independence of the hash function choices. (Only if events
A ,B are independent you can use Pr[A ∧B ] = Pr[A ] · Pr[B ].) And so the minimum of the
estimates will have “small” error (i.e., at most 2|St |/k ) with probability at least 1− (1/2)m .

Final Bookkeeping

Let’s set the parameters now. Set k = 2/ϵ, so that the error bound 2|St |/k = ϵ|St |. And suppose
we set m = lg 1/δ, then the failure probability is (1/2)m = δ, and our query will succeed with
probability at least 1−δ. 4

4How small should you make δ? Depends on how many queries you want to do. Suppose you want to make
a query a million times a day, then you could make δ = 1/109 ≈ 1/230 a 1-in-1000 chance that even one of your
answers has high error. Our space varies linearly as lg 1/δ, so setting δ = 1/1018 instead of 1/109 doubles the space
usage, but drops the error probability by a factor of billion.
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Then on any particular estimate bestt (e )we ensure

Pr
�

�

�bestt (e )− countt (e )
�

�≤ ϵ|St |
�

≥ 1−δ.

Just as we wanted. And the total space usage is

m ·k counters=O (log 1/δ) ·O (1/ϵ) =O (1/ϵ log 1/δ) counters.

Each counter has to store at most lg T -bit numbers after T time steps. 5

Space for Hash Functions: We need to store the m hash functions as well. How much space
does that use? The construction from Lecture #5 used s := (lg k ) · (lgΣ) bits per hash function.
Since k = 1/ϵ, the total space used for the functions is

m · s =O (log 1/δ) · (lg 1/ϵ) · (lgΣ) bits.

And in Summary...

Using about 1/ϵ × poly-logarithmic factors space, and very simple hashing ideas, we could
maintain the counts of elements in a data stream under both arrivals and departures (up to an
error of ϵ|St |). As in the arrival-only case, these counts make sense only for very high-frequency
elements.

5So a 32-counter can handle a data stream of length 4 billion. If that is not enough, there are ways to reduce this
space usage as well, look online for “approximate counters”.
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Lecture 21

Computational Geometry:
Fundamentals

Computational geometry is the design and analysis of algorithms for geometric problems that
arise in low dimensions, typically two or three dimensions. Many elegant algorithmic design
and analysis techniques have been devised to attack geometric problems, and these problems
have huge applications in many other fields.

Objectives of this lecture

In this lecture, we will

- see some motivating applications of computational geometry

- define some fundamental objects (points, lines, polygons) and common operations
on them

- derive an efficient algorithm for the convex hull problem, a classic and very funda-
mental problem in computation geometry

21.1 Introduction

Computational geometry has applications in, and in some cases is the entire basis of, many
fields. E.g.,

- Computer Graphics (rendering, hidden surface removal, illumination)

- Robotics (motion planning)

- Geographic Information Systems (Height of mountains, vegetation, population, cities, roads,
electric lines)

- Computer-aided design (CAD) /Computer-aided manufacturing (CAM)

- Computer chip design and simulations

- Scientific Computation (Blood flow simulations, Molecular modeling and simulations)
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21.1.1 Representations and Assumptions
The basic approach used by computers to handle complex geometric objects is to decompose
the object into a large number of very simple objects. Examples:

- An image might be a 2D array of dots.

- An integrated circuit is a planar triangulation.

- Mickey Mouse is a surface of triangles

It is traditional to discuss geometric algorithms assuming that computing can be done on ideal
objects, such as real valued points in the plane. The following chart gives some typical examples
of representations.

Abstract Object Representation

Real Number Floating-point Number

Point Pair of Reals

Line Pair of Points, An Equation

Line Segment Pair of Endpoints

Triangle Triple of points

For the purpose of this course, we will assume a rather idealized model of computation, where
we assume we can compute on the objects we care about (which might be integers, or some-
times might be arbitrary real numbers) in constant time without any loss of precision. For
example, we will ignore things like rounding errors which would be a real-life consideration if
you were actually implementing many of these algorithms.

Remark: Rounding errors...

In real life, computational geometry algorithms are often extremely susceptible to round-
ing errors. Algorithms which might be simple to describe on paper or in pseudocode
can end up being very subtle and difficult to implement correctly because of it. In this
course, we will mostly sweep this under the rug and focus on the elegance of the algo-
rithms without this pain point in mind.

21.2 Fundamental Operations

21.2.1 Operations on points and vectors
In computational geometry, the most primitive object is a point, which we can represent as a
tuple of real numbers. We will mostly be focusing on 2D computational geometry, so points will
be represented as pairs (x , y ) of real numbers. In 2D or 3D space, a vector is a pair of 3-tuple
of real numbers, respectively. Wait, that’s just the same thing as a point! Indeed, the difference
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between a point and a vector is often just context, points are typically used to denote locations,
and vectors are typically used to denote directions/lengths or differences, but mathematically
they are interchangeable.

Addition and subtraction Let’s start by defining pointwise addition/subtraction of vectors:

(x1, y1) + (x2, y2) := (x1+ x2, y1+ y2)

(x1, y1)− (x2, y2) := (x1− x2, y1− y2)

The effect of vector addition and subtraction can be visualized as in the following pictures.
p − q results in a vector that points from the point q to the point p . Adding p + q results in
a vector that points to the location you would get to if you start at (0, 0) then follow p then q
(equivalently, q then p ).
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Scalar multiplication We can define the multiplication of a vector by a scalar. Geometrically,
multiplying a vector by a scalar αmakes it α times longer.

α(x , y ) := (αx ,αy )

Magnitude/length The magnitude or length of a vector is given by the formula

∥(x , y )∥ :=
Æ

x 2+ y 2

A particularly useful use case is to compute the distance between two points p and q , given by
∥p −q∥.

The dot product The dot product operation takes two vectors and returns a real number. It
is the first of two kinds of “multiplication” we will define for vectors. It is defined as

(x1, y1) · (x2, y2) = x1 x2+ y1 y2

Dot products are useful for computing angles.
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Theorem: Dot-product-angle formula

For any vectors u , v , we have

u · v = ∥u∥∥v ∥cos(θ )

where θ is the angle between the vectors u and v .

Geometrically, the dot product can be seen as a projection operator. Consider the line L through
(0, 0) and q . Project p to the line L with a perpendicular (shown in green in the following fig-
ure.) Call this point p ′. Then the value of p ·q is the length of p ′, denoted |p ′|, times the length
of q . That is, |p ′| ∗ |q |. Like the dot product this value is signed. If (0, 0) is not between p ′ and q
then it’s positive, otherwise it’s negative. The figure below shows the case when |q | = 1, which
is commonly used to compute projections.

 

p Al

ftp.q 8

q fig
Ojo

P PtgCross Product

o.o q

pxq signed area of the
parallelogram In this
case negative by the
right hand rule

P
Dot Product

r poof 0 Lpc
rgeo

r f I

0,0

p of projects P onto the
l l l

Algorithm: Projection onto a line

Given a point p and a line L , such that L goes through the origin and a point q such that
|q |= 1, we can compute the projectiona of p onto the line by

p ′ = (p ·q )q
aThe projection p ′ of the point p onto a line is the closest point on the line to p

The cross product The cross product is the other kind of “multiplication” between two points.
In 2D, the cross product is defined as

(x1, y1)× (x2, y2) := det

��

x1 y1

x2 y2

��

= x1 y2− y1 x2

where det(M ) is the determinant of M . The cross product of p and q is the signed area of the
parallogram with the four vertices (0, 0), p , q , p+q . Equivalently, it is twice the signed area of the
triangle with vertices (0, 0), p , q . The sign is determined by the “right hand” rule. This means
that if the angle at (0, 0) starting at p , going clockwise around (0, 0) and ending at q is less than
180 degrees, the cross product is negative, otherwise it’s positive. It’s zero of the angle between
p and q is 0 or 180 degrees.
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There is also a formula analogous to the dot product angle formula for the cross product.

Theorem: Cross-product-angle formula

For any 2D vectors u , v , we have

u × v = ∥u∥∥v ∥sin(θ )

where θ is the angle between the vectors u and v .

21.2.2 Line-side test
The line-side test is the next most fundamental primitive we will introduce, and turns out to be
a critical ingredient in a lot of geometry algorithms. Given three points p1, p2, q , the output of
the line side test is “LEFT” if the point q is to the left of ray p1→ p2, “RIGHT” if the point q is to
the right of ray p1→ p2, and “ON” if it is on that ray.

LEFT

RIGHT

The algorithm is to construct vectors v1 = p2 −p1 and v2 = q −p1, then take the cross product
of v1 and v2 and look at its value compared to 0.

Notice that if a point q is on the right, then the cross product v1× v2 will be negative, or if q is
on the left, it will be negative. If q happens to be on the ray, then the cross product is zero.
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Algorithm: Line-side test

let v1 = p2−p1 and v2 = q −p1

if v1× v2 < 0 then return RIGHT
else if v1× v2 > 0 then return LEFT
else return ON

21.2.3 Convex combinations
Since we now know how to add and scale points/vectors, lets see what kinds of other objects
we can make just by combining points together in various ways. Our focus will be in 2D, but
you could also think about what some of these constructions look like in 3D if you want. We
will consider convex combinations of points.

Definition: Convex combination

A convex combination of the points p1, p2, . . . pk ∈Rd is a point

p ′ =
k
∑

i=1

αi pi ,

such that
∑

ai = 1 and αi ≥ 0.

Given this definition, an interesting question to ask is given a set of points, what does the set of
all possible convex combinations of those points look like? We can start with just two points.

Claim: A convex combination of two points

Given two points p and q , any convex combination of p and q is a point on the line
connecting p and q . More specifically, the set of all convex combinations of p and q is
the line between p and q .

For example, if we take two points p and q and set α1 = α2 =
1
2 , we get 1

2 p + 1
2 q , which is the

midpoint of p and q (the middle of the line connecting them). What if we take three points
p , q , r ?

Claim: A convex combination of three points

The convex combinations of three points p , q , r form the triangle with vertices p , q , r .

How can we justify this? Lets use the fact from above that the convex combinations of two
points are the line between them. So, for any point on the line between p and q , we can form
a convex combination that achieves that point. Now, for any point inside the triangle p q r , say
x , that we want to reach, we can first take a convex combination p ′ = α1p +α2q such that p ′

is the intersection of the lines p q and r x . Then take a second convex combination with that
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point and r , to get x =β1p ′+β2r .

21.3 The Convex Hull
This is the “sorting problem” of computational geometry. There are many algorithms for the
problem, and there are often analogous to well-known sorting algorithms. There are also well
studied lower bounds! A point set P ⊆Rd is convex if it is closed under convex combinations.
That is, if we take any convex combination of any two points in A, the result is a point in P . In
other words, when we walk along the straight line between any pair of points in P we find that
the entire path is also inside of P .

Convex Non-convex

We saw convex sets before when we talked about linear programming. Based on this definition,
we can define the convex closure of a set of points P to be the smallest convex set containing
P . This is well-defined and unique for any point set P . This brings us to the definition of the
object we really care about:

Definition: Convex hull

The convex hull of a set of points P is the boundary of the convex closure of P . That is, it
is the smallest convex polygon that contains all of the points in P , either on its boundary
or interior.

These definitions are general and apply to any closed set of points, including infinite sets, but
for our purposes we’re only interested in the ConvexClosure(P ) and ConvexHull(P ) when P is

235



Lecture 21. Computational Geometry: Fundamentals

a finite set of points.

A computer representation of a convex hull must include the combinatorial structure. In two
dimensions, this just means a simple polygon in, say counter-clockwise order. (In three di-
mensions it’s a planar graph of vertices edges and faces) The vertices are a subset of the input
points. So in this context, a 2D convex hull algorithm takes as input a finite set of n points
P ∈ R2, and produces a list H of points from P which are the vertices of the ConvexHull(A) in
counter-clockwise order. This figure shows the convex hull of 10 points.

 

Today we’re going to focus on algorithms for convex hulls in 2-dimensions. We first present
an O (n 2) algorithm, than refine it to run in O (n log n ). To slightly simplify the exposition we’re
going to assume that no three points of the input are colinear.

21.3.1 Warmup: Slow algorithms for 2D Convex Hulls
First we give a trivial O (n 3) algorithm for convex hull. It might be slow, but it starts us off in the
right direction by thinking about some useful facts about them.

Claim

A directed segment between a pair of points (pi , pj ) is on the convex hull if and only if all
other points pk are to the left of the ray through pi and pj .

We illustrate this fact with the following “proof by picture”.
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Note that no point to the right of the ray can be in the convex hull because that entire half-plane
is devoid of points from the input set. And the points on the segment (pi , pj ) are in the Convex-
Closure of the input points. Therefore the segment is on the boundary of the ConvexClosure.
Therefore it is on the convex hull.

An O (n 3)-time algorithm Using this observation, we get an O (n 3) algorithm by brute-force.
Just try every pair of points pi , pj and then line side test every other point pk . If every pk is on
the left, then add the edge pi → pj to the hull. After adding all of the edges, sort them into
counterclockwise order.

An O (n 2)-time algorithm To get this to run in O (n 2) time we just have to be a bit more orga-
nized. In the first algorithm we just found all of the edges of the hull in an arbitrary order. Lets
try to find them in order this time. This will cut down the amount of work we have to do.

The first observation is that if we take the point with the lowest y -coordinate, this point must
be on the convex hull. Call it ps . Suppose we now measure the angle from ps to all the other
points. These angles range from 0 to π. If we take the point pt with the smallest such angle,
then we know that (ps , pt ) is on the convex hull. The following figure illustrates this.

All the other points must be to the left of segment (ps , pt ). We can continue this process to find
the point pu which is the one with the smallest angle with respect to (ps , pt ). This process is
continued until all the points are exhausted. The running time is O (n ) to find each segment.
There are O (n ) segments, so the algorithm is O (n 2).

Actually we don’t need to compute angles. The line-side-test can be used for this instead. For
example look at what happens after we’ve found ps and pt . We process possibilities for the next
point in any order. Say we start from a in the figure. Then we try b , and note that b is on the
right side of segment (pt , a ) so we jettison a and continue with (pt , b ). But then we then throw
out b in favor of c . It turns out that the remaining points are all to the left of segment (pt , c ).
Thus c = pu is the next point on the convex hull.

21.3.2 Graham Scan, an O (n log n ) Algorithm for 2D Convex Hulls
The O (n 2) algorithm above is actually pretty close. We can convert it into an O (n log n ) algo-
rithm with a slight improvement. We went from O (n 3) to O (n 2) by finding the sides of the hull
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in order, but we are still searching through the points in an arbitrary order to do so. So, instead
of processing the points in an arbitrary order, lets process them in order of increasing angle
with respect to the point ps .

Let’s relabel the points so that p0 = ps is the starting point, and p1, p2 . . . are the remaining points
in order of increasing angle with respect to p0. From the discussion above we know that (p0, p1)
is an edge of the convex hull. The Graham Scan works as follows.

Algorithm: Graham Scan

We maintain a “chain” of points that starts with p0, p1, . . .. This chain has the property
that each step is always a left turn with respect to the previous element of the chain. We
try to extend the chain by taking the next point in the sorted order. If this has a left turn
with respect to the current chain, we keep it. Otherwise we remove the last element of
the chain (repeatedly) until the chain is again restored to be all left turns.

find lowest point p0

sort points p1, p2, . . . counterclockwise by their angle with p0

H = [p0, p1]
for each point i = 2, 3, . . .

while LineSideTest(H[−2],H[−1],pi) is RIGHT
H.pop()

H.append(pi)
return H

Here’s an example of the algorithm.

At this point we’ve formed the chain p0, p1, p2, p3, p4. But the last step (from p3 to p4) is a right
turn. So we delete p3 from the chain. Now we have:
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Now at p2 we have a right turn, so we remove it, giving:

Now the process continues with points p5 and p6. When p6 is added, p5 becomes a right turn,
so it’s removed.

After all the points are processed in this way, we can just add the last segment from pn−1 to p0,
to close the polygon, which will be the convex hull.

Each point can be added at most once to the sequence of vertices, and each point can be re-
moved at most once. Thus the running time of the scan is O (n ). But remember we already paid
O (n log n ) for sorting the points at the beginning of the algorithm, which makes the overall
running time of the algorithm O (n log n ).
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The reason this algorithm works is because whenever we delete a point we have implicitly
shown that it is a convex combination of other points. For example when we deleted p3 we
know that it is inside of the triangle formed by p0, p2 and p4. Because of the presorting p3 is to
the left of (p0, p2), and to the right of (p0, p4). And because (p2, p3, p4) is a right turn, p3 is to the
left of (p2, p4).

At the end the chain is all left turns, with nothing outside of it. Therefore it must be the convex
hull.

21.3.3 Lower bound for computing the convex hull
We said earlier that convex hull is the “sorting” of computational geometry because there are a
huge range of algorithms for it that use a wide range of different algorithmic techniques. Also
like sorting, it admits a similar lower bound! We won’t prove it here because we would need to
address too many subtle details of the model, but the result is quite nice!

Theorem: Sidedness lower bound for convex hull

For any algorithm that computes a convex hull using line-side tests, at least Ω(n log n )
line-side tests are necessary.

The cool thing here is how we measure complexity. Just like how, for sorting, we counted the
number of comparisons and showed a lower bound based on that, for convex hull, we can
provide a lower bound in terms of the number of line-side tests that we need to perform. Just
like we can also do sorting outside the comparison model and obtain different bounds, it is also
possible to write convex hull algorithms that do not use line-side tests, so this result does not
apply to those algorithms. It turns out, however, that the vast majority of known convex hull
algorithm are based on line-side tests, so it applies quite widely!
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Exercises: Geometry

Problem 49. Explain how to compute the projection of a point p in 2D onto any line L defined
by two points a and b by using the algorithm from earlier with some extra steps.

Problem 50. Given a point p in 2D and a line L defined by two points a and b , describe how
to compute the distance from p to the line L using the cross product. (One solution is to use
the projection algorithm from earlier, but here we want a different solution.)

Problem 51. Suppose we consider k > 3 points p1, . . . , pk . Describe the set of points formed by
all convex combinations of them. Justify your answer by using the fact above that the convex
combinations of three points span a triangle.

Problem 52. Given two line segments defined by the points a and b and the points c and d
respectively, determine whether the two of them intersect or not. Hint: Use the line-side test
primitive.
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Lecture 22

Computational Geometry: Randomized
Incremental Algorithms

In this lecture, we will see how the technique of randomized incremental algorithms can be ap-
plied to solve problems in computational geometry. Randomized incremental algorithms are
a powerful technique for improving algorithms that otherwise have a slow worst-case bound
against an adversarial input by introducing randomness in the order of the the input to defeat
the adversary. We will then use probability to prove bounds on the expected running time of
these algorithms.

Objectives of this lecture

In this lecture, we will

- see how randomized incremental algorithms can be used for computation geometry

- give an expected linear-time algorithm for the closest pair problem

- give an expected linear-time algorithm for the smallest enclosing circle problem

22.1 Model and assumptions

In this lecture we make the following assumptions. Like last time, we want to operate on real
numbers, but we are now assuming a little bit more than last time.

- We assume the points are presented as real number pairs (x , y ).

- We assume arithmetic on reals is accurate and runs in O (1) time.

- We will assume that we can take the floor function of a real in O (1) time.

- We also assume that hashing is O (1) time in expectation.

These assumptions (in this context) are reasonable, because the algorithms will not abuse this
power.
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22.2 The closest pair problem

Problem: Closest pair

For any set of points P , let CP(P ) be the closest pair distance in P , i.e.,

CP(P ) = min
p ,q∈P

p ̸=q

∥p −q∥

Given a point set P , our goal is to compute CP(P ).

The naive algorithm of trying all pairs of points will cost O (n 2) time. Our goal today is to come
up with a faster algorithm. We will see that with some nifty randomization, we can actually
achieve linear time!

A “grid” data structure We’re going to define a “grid” data structure, and an API for it. The grid
(denoted G ) stores a set of points (that we’ll call P ) inside square cells of size r ×r . The number
r is called “the grid size of G ”. The point (x , y ) therefore goes in the grid cell (⌊x/r ⌋, ⌊y /r ⌋).

Now how does this thing help us find the closest pair of points? Well, intuitively, if we choose
the grid size large enough, then the closest pair of points should end up in either the same grid
cell, or in neighboring grid cells. Of course, if the grid size is too large, then there will be too
many points in some cells, and finding the closest pair of points in a cell will take O (n 2) time
again...

So, our goal is to somehow figure out just the right grid size such that it is small enough for there
to be very few points per cell, but large enough such that the closest pair of points are in nearby
cells. If we can do that, we’ll find an efficient algorithm.
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Choosing the right grid size Lets first focus on the criteria that we want the closest pair of
points to live in the same or in neighboring grid cells. If the grid size is much smaller than
the distance between the closest pair of points, then they might end up being very far away,
so intuitively we want to choose the the grid size r ≈ CP(P ). What if we just choose exactly
r =CP(P )? I claim that this has all of the nice properties we want.

Claim 22.1: The right grid size

Given a grid G with points P and grid size r = CP(P ), no cell contains more than four
points.

Proof. Imagine splitting a given cell into four r /2-sized sub-boxes.

r/2

The diameter of each sub-box is
p

2r /2< r , so none of these sub-boxes can have more than one
point in it, or that would imply that there exists a pair of points whose distance is less than r ,
which would contradict that r =CP(P ). Therefore there are at most four points in each cell.

Okay great, so the perfect grid size is just to pick r = CP(P ), and then we’re good! Oh wait...
CP(P ) is exactly what we were trying to compute in the first place... What can we do? Lets try
to solve the problem incrementally.

22.2.1 An incremental approach
We will start with just two points p1 and p2 and put them in a grid with r = ∥p − q∥. Then we
will continuously add the rest of the points into the grid, and if we violate the invariant that r
is equal to the closest pair distance, we will just throw away the old grid and build a new one
from scratch. Lets go into a bit more detail for each of these operations. Our grid will support
the following API:

- MakeGrid(p , q ): Make and return a new grid containing points p and q using r = ∥p−q∥ (the
distance between p and q ) as the initial grid size.

- Lookup(G , p ): p is a point, G is a grid. This returns two types of answers. Let r ′ be the closest
distance from p to a point in P . If r ′ < r then return r ′. If r ′ ≥ r return “Not Closest”. Note
that Lookup() does not need to compute r ′ if r ′ ≥ r . Essentially, the lookup function detects
whether we have found a new closest pair.

- Insert(G , p ): G is a grid. p is a new point not in the grid. This inserts p into the grid. It returns
the new grid size.
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Here’s an example Grid data structure satisfying the invariant.

!
"#$%&'()!*'+,-!./)!.012! 1321!4*!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/25/15 12:55 AM

We now discuss how to implement this API. Note that the grid could have arbitrarily many
cells depending on the values of the point coordinates, so we can not afford to store them all
explicitly. However, the vast majority of them will be empty, so we can store the grid using a
dictionary data structure, powered by a hashtable to get O (1)-time operations. Specifically, we
will maintain a hashtable whose keys are integer pairs (i , j ), representing grid cells in the grid.
Given a point (x , y ), it belongs to the cell with key (⌊x/r ⌋, ⌊y /r ⌋).

MakeGrid(p , q ) is simple. Just create a blank table, set r = ∥p −q∥, and insert p and q .

Lookup(G , p ) first computes the cell (i , j ) where p belongs. It then looks in that cell, and the 8
surrounding ones, and computes the distance between p and every point in those neighboring
cells. Call the smallest found distance r ′. If r ′ < r , then we have found a new closest pair, so
we return r ′. Otherwise, if r ′ > r then return “Not Closest”. This works because we know that
if there is a point closer to p than r , it must be in one of the 9 cells that are searched by this
function:

r

Also note that the running time of this is O (1) because it does 9 lookups in the hash table, and
the total number of points it has to consider is at most 36. This is because a cell contains at
most 4 points by Claim 22.1.

Insert(G , p ) works as follows. It first does a Lookup(G , p ). If the result is “Not Closest” it just
inserts p into the data structure into the correct cell (i , j ). This is correct, since it means that p
does not create a new closest pair, so the grid size should be unchanged. This is O (1) time. On
the other hand if the Lookup() returns r ′ < r , then the algorithm has to throw away the current
grid and start from scratch to build a new grid with size r ′. This takes O (i ) time if there are i
points now being stored in the data structure.

These algorithms are correct because they maintain the invariant that the grid size r is always

246



22.2. The closest pair problem

equal to the closest pair distance.

Runtime analysis In the worst case, every newly inserted point might cause the closest pair
to change, and hence require a regrid, so the runtime is

n
∑

i=1

i =Θ(n 2).

Unfortunately this is no better than the brute-force approach! But how likely is it that we get so
unlucky to have the closest pair change every iteration? What can we do to make this unlikely
for any possible input?

22.2.2 Randomized O (n ) algorithm for closest pair
We can use the same approach as Seidel’s 2D LP algorithm! Lets randomly shuffle the input
points, then run the above algorithm. The claim is that by randomly shuffling, the probability
that an insertion causes the closest pair to change is low.

Algorithm: Randomized incremental closest pair

RandomizedClosestPair(P ) {
Randomly permute the points. Call the new ordering p1, p2, . . . , pn.
G =MakeGrid(p1, p2)
for i = 3 to n do {

r =Insert(G , pi )
}
return r

}

Claim: Randomized incremental closest pair is fast

The algorithm runs in expected O (n ) time.

Proof. Consider a random permutationπ1, ...,πn of the points, and denote the prefix of the first
i points in the corresponding shuffled order as

Pi = 〈pπ1
, . . . , pπi

〉

Recall the time to do Insert() is O (1) if the grid size does not change, and O (i ) (i = the number
of points in the grid) if the grid size does change. Let us define an indicator random variable

X i =

¨

1 if CP(Pi ) ̸=CP(Pi−1),

0 otherwise.

The running time of the algorithm is

T =O

�

n
∑

i=2

(1+X i · i )

�

,
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so by linearity of expectation, the expected running time is

E[T ] =O

�

n +
n
∑

i=2

i ·E[X i ]

�

=O

�

n +
n
∑

i=2

i ·Pr[X i = 1]

�

.

All we have to do is bound Pr[X i = 1] and we can complete the proof. Consider the points Pi ,
and call a point critical if CP(Pi \ {q })>CP(Pi ). How many critical points can there be?

- If there are no critical points, then Pr[X i = 1] = 0.

- If there is one critical point, then Pr[X i = 1/i ] since the critical point would have to be the final
element of Pi , which is randomly shuffled, and hence that happens with probability 1/i .

- If there are two critical points, then Pr[X i = 2/i ] since either one of the two critical points
would have to be the final element of Pi .

The final claim is that there can not be more than two critical points. If p and q are both critical,
then ∥p − q∥ = CP(Pi ), so if there were a third critical point r , its removal could not lower the
closest pair distance. Therefore

E[T ] =O

�

n +
n
∑

i=2

i ·
2

i

�

=O (n +2n ) =O (n ).

Thus the expected cost of the entire algorithm is O (n ).

22.3 The smallest enclosing circle problem

Problem: Smallest enclosing circle

Given n ≥ 2 points in two dimensions, find the smallest circle (by radius) that contains
all of the points.

The smallest enclosing circle is kind of like the convex hull. We are looking for a body that
encloses all of the given points, except that this time, instead of searching for a polygon, we
are looking for a circle. For notation purposes, lets define SEC(p1, . . . , pn ) to be the smallest
enclosing circle of the points p1, . . . , pn .

As usual, we will sweep edge cases under the rug by assuming that there are no sets of three
colinear points in our input. Before we dive right into the algorithm, lets look at some useful
properties of circles.

22.3.1 Base cases and useful properties of circles
Two points Suppose we start with exactly two points p1 and p2. There are infinitely many
possible circles that enclose p1 and p2, and our algorithm can not try an infinite number of
things, but we can restrict ourselves to a more reasonable set of possibilities.
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Here’s an idea that might seem obvious when we’re just considering two points, but turns out to
be one of the most powerful and useful observations when deriving computational geometry
algorithms: pick a circle that touches the points. If I give you a circle that encloses the two
points but doesn’t touch them, then it can’t be the SEC because I could shrink it and it will still
contain the points.

How many circles are there that touch the points p1 and p2? Unfortunately there’s still infinitely
many of them, but there is a unique smallest circle that contains them, where p1 and p2 are on
a diameter:

r C P Pa

C

r t P Pal

Three points Three points is where things get interesting. In the case of two, there were in-
finitely many possible circles that touch them, but it turns out that for three non colinear points,
there exists a single unique circle that touches them.

Claim 22.2: Three points make a circle

Given three non-colinear points, there exists a unique circle that touches them.

You can try to prove this as an exercise.

Is this point always the smallest enclosing circle of the three points though? It might not be.
There are two cases, either the triangle is acute, and the smallest enclosing circle will touch all
three points, or it is obtuse, and the smallest enclosing circle will just touch two of them.

r C P Pa

C

r t P Pal

We can just try both cases, which is a constant number of choices, and we will have the smallest
enclosing circle for three points.
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22.3.2 The general case
Now we come to the general case, given n > 3 points, how do we find the smallest enclosing
circle? Like before, we are faced with infinity many possible circles to choose from, so even if
we wanted to implement a brute-force approach, it is not clear how to. We need to somehow
reduce our infinite set of choices to a finite one... To do so, we will prove the following claim:

Claim 22.3: Three points defines the smallest enclosing circle

For any set of points, SEC(p1, . . . , pn ) either touches two points pi and pj at opposite ends
of a diameter, or touches three points pi , pj , pk that form an acute triangle.

In other words, there exists i , j , k such that SEC(p1, . . . , pn ) = SEC(pi , pj , pk ).

Proof. We’ll consider a few cases:

1. No points: Suppose I give you an enclosing circle (a circle that contains all of the points)
but it doesn’t touch any of them. Then I can shrink the circle by some ϵ until it does touch
something and it still contains all the points, so it can’t be the SEC.

2. One point: Suppose I give you an enclosing circle that touches just one point. Then I can
shrink the circle by some ε and translate it so that it still touches that one point, so it can’t
be the SEC.

3. Two points: Suppose an enclosing circle touches two points and these points are on op-
posite ends of a diameter. Then this is a lower bound on the size of any enclosing circle
since it must contain these points, hence the circle is optimal. Suppose instead that the
two points are not on opposite ends of a diameter, i.e., there is a greater than 180 degree
gap between them. Then once again, we can shrink the circle by some ϵ and translate it.
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4. Three or more points: If the circle touches at least three points but none of them form
an acute triangle, we can again shrink the circle and translate it.

Therefore an SEC must either touch two points at a diameter, or touch three points of an acute
triangle.

What this claim is saying is that the smallest enclosing circle is determined by just some subset
of three of the points in the input! So we do not have to try infinitely many possible circles to
find the SEC, we have reduced to a finite number of possibilities. This gives us an O (n 3)-time
brute-force algorithm: just try every triple of points and find the smallest enclosing circle, then
return the largest one.

Note that we return the largest one, not the smallest one, because the smallest one might not
contain all of the other points, but the largest one is guaranteed to, by Claim 22.3.

22.3.3 Beating brute force: an incremental algorithm
Continuing with the theme of this lecture, lets try to develop an incremental algorithm for the
problem. That means we will start with just two points and find their SEC. Then, one by one
we will add in another point and check whether it is contained within the current circle. If it
is, we are good to continue. If it is not, we must find the new smallest enclosing circle of all the
points. If we are lucky (or clever), the algorithm won’t need to do the slow case very often.

Building an incremental algorithm Suppose we’ve computed the SEC of p1, . . . , pi−1. How do
we add the next point pi ? We have to consider two cases:

1. Case 1: pi is inside SEC(p1, . . . , pi−1): In this case, we don’t have to do anything because the
circle still contains all of the points, and adding a new point can not make the SEC smaller.
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2. Case 2: pi is not inside SEC(p1, . . . , pi−1): This is the hard case. We could just decide to throw
away the current circle and find the new SEC from scratch with brute force, but this would
end up being really slow, even with the incremental approach, so we’re going to need some-
thing more sophisticated.

Here’s an observation that will help:

Claim: A new point locks in the new SEC

For a set of points p1, . . . , pi , if SEC(p1, . . . , pi−1) ̸= SEC(p1, . . . , pi ), then pi is on the bound-
ary of the new SEC.

Proof. If pi were not on the boundary, then by Claim 22.3, the SEC is determined by either two
points along a diameter, or three points, but these points were all in the set before pi was added,
so the SEC shouldn’t have changed.

 

This allows us to improve on using brute force. If we insert a new point pi and discover that it
is outside the current SEC, we don’t need to completely go from scratch and spend O (i 3) time,
we could lock pi in and just do O (i 2) work to find the other two points. In fact, we will see
momentarily that we can do even better. To make this concrete, lets define a subroutine SEC1,
which takes two parameters, a list of points p1, . . . pi−1, and a point pi , and finds the smallest
enclosing circle of p1, . . . , pi , but using the knowledge that pi is definitely on the boundary. So,
our algorithm for SEC currently looks like

SEC([p1, p 2, . . . , pn ]) = {
let C be the SEC of p1 and p2 (formed by a diameter between p1 and p2)

for i = 3 to n do {
if pi is not inside C then C ← SEC1([p1, . . . , pi−1], pi)

}
return C

}

Implementing SEC1 We could implement SEC1 by trying all O (i 2) pairs of other points and
taking the best SEC that results, but this would take O (i 2) time. We can still do much better
than this! How? Same exact idea as the outer SEC algorithm! Lets solve SEC1 incrementally as
well. Suppose we are given SEC1([p1, . . . , pn ], q ) to solve.
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- We can start with a circle around p1 and q , then incrementally add the remaining points, one
by one.

- If a point pi is outside the current SEC, then we have to rebuild a new SEC.

- However, from the same argument as before, if this happens, we know for sure that pi is on
the boundary of the new one. So, we now need to solve the problem of finding the SEC of a
set of points with two fixed points pi and q . Hmm... time for another subroutine!

SEC1([p1, p 2, . . . , pk ], q) = {
let C be the SEC of p1 and q (formed by a diameter between p1 and q)

for i = 2 to k do {
if pi is not inside C then C ← SEC2([p1, . . . , pi−1], pi, q)

}
return C

}

Here, SEC2([p1, . . . pk ], q1, q2) computes a smallest enclosing circle of {p1, . . . pk , q1, q2} with the
knowledge that q1 and q2 must be on the boundary.

Implementing SEC2 Continuing the pattern, the last level subroutine is the simplest. We
have two given points q1, q2 that are forced to be on the boundary, so we just need to loop
through the k given points and pick the best third point. No more sophisticated tricks needed
at this point!

SEC2([p1, p 2, . . . , pk ], q1, q2) = {
let C be the SEC of q1 and q2 (formed by a diameter between q1 and q2)

for i = 1 to k do {
if pi is not inside C then C ← Circle that touches (pi , q1, q2)

}
return C

}

Runtime analysis SEC2 always takes exactly O (k ) time no matter what. For SEC1, in the worst
case, every new point triggers the need to find a new SEC, so SEC1 takes

k
∑

i=1

i =Θ(k 2)

time. Similarly, in the worst case, SEC needs to find a new circle every iteration, so it takes

n
∑

i=1

i 2 =Θ(n 3)

time. This is again, no better than brute force. Now its time to fix the problem with our favorite
technique of the day, randomization!
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22.3.4 Saving the day with randomization (again)
Lets add one additional line of code to SEC and SEC1 that randomly shuffles the points p , and
then proceeds exactly as written. The almost-too-good-to-believe claim is that this brings us
right down to linear time!

Claim: Randomized incremental smallest enclosing circle is linear time

SEC1 runs in O (k ) expected time, and SEC runs in O (n ) expected time.

Proof. Since SEC2 uses no randomization, it still always runs in O (k ) time deterministically. To
analyze SEC1 and SEC, we use the exact same kind of technique as before, so we will omit the
tedium of writing out all the indicator variables and get straight to the point.

Recall from Claim 22.3 that two or three points determine the SEC of the whole point set. So if
we delete a point randomly among i points, the probability that the SEC changes is at most 3

i .
Therefore, the expected cost of one step of SEC1 is

3

i
×O (i ) +

i −3

i
×O (1) =O (1).

By linearity of expectation, the total expected cost of SEC1 is O (k ). By the same reasoning, the
expected cost of one step of SEC is O (1), and by linearity of expectation, the total expected cost
is O (n )

Remark: Fun fact: less randomness suffices

In the algorithm described, we randomly permuted the points p in SEC and SEC1. It
turns out that a single random permutation at the beginning of SEC is enough, and we
don’t actually need to permute inside SEC1. The proof becomes more difficult though
because we don’t have independence between different calls of SEC1 anymore, so we
won’t prove it.
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Exercises: Randomized Incremental Geometry

Problem 53. Prove the claim that there is a unique circle that inscribes three non-colinear
points.
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Lecture 23

Polynomials in Algorithm Design

In this lecture, we will see some of the power of polynomials in algorithm design. In particular,
we’ll see the fundamental beautiful ideas behind the error-correction used in QR codes (like
this one):

Objectives of this lecture

In this lecture, we will

- review some properties of polynomials and the operations that can be performed on
them

- see the unique reconstruction theorem and learn how to interpolate a set of points to
obtain that unique polynomial

- see how polynomials can be used to implement error-correcting codes

- see some algebraic algorithms for matchings in graphs that utilize polynomials

23.1 Introduction

You’ve probably all seen polynomials before: e.g., 3x 2 − 5x + 17, or 2x − 3, or −x 5 + 38x 3 −
1, or x , or even a constant 3. These are all polynomials over a single variable (here, x ). The
degree of a polynomial is the highest exponent of x that appears: hence the degrees of the
above polynomials are 2, 1, 5, 1, 0 respectively.

In general, a polynomial over the variable x of degree at most d looks like:

P (x ) = cd x d + cd−1 x d−1+ ..+ c1 x + c0
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Remark: The coefficients completely describe P

Note that the sequence of d +1 coefficients 〈cd , cd−1, . . . , c0〉 completely describes P (x ).

In general the coefficients (and variables) of a polynomial can be drawn from any field you
choose. In this lecture we will be making frequent use of the finite fields, specifically the field
of integers modulo a prime p , which is denoted Zp .

If the coefficients were all drawn from the set Zp , then we have exactly p d+1 possible different
polynomials of degree at most d (note that it is at most d and not exactly d because cd could
be zero). This includes the zero polynomial 0= 0x d +0x d−1+ ..+0x +0.

In this lecture, we will use properties of polynomials to construct error correcting codes, and
do other cool things with them.

23.2 Operations on Polynomials
Before we study properties of polynomials, recall the following simple operations on polyno-
mials:

- Addition: Given two polynomials P (x ) and Q (x ), we can add them to get another polynomial
R (x ) = P (x )+Q (x ). Note that the degree of R (x ) is at most the maximum of the degrees of P
and Q . (Q: Why is it not equal to the maximum?)

(x 2+2x −1) + (3x 3+7x ) = 3x 3+ x 2+9x −1

The same holds for the difference of two polynomials P (x )−Q (x ), which is the same as P (x )+
(−Q (x )).

- Multiplication: Given two polynomials P (x ) and Q (x ), we can multiply them to get another
polynomial S (x ) = P (x )×Q (x ).

(x 2+2x −1)× (3x 3+7x ) = 3x 5+4x 3+6x 4+14x 2−7x

The degree of S (x ) is equal to the sum of the degrees of P and Q .

- Division: Polynomials can be divided to yield an algebraic expression, but do note that the
result P (x )/Q (x ) may not itself be a polynomial. In some situations it will be, and this can
turn out to be useful (we’ll see an example soon).

- Evaluation: We can also evaluate polynomials. Given a polynomial P (x ) and a value a ,
P (a ) := cd ·a d + cd−1 ·a d−1+ ..+ c1 ·a + c0. For example, if P (x ) = 3x 5+4x 3+6x 4+14x 2−7x ,
then

P (2) = 3 ·25+4 ·23+6 ·24+14 ·22−7 ·2= 266

Naive evaluation of a polynomial would take O (d 2) time, but this can be improved to O (d ):
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Algorithm: Horner’s Rule

Evaluate the following recurrence for p0.

pi =

¨

cd if i = d ,

pi+1 ·a + ci otherwise

The result is p0 = P (a ). Each step is one addition and one multiplication, hence this
takes O (d ) time.

- Roots: A root of a polynomial P (x ) is a value r such that P (r ) = 0. For example, P (x ) above
has three real roots 0,−1+

p
2,−1−

p
2, and two complex roots.

Here, we were implictly working over R, the field of real numbers.

23.3 How Many Roots?
Let’s start with the following super-important theorem.

Theorem 23.1: Few-Roots Theorem

Any non-zero polynomial of degree at most d has at most d roots.

This holds true, regardless of what field we are working over. When we are working over the reals
(i.e., the coeffcients are reals, and we are allowed to plug in arbitrary reals for x ), this theorem
is a corollary of the fundamental theorem of Algebra. But it holds even if we are working over
some other field (say Zp for prime p ).

Let’s relate this to what we know. Consider polynomials of degree 1, also known as linear poly-
nomials. Say they have real coefficients, this gives a straight line when we plot it. Such a poly-
nomial has at most one root: it crosses the x -axis at most once. And in fact, any degree-1 poly-
nomial looks like c1 x+c0, and hence setting x =−c0/c1 gives us a root. So, in fact, a polynomial
of degree exactly 1 has exactly one root.

What about degree 2, the quadratics? Things get a little more tricky now, as you probably re-
member from high school. E.g., the polynomial x 2+1 has no real roots, but it has two complex
roots. However, you might remember that if it has one real root, then both roots are real. But
anyways, a quadratic crosses the x -axis at most twice. At most two roots.

And in general, Theorem 23.1 says, any polynomial of degree at most d has at most d roots.

23.4 Another Representation for degree-d Polynomials
Let’s prove a simple corollary of Theorem 23.1, which says that if we plot two polynomials of
degree at most d , then they can intersect in at most d points—unless they are the same polyno-
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mial (and hence intersect everywhere)! Remember, two distinct lines intersect at most once,
two distinct quadratics intersect at most twice, etc. Same principle.

Corollary 23.1

Given d +1 pairs (a0, b0), (a1, b1), . . . , (ad , bd ), where the ai ’s are distinct, there is at most
one polynomial P (x ) of degree at most d , such that P (ai ) = bi for all i = 0, 1, . . . , d .

Proof. For a contradiction, suppose there are two distinct polynomials P (x ) and Q (x ) of degree
at most d such that for all i ,

P (ai ) =Q (ai ) = bi .

Then consider the polynomial R (x ) = P (x )−Q (x ). It has degree at most d , since it is the differ-
ence of two polynomials of degree at most d . Moreover,

R (ai ) = P (ai )−Q (ai ) = 0

for all the d +1 settings of i = 0, 1, . . . , d . Once again, R is a polynomial of degree at most d , with
d + 1 roots. By the contrapositive of Theorem 23.1, R (x ) must be the zero polynomial. And
hence P (x ) =Q (x ), which gives us the contradiction.

To paraphrase the theorem differently, given two (i.e., 1+ 1) points there is at most one linear
(i.e., degree-1) polynomial that passes through them, given three (i.e., 2+ 1) points there is at
most one quadratic (i.e., degree-2) polynomial that passes through them, etc.

Can it be the case that for some d + 1 pairs (a0, b0), (a1, b1), . . . , (ad , bd ), there is no polynomial
of degree at most d that passes through them? Well, clearly if ai = a j but bi ̸= b j . But what if
all the ai ’s are distinct?

Theorem 23.2: Unique Reconstruction Theorem

Given d+1 pairs (a0, b0), (a1, b1), . . . , (ad , bd )where the ai ’s are distinct, there always exists
a polynomial P (x ) of degree at most d , such that P (ai ) = bi for all i = 0, 1, . . . , d .

We will prove this theorem soon, but before that note some implications. Combining Corol-
lary 23.1 with Theorem 23.2, we get that given d + 1 pairs (a0, b0), (a1, b1), . . . , (ad , bd ) with dis-
tinct a ’s, this means there is a unique polynomial of degree at most d that passes through them.
Exactly one.

In fact, given d +1 numbers b0, b1, . . . , bd , there is a unique polynomial P (x ) of degree at most d
such that P (i ) = bi . (We’re just using the theorem with ai = i .) Earlier we saw how to represent
any polynomial of degree at most d by d +1 numbers, the coefficients. Now we are saying that
we can represent the polynomial of degree at most d by a different sequence of d +1 numbers:
its values at 0, 1, . . . d .

Two different representations for the same thing, cool! Surely there must be a use for this new
representation. We will give at least two uses for this, but first let’s see the proof of Theorem 23.2.
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(If you are impatient, you can skip over the proof, but do come back and read it—it is very
elegant.)

Proof. OK, now the proof of Theorem 23.2. We are given d + 1 pairs (ai , bi ), and the a ’s are all
distinct. The proof is by consruction – it will give an algorithm to find this polynomial P (x )with
degree at most d , and where P (ai ) = bi .

Let’s start easy: suppose all the d +1 values bi ’s were zero. Then P (x ) has d +1 roots, and now
Theorem 23.1 tells us that P (x ) = 0, the zero polynomial!

OK, next step. Suppose b0 = 1, but all the d other bi ’s are zero. Do we know a degree-d polyno-
mial which has roots at d places a1, a2, . . . , ad . Sure, we do—it is just

Q0(x ) = (x −a1)(x −a2) · · · (x −ad ).

So are we done? Not necessarily: Q0(a0)might not equal b0 = 1. But that is easy to fix! Just scale
the polynomial by 1/Q0(a0). I.e., what we wanted was

R0(x ) = (x −a1)(x −a2) · · · (x −ad ) ·
1

Q0(a0)

=
(x −a1)(x −a2) · · · (x −ad )
(a0−a1)(a0−a2) · · · (a0−ad )

.

Again, R0(x ) has degree d by construction, and satisfies what we wanted! (We’ll call R0(x ) the
0t h “switch” polynomial.)

Next, what if b0 was not 1 but some other value. Easy again: just take b0×R0(x ). This has value
b0×1 at a0, and b0×0= 0 at all other ai ’s.

Similarly, one can define switch polynomials Ri (x ) of degree d that have Ri (ai ) = 1 and Ri (a j ) =
0 for all i ̸= j . Indeed, this is

Ri (x ) =
(x −a0) · · · (x −ai−1) · (x −ai+1) · · · (x −ad )
(ai −a0) · · · (ai −ai−1) · (ai −ai+1) · · · (ai −ad )

.

So the polynomial we wanted after all is just a linear combination of these switch polynomials:

P (x ) = b0R0(x ) + b1R1(x ) + . . .+ bd Rd (x )

Since it is a sum of degree-d polynomials, P (x ) has degree at most d . And what is P (ai )? Since
R j (ai ) = 0 for all j ̸= i , we get P (ai ) = bi Ri (ai ). Now Ri (ai ) = 1, so this is bi .

The polynomial that goes through a given set of points is called the interpolating polynomial
for those points. The technique described in the proof is called Lagrange interpolation.
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Example

Consider the tuples (5, 1), (6, 2), (7, 9): we want the unique degree-2 polynomial that passes through
these points. So first we find R0(x ), which evaluates to 1 at x = 5, and has roots at 6 and 7. This is

R0(x ) =
(x −6)(x −7)
(5−6)(5−7)

=
1

2
(x −6)(x −7)

Similarly

R1(x ) =
(x −5)(x −7)
(6−5)(6−7)

=−(x −5)(x −7)

and

R2(x ) =
(x −5)(x −6)
(7−5)(7−6)

=
1

2
(x −5)(x −6)

Hence, the polynomial we want is

P (x ) = 1 ·R0(x ) +2 ·R1(x ) +9 ·R2(x ) = 3x 2−32x +86

Let’s check our answer:
P (5) = 1, P (6) = 2, P (7) = 9.

Running Time: Note that constructing the polynomial P (x ) takes O (d 2) time. (Can you find
the simplified version in this time as well?)

23.5 Application: Error Correcting Codes
Consider the situation: I want to send you a sequence of d +1 numbers 〈cd , cd−1, . . . , c1, c0〉 over
a noisy channel. I can’t just send you these numbers in a message, because I know that whatever
message I send you, the channel will corrupt up to k of the numbers in that message. For the
current example, assume that the corruption is very simple: whenever a number is corrupted,
it is replaced by a ⋆. Hence, if I send the sequence

〈5, 19, 2, 3, 2〉

and the channel decides to corrupt the third and fourth numbers, you would get

〈5, 19,⋆,⋆, 2〉.

On the other hand, if I decided to delete the fourth and fifth elements, you would get

〈5, 19, 2,⋆,⋆〉.

Since the channel is “erasing” some of the entries and replacing them with ⋆’s, the codes we will
develop will be called erasure codes. The question then is: how can we send d +1 numbers so
that the receiver can get back these d +1 numbers even if up to k numbers in the message are
erased (replaced by ⋆s)? (Assume that both you and the receiver know d and k .)
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A simple case: if d = 0, then one number is sent. Since the channel can erase k numbers, the
best we can do is to repeat this single number k + 1 times, and send these k + 1 copies across.
At least one of these copies will survive, and the receiver will know the number.

This suggests a strategy: no matter how many numbers you want to send, repeat each number
k +1 times. So to send the message 〈5, 19, 2, 3, 2〉with k = 2, you would send

〈5, 5, 5, 19, 19, 19, 2, 2, 2, 3, 3, 3, 2, 2, 2〉

This takes (d +1)(k +1) numbers, approximately d k . Can we do better?

Indeed we can! We view our sequence 〈cd , cd−1, . . . , c1, c0〉 as the d +1 coefficients of a polyno-
mial of degree at most d , namely P (x ) = cd x d + cd−1 x d−1+ ..+ c1 x + c0. Now we evaluate P at
some d +k +1 points, say 0, 1, 2, . . . , d +k , and send these d +k +1 numbers

P (0), P (1), . . . , P (d +k )

across. The receiver will get back at least d + 1 of these numbers, which by Theorem 23.2
uniquely specifies P (x ). Moreover, the receiver can also reconstruct P (x ) using Langrange in-
terpolation.

Theorem: Erasure codes using polynomials

We can send a sequence of d +1 numbers across an erasure channel that erases up to k
of them by sending d +k +1 points of the polynomial P encoded by the sequence.

Example

Here is an example: Suppose we want to send 〈5, 19, 2, 3, 2〉with k = 2. Hence P (x ) = 5x 4+19x 3+
2x 2+3x +2. Now we’ll evaluate P (x ) at 0, 1, 2, . . . d +k = 6. This gives

P (0) = 2, P (1) = 31, P (2) = 248, P (3) = 947, P (4) = 2542, P (5) = 5567, P (6) = 10676

So we send across the “encoded message”:

〈2, 31, 248, 947, 2542, 5567, 10676〉

Now suppose the third and fifth entries get erased. the receiver gets:

〈2, 31,⋆, 947,⋆, 5567, 10676〉

So she wants to reconstruct a polynomial R (x ) of degree at most 4 such that R (0) = 2, R (1) =
31, R (3) = 947, R (5) = 5567, R (6) = 10676. (That is, she wants to “decode” the message.) By Lan-
grange interpolation, we get that

R (x ) =
1

45
(x −1)(x −3)(x −5)(x −6)−

31

40
x (x −3)(x −5)(x −6) +

947

36
x (x −1)(x −5)(x −6)

−
5567

40
x (x −1)(x −3)(x −6) +

5338

45
x (x −1)(x −3)(x −5)

which simplifies to P (x ) = 5x 4+19x 3+2x 2+3x +2!
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Problem 54. Take your favorite degree-3 polynomial P (x )over the reals, and evaluate it at any 4 points.

Use Lagrange interpolation to fit a degree-3 polynomial through those points, and check it equals P (x ).

Note on Efficiency The numbers can get large, so you may want work in the field Zp , as long
as the size of the field is large enough to encode the numbers you want to send across. (Of
course, if you are working modulo a prime p , both the sender and the receiver must know p .)
This will save both time and reduce the number of bits in the encoded sequences.

Example

Let’s do the previous example using a finite field. Since we want to send numbers as large as 19,
let’s work in Z23. Then you’d send the numbers modulo 23, which would be

〈2, 8, 18, 4, 12, 1, 4〉

Now suppose you get
〈2, 8,⋆, 4,⋆, 1, 4〉

Interpolate to get

R (x ) = 45−1(x −1)(x −3)(x −5)(x −6)−5−1 x (x −3)(x −5)(x −6) +9−1 x (x −1)(x −5)(x −6)

−40−1 x (x −1)(x −3)(x −6) +2 ·45−1 x (x −1)(x −3)(x −5)

where the multiplicative inverses are modulo 23, of course. Simplifying, we get P (x ) = 5x 4 +
19x 3+2x 2+3x +2 again.

Problem 55. Do the same interpolation exercise as above for a polynomial over Z17 or Z251.
You will have to recall how to take additive and multiplicative inverses over finite fields.

One final note. A beautiful application of these kinds of erasure codes is in the design of RAID
systems. RAID stands for Redundant Array of Independent Disks. Suppose you wanted to de-
sign a storage system comprised of five identical 1TB hard drives. And you wanted it such that
if any two of the drives died, all the data would still exist on the other three drives. And you
wanted to be able to use these five drives to store 3TB of such space. Then what you can do is
use the codes described here, where three words of data are encoded as five words, in such a
way that any subset of three of them can be used to reconstruct the original three words. This
is achieved by an erasure code.

23.5.1 Error Correction
One can imagine that the channel is more malicious: it decides to replace some k of the num-
bers not by stars but by other numbers, so the same encoding/decoding strategy cannot be
used! Indeed, the receiver now has no clue which numbers were altered, and which ones were
part of the original message! In fact, even for the d = 0 case of a single number, we need to
send 2k + 1 numbers across, so that the receiver knows that the majority number must be the
correct one. And indeed, if you evaluate P (x ) at n = d +2k +1 locations and send those values
across, even if the channel alters k of those numbers, there is a unique degree-d polynomial
that agrees with d +k +1 of these numbers (and this must be P (x ))
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Theorem: Error correction code using polynomials

If we want to send d +1 numbers across a channel in which k of them could be replaced,
we send d + 2k + 1 points of the polynomial P encoded by the sequence, then for any
subset of d +k +1 points on the receiving end (which may contain corruptions), if there
exists a polynomial that interpolates these points, it must be P .

Proof. First, there definitely exists some subset of points that interpolates to P , the uncor-
rupted d + k + 1 of them. Now consider some other subset of points and suppose there exists
a degree-d polynomial Q that interpolates them. Since there are k corrupted points, P and Q
must agree on at least d + 1 of the points and hence by the unique reconstruction theorem, P
and Q are the same polynomial since there is a unique degree-d polynomial that interpolates
d +1 points.

So we can show that d +2k +1 points is good enough that it uniquely determines P even in the
presence of adversarial replacements, but its not clear how to actually reconstruct P . The above
theorem only tells us that it is possible, but by brute force we would have to try exponentially
many subsets of points to find one that works. What is amazing is that there is an efficient
algorithm that the receiver can use to reconstruct P (x ): this is known as the Berlekamp-Welch
algorithm.

The Berlekamp-Welch Error-Correction Algorithm

Note: this description conveys the high-level ideas, but does not describe the algorithm in suf-
ficient detail to implement it.

Let [n ] := {0, 1, . . . , n −1}, where n = d +2k +1. Suppose we send over the n numbers

s0, s1, . . . , sn−1,

where si = P (i ). We receive numbers

r0, r1, . . . , rn−1,

where at most k of these ri s are not the same as the si s. Define a set Z of size at most k such
that {i | si ̸= ri } ⊆ Z : i.e., Z contains all the error locations.

Now define a degree- j “error” polynomial E (x ) such that

E (x ) =
∏

a∈Z

(x −a ).

Observe that

P (x ) ·E (x ) = rx ·E (x ) ∀x ∈ [n ]. (23.1)

Indeed, E (x ) = 0 for all x ∈ Z (by construction of E ()) and P (x ) = rx for all x ∈ [n ] \Z (by the
definition of Z ). Of course, we just received the ri s, so we don’t know P (x ). Nor do we know
E (x ), since we don’t know Z .
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But we know that E (x ) looks like:

E (x ) = x k + ek−1 x k−1+ . . .+ e1 x + e0.

for some values ek−1, ek−2, . . . , e0. (So there are k unknown coefficients, since the coefficient of
x k in E (x ) is 1.) Moreover, we know that P (x ) ·E (x ) has degree d +k , so looks like

P (x ) ·E (x ) = fd+k x d+k + fd+k−1 x d+k−1+ . . .+ f1 x + f0.

So the n = d +2k +1 equalities from (23.1) look like

fd+k x d+k + fd+k−1 x d+k−1+ . . .+ f1 x + f0 = rx (x
k + ek−1 x k−1+ . . .+ e1 x + e0),

one for each x ∈ [n ]. The unknown are ei and fi values—there are k + (d + k + 1) = d + 2k + 1
unknowns. So we can solve for these unknowns (say using Gaussian elimination), and get E (x )
and P (x ) ·E (x ). Dividing the latter by the former gives back P (x ). It’s like magic.

23.6 Multivariate Polynomials and Matchings
Here’s a very different application of polynomials in algorithm design. Now we’ll consider mul-
tivariate polynomials, and use the fact that they also have “few” roots to get an unusual algo-
rithm for finding matchings in graphs. We need to think carefully about what we mean by “few”,
since for multivariate polynomials, even simple linear polynomials can have many roots, more
than any function related to the degree. For example P (x , y ) = x − y has infinitely many roots,
one for every point (x , y ) such that x = y . This is unlike single variable polynomials where we
could just bound the number of roots by d . So instead of trying to bound the number of roots,
we’ll instead try to show that the fraction of points that can be roots is small. First, let’s review
the definition.

Definition: Multivariate polynomial

A multivariate polynomial is a sum of monomials, where a monomial is a product of
powers of the variables (and possibly a constant), e.g.,

P (x1, x2, x3, x4) = x1 x 2
2 x4+ x3 x 2

4 + x1 x 2
2 x 2

3 x4

The degree of the monomial x i1
1 x i2

2 x i3
3 x i4

4 is i1+ i2+ i3+ i4. The degree of P is the maxi-
mum degree of any of its monomials.

Here’s an alternate view of Theorem 23.1 that is possible to generalize to multivariate polyno-
mials: suppose we fix a set S of values in the field we are working over (e.g.,R, or Fp ), and pick
a random x ∈ S . Given a degree-d polynomial, what is the probability that we picked a root?
There are at most d distinct root, so the probability that P (x ) = 0 is at most d /|S |. One can
extend this to the following theorem for multivariate polynomials P (x) = P (x1, x2, . . . , xm ).
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Theorem 23.3: Schwartz (1980), Zippel (1979)

For any non-zero degree-d polynomial P (x) and any subset S of values from the under-
lying field, if each X i is chosen independently and uniformly at random from S , then

Pr[P (X1, . . . , Xm ) = 0]≤
d

|S |
.

This theorem is useful in many contexts. E.g., we get an algorithm for perfect matchings.

23.6.1 Application: Perfect matchings

Definition: The Tutte matrix

For any graph G = (V , E )with vertices v1, v2, . . . , vn , the Tutte matrixa is a |V |×|V |matrix
M (G ):

M (G )i , j =







xi , j if {vi , v j } ∈ E and i < j
−x j ,i if {vi , v j } ∈ E and i > j
0 if (vi , v j ) ̸∈ E

aNamed after William T. (Bill) Tutte, pioneering graph theorist and algorithm designer. Recently it was
discovered that he was one of the influential code-breakers in WWII, making crucial insights in breaking
the Lorenz cipher.

This is a square matrix of variables xi , j . And like any matrix, we can take its determinant, which
is a (multivariate) polynomial PG (x) in the variables {xi , j }{i , j }∈E . The degree of this polynomial
is at most n = |V |, the dimension of the matrix. Here is a surprising and super useful fact:

Theorem 23.4: Tutte (1947)

A graph G has a perfect matching if and only if PG (x), the determinant of the Tutte matrix,
is not the zero polynomial.

How do we check if PG (x) is zero or not? That’s the problem: since we’re taking a determinant
of a matrix of variables, the usual way of computing determinants may lead to n ! terms, which
eventually may all cancel out!

However, we can combine Theorems 23.3 and 23.4 together: take G , construct M (x), and re-
place each variable by an independently uniform random value in some set S , and then com-
pute the determinant of the resulting matrix of random numbers. This is exactly like plugging
in the random numbers into PG (x). So if PG (x) was zero, the answer is zero for sure. And else,
the answer is zero with probability at most n/|S |, which we can make as small as we want by
choosing S large enough, or by repeating the process sufficiently many times.

Problem 56. Think about how you would use this algorithm (which tests for the existence of a
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Lecture 23. Polynomials in Algorithm Design

perfect matching), to actually find a perfect matching (with high probability) in a graph, if one
exists. Your PM-finder should perform at most O (m ) calls to the PM-existence-checker.

Problem 57. Given an algorithm to find perfect matchings in a graph (if one exists), use it to
find maximum cardinality matchings in graphs.
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Lecture 24

The Fast Fourier Transform

In this final lecture, we will see an algorithm that can multiply two polynomials of degree d
in O (d log d ) time. It is based on the famous Fast Fourier Transform algorithm, and combines
classic ideas from algorithm design (e.g., divide-and-conquer) with algebraic techniques (poly-
nomials) and math (complex numbers) in an extraordinarily cool way.

Objectives of this lecture

In this lecture, we will

- review some math that we will need, including polynomials and complex numbers

- derive the Fast Fourier Transform algorithm and use it for multiplying polynomials

24.1 Preliminaries

24.1.1 Polynomials
Recall that a polynomial of degree d is a function p that looks like

p (x ) :=
d
∑

i=0

ci x i = cd x d + cd−1 x d−1+ . . .+ c1 x + c0

A polynomial of degree d can be described by a vector of its coefficients 〈cd , cd−1, . . . , c1, c0〉.
According the unique reconstruction theorem, a polynomial can also be uniquely described by
its values at d +1 distinct points x0, . . . , xd .

Polynomials can be multiplied to yield another polynomial. The product of a degree n and
degree m polynomial is a polynomial of degree n +m . Let A(x ) and B (x ) be two polynomials
of degree d

A(x ) = a0+a1 x +a2 x 2+ · · ·+ad x d ,

B (x ) = b0+ b1 x + b2 x 2+ · · ·+ bd x d ,

then their product is the polynomial C (x ):

C (x ) = c0+ c1 x + c2 x 2+ · · ·+ c2d x 2d ,

where
ck =

∑

0≤i , j≤k
i+ j=k

ai · b j =
∑

0≤i≤k

ai · bk−i .
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Lecture 24. The Fast Fourier Transform

Computing the product C directly via the definition would take O (d 2) time assuming we can
perform all of the necessary arithmetic operations on the coefficients in constant time. Karat-
suba’s algorithm can improve this to O (d 1.58). Today, we will see how to do it even faster.

24.1.2 Complex numbers and roots of unity
The field of complex numbers consists of numbers of the form

a + b i

where a , b ∈ R and i is the special imaginary unit, which is defined to be the solution to the
equation i 2 = −1. Complex numbers are very useful for analyzing the solutions to polynomi-
als, since every polynomial equation has a solution over the complex numbers, even though it
might not have any real-valued solution.

Roots of unity A root of unity is a fancy way of saying an n th root of 1 for some value of n . that
is, a complex numberω is an n th root of unity if it satisfies

ωn = 1.

There are exactly n complex n th roots of unity, which can be written as

e
2πi k

n , k = 0, 1, . . . , n −1.

Observe the useful fact that

e
2πi k

n =
�

e
2πi

n

�k
,

i.e., the roots of unity can all be defined as powers of the k = 1st one. We call this one a primitive
n th root of unity. More specifically,ω is a primitive n th root of unity if

ωn = 1

ω j ̸= 1 for 0< j < n

The following figure shows the eighth roots of unity. As the figure suggests, in general, the n th

roots of unity are always equally spaced around the unit circle.
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There are exactly n complex roots of unity. They form a cyclic multiplication group:

The value                   is called the primitive root of unity; all of the other complex 
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24.2. Polynomial Multiplication: The High Level Idea

This graphical depiction also shows us a very useful property of the roots of unity.

Lemma: Halving lemma

For any even n ≥ 0, the squares of the complex n th roots of unit are precisely the (n/2)th

roots of unity.

24.2 Polynomial Multiplication: The High Level Idea
By default, we usually represent polynomials in the coefficient representation, but we recall
that if we know the value of a degree d polynomial at d +1 distinct points, that uniquely deter-
mines the polynomial. Not only that, but if we had A and B in this point-value representation,
we could, in O (d ) time compute the polynomial C in that same representation: simply multi-
ply the values of A and B at the specified points together. This is much faster than multiplying
polynomials directly via the coefficient representation which takes O (d 2) time.

This leads to the following outline of an algorithm for this problem:

Let N = 2d +1 so the degree of C is less than N .
(1) Pick N points x0, . . . , xN−1 according to a secret formula.
(2) Evaluate A(x0), . . . , A(xN−1) and B (x0), . . . , B (xN−1).
(3) Now compute C (x0), . . . , C (xN−1)where C (x ) = A(x )B (x ).
(4) Interpolate to get the coefficients of C .

The reason we like this is that multiplying is easy in the “value on N points” representation. So
step 3 is only O (N ) time.

If we ignore steps (2) and (4), this algorithm just takes O (N ) = O (d ) time. However, the best
algorithm that we know so far to perform those steps each take O (d 2) time: To compute the
point representation, we could use Horner’s rule 2d + 1 times, and to interpolate, we can use
Lagrangian interpolation in O (d 2) time.

We therefore shift the goalposts to finding a fast algorithm for performing steps (2) (4). Note
that we have some flexibility in this framework. In order to compute the product, it is sufficient
to evaluate the polynomial at any N points x0, . . . xN−1, so perhaps there is some clever choice
of points that will make the algorithm faster than just using any arbitrary set of points (indeed
there is and this is the magic of the algorithm!)

Let’s focus on forward direction first. In that case, we’ve reduced our problem to the following:

GOAL: Given a polynomial A of degree<N , evaluate A at N points of our choosing
in total time O (N log N ). Assume N is a power of 2.

24.3 To Point-Value Form (The Fast Fourier Transform)
First here’s a little intuition for how this is going to work. Consider the case where the degree of
A is 7, and we want to evaluate it at two points: 1 and −1.
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A(x ) = a0+a1 x +a2 x 2+a3 x 3+a4 x 4+a5 x 5+a6 x 6+a7 x 7.

So:

A(1) = a0+a1+a2+a3+a4+a5+a6+a7

A(−1) = a0−a1+a2−a3+a4−a5+a6−a7

These two computations take a total of 14 additions.

Suppose instead we were to compute Z = a0+a2+a4+a6 and W = a1+a3+a5+a7. Now A(1) =
Z+W and A(−1) = Z−W . This can be done in a total of only 8 additions. This optimization may
not seem like much, but if we can figure out how to apply it recursively, it solves the problem –
it gets us from O (N 2) down to O (N log N ).

Making it recursive To make the above idea recursive, the first step is to keep everything in
terms of polynomials rather than evaluate immediately and just end up with numbers. What’s
the polynomial equivalent of our even and odd expressions (Z and W )? Lets say we just take
those even and odd coefficients and use them to write smaller (half as big) polynomials!

Aeven(x ) = a0+a2 x +a4 x 2+a 6 x 3,

Aodd(x ) = a1+a3 x +a5 x 2+a7 x 3

Now the important question is how to recombine the smaller polynomials to get the larger one?
Note that we basically halved all of the powers when we took the smaller polynomial, so to get
back the original powers, we need to square them. The odd powers are then one higher, so we
can multiply by x to recover those. This gives us the following important formula:

A(x ) = Aeven(x
2) + x Aodd(x

2).

So, to make our algorithm recursive, we want to split the polynomial into even and odd poly-
nomials of half as many terms, divide-and-conquer on those and then combine the two halves
back together using the above formula! The major question that remains is how do we choose
the x values to use? 1 and −1 seemed like good choices above because they work when the
polynomial is cut into odd and even, but its not obvious how to generalize that to N points.

24.3.1 Selecting the best points
The key insight into selecting the right points is to to keep the x 2 part of the formula in mind.
When we are recombining the subproblems, the points are no longer the same set of points
(but rather the squares of the previous points), so that presents a challenge.

In general, if we start with a set of N points, then take all of their squares, we get back a new set
of N points. This is not very helpful since our divide-and-conquer will perform O (N ) work at
every subproblem and therefore still take O (N 2) time. Somehow, we need a magic set of points
such that if we start with N of them, then square them all, we get N /2 points, since then the
divide-and-conquer will correctly reduce the problem size at each level.
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24.3. To Point-Value Form (The Fast Fourier Transform)

Do we know any special set of numbers that have this property??? Yes, we talked about them in
the beginning of the lecture! We can use roots of unity as our set of points. When we take the
square of the N N th roots of unity, we get the N /2 (N /2)th roots of unity, which is exactly what
we need to make our algorithm efficient!

These are the special magic numbers at which we will evaluate our polynomial. We will write
A as a polynomial of degree N −1:

A(x ) = a0+a1 x +a2 x2+ · · ·+aN−1 x N−1,

and then define the DFT (Discrete Fourier Transform) of the coefficient vector (a0, . . . , aN−1) to
be another vector of N numbers as follows:

FN (a0, a1, . . . , aN−1) = (A(ω
0), A(ω1), . . . , A(ωN−1))

That is, we are just evaluating A at the N th roots of unity.

24.3.2 The Fast Fourier Transform algorithm
Now we can derive the fast algorithm for computing the DFT. (This is called the FFT algorithm.)
Let A be the vector (a0, a1, . . . , aN−1). Let FN (A) j denote the j th component of the DFT of the
vector A.

FN (A) j = A(ω j )

=
N−1
∑

i=0

aiω
i j

=
N−1
∑

i = 0
i even

aiω
i j +

N−1
∑

i = 1
i odd

aiω
i j

=

N
2 −1
∑

i=0

a2iω
2i j +

N
2 −1
∑

i=0

a2i+1ω
(2i+1) j

=

N
2 −1
∑

i=0

a2i (ω
2)i j +ω j

N
2 −1
∑

i=0

a2i+1(ω
2)i j

=

N
2 −1
∑

i=0

a2i (ωN /2)
i ( j mod N /2)+ω j

N

N
2 −1
∑

i=0

a2i+1(ωN /2)
i ( j mod N /2)

In the last step we’ve simply used the fact that ω2
N = ωN /2, and the observation that ω

i j
N /2 =

(ω j
N /2)

i = (ω j mod N /2
N /2 )i becauseω

j
N /2 is a periodic funciton of j with period N /2.

Now the key point is that these two summations are in fact just DFTs half the size. Let’s let Aeven

denote the vector of a s with even subsubscripts (of length N /2) and Aodd be the odd ones. We
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can write the final equation above using these vectors as follows:

FN (A) j = FN /2(Aeven) j mod N /2+ω
j
N FN /2(Aodd) j mod N /2

Notice that in this derivation we did use the fact thatω is a root of unity, but we never used the
fact that it is a primitive root of unity. That will be needed when we compute the inverse.

So we can rewrite the above recurrence as pseudocode as follows:

Algorithm: Fast Fourier Transform

FFT([a0, . . . , aN−1],ω, N )
if N = 1 then return [a0]
Feven← FFT([a0, a2, . . . , aN−2],ω2, N /2)
Fodd ← FFT([a1, a3, . . . , aN−1],ω2, N /2)
F ← a new vector of length N
x ← 1
for j = 0 to N −1 do

F [ j ]← Feven[ j mod (N /2)]+ x ∗ Fodd[ j mod (N /2)]
x ← x ∗w

return F

Since at each recursive call we have a polynomial of half the size and evaluate on half of many
points, the runtime of this algorithm follows the recurrence:

T (N ) = 2T (N /2) +O (N ),

which solves to O (N log N ).

24.4 The Inverse of the DFT
Remember, we started all this by saying that we were going to multiply two polynomials A and
B by evaluating each at a special set of N points (which we can now do in time O (N log N )), then
multiply the values point-wise to get C evaluated at all these points (in O (N ) time) but then we
need to interpolate back to get the coefficients. In other words, we’re doing F −1

N (FN (A) ·FN (B )).

So, we need to compute F −1
N . We’ll develop this now.

First, we can view the forward computation of the FFT (evaluating A at 1,ω,ω2, . . . ,ωN−1) as a
matrix-vector product:









ω0·0 ω0·1 · · · ω0·(N−1)

ω1·0 ω1·1 · · · ω1·(N−1)

...
...

...
...

ω(N−1)·0 ω(N−1)·1 · · · ω(N−1)·(N−1)

















a0

a1
...

aN−1









=









A(ω0)
A(ω1)

...
A(ωN−1)








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Note that the matrix on the left is the one where the contents of the k th row and the j th column
isωk j . Let’s call this matrix DFT(ω, N ). What we need is DFT(ω, N )−1.

Let’s see what happens if we multiply DFT(ω−1, N ) by DFT(ω, N ).

The (k , j ) entry of DFT(ω−1, N )DFT(ω, N ) =
N−1
∑

s=0

ω−k sωs j

So let’s try to evaluate the summation on the right in the two cases of k = j and k ̸= j .

If k = j then we get:
N−1
∑

s=0

ω− j sωs j =
N−1
∑

s=0

ω0 = N

If k ̸= j then we get:
N−1
∑

s=0

ω−k sωs j =
N−1
∑

s=0

ω( j−k )·s =
N−1
∑

s=0

(ω j−k )s

Now let’s make use of the fact thatω is a primitive root of unity. This means thatω j−k ̸= 1. The
sum is now a geometric series. So we can use the standard formula for summing a geometric
series:

1+ r + r 2+ · · ·+ r N−1 =
1− r N

1− r

So
N−1
∑

s=0

(ω j−k )s =
1− (ω j−k )N

1−ω j−k
=

1−1

1−ω j−k
= 0

So, summarizing what we just learned:

The (k , j ) entry of DFT(ω−1, N )DFT(ω, N ) =

(

N if k = j

0 if k ̸= j

This is just the identity matrix times N . So what we’ve just proven is that:

DFT(ω, N )−1 =
1

N
DFT(ω−1, N )

This means that we can compute the inverse of the DFT by using the FFT algorithm described
above except running it withω−1 instead ofω, and then multiplying the result by 1/N . It still
runs in O (N log N ) time. Putting this all together we have an algorithm to multiply polynomials
(or equivalently, compute a convolution) in O (N log N ) time.
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Exercises: Fast Fourier Transform

Exercises: Fast Fourier Transform

Problem 58. Prove the halving lemma algebraically using the definition of the n th roots of
unity.
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Lecture 25

Online Learning - The Experts
Framework

Today we’ll study the problem of making predictions based on expert advice. We will design
and analyze a set of algorithms that learn which experts are the most accurate/trustworthy,
which therefore allows our algorithm to make good predictions on average. We will see that,
perhaps surprisingly, it is possible to design an algorithm that makes predictions almost as
good as the best expert in hindsight. This framework turns out to have very useful applications
in algorithm design and game theory.

Objectives of this lecture

In this lecture, we will

- Define the experts framework and understand the goal of the algorithms

- See several deterministic strategies for making predictions, and analyze their accuracy

- See an even better strategy that uses randomization

25.1 Prediction with Expert Advice
There are n “experts” (who are just people with opinions, the quotes suggesting that they may or
may not have any expertise in the matter). Each day the following sequence of events happens:

- We see the n experts’ predictions of the outcome.

- We make our own prediction about the outcome.

- The actual outcome is revealed.

- We are correct if we made the right prediction, and make a mistake otherwise.

This process goes on indefinitely. Our goal: at any time (say after some T days), we want to
have made not too many more mistakes than the best expert. We want to bound the number of
mistakes, and hence this is called the “mistake-bound” model. To start off, say we have binary
predictions (e.g., “Up/Down” predictions if the stock market will go up or down, or “Good/bad”
if the weather will be good or not.)
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25.2 Warmup: Simple Strategies
Majority and halving Suppose we know the best expert makes no mistakes. Can we hope to
make only a few mistakes? Here’s a strategy that makes only ⌊log2 n ⌋mistakes. Just predict what
the majority of the remaining experts predicts. (In case of a tie, choose arbitrarily.) Take all
the experts that are wrong and discard them. So each time we make a mistake, we reduce by
the number of experts by at least 1/2. This means after log2 n mistakes we will be left with the
perfect expert.

Without a perfect expert Suppose the best expert makes at most M mistakes on some se-
quence. Can we hope to make only a few mistakes? Here’s a strategy that makes only (M +
1)(log2 n + 1)mistakes, assuming n is a power of 2. Run the above majority-and-halving strat-
egy, but when you have discarded all the experts, bring them all back (call this the beginning of
a new “phase”), and continue. Note that in each phase each expert makes at least one mistake,
and you made log2 n+1 mistakes. Hence, if the best expert makes only M mistakes, there would
be at most M finished phases (plus the last unfinished one), and hence at most (M+1)(log2 n+1)
mistakes in all.

25.3 The Multiplicative Weights Algorithm
Throwing away an expert when it makes a mistake seems too drastic. Suppose we instead as-
sign weights w j to the experts, sum the weights of the expert saying Up, sum the weights of
the of the expert saying Down, and predict the outcome with greater weight. (This is called the
weighted majority rule, since we are following the advice of the experts that form the weighted
majority.)

Then once we see the outcome, we can reduce the weight of the experts who were wrong. In
the above algorithm, we were zeroing out the weight, but suppose we are gentler?

The (basic) deterministic weighted majority algorithm does the following:

Algorithm: Deterministic weighted majority

Start with each expert having weight 1. Each time an expert makes a mistake, half its
weight. Output the prediction of the experts who form the weighted majority.

Remarkably, we can get a much stronger result now.

Theorem 25.1

If on some sequence of days, the best expert makes M mistakes. The basic deterministic
weighted majority algorithm makes ≤ 2.41(M + log2 n )mistakes.

Proof. Let Φ :=
∑n

i=1 wi be the sum of weights of the n experts. Note that initially Φ= n . More-
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over, we claim that each time we make a mistake

Φne w ≤
3

4
Φo l d .

Indeed, at least half the weight (which was making the majority prediction) gets halved (be-
cause it made a mistake), so we lose at least a quarter of the weight with each mistake. (Also if
we don’t make a mistake, Φ does not increase.) So if we’ve made m mistakes at some point, the
total weight is at most

Φ f i na l ≤ (3/4)m ·Φi ni t = (3/4)
m ·n .

Moreover, if the best expert i ∗ has made M mistakes, then Φ f i na l ≥wi ∗ = (1/2)M . So

(1/2)M ≤ (3/4)m ·n ⇒ (4/3)m ≤ n2M .

Taking logs (base 2) and noting that 1
log2(4/3)

= 2.41 . . . completes the proof.

This is pretty cool! If the best expert makes mistakes 10% of the time we are wrong about 24%
of the time (plus O (log n ), but since this depends only on the number of experts, it will be a
negligible fraction as M ≫ log n ). We can improve the 2.41 factor down to as close to 2 as we
want, which you can try to prove as an exercise.

However, you can show that no deterministic prediction algorithm can make fewer than 2M
mistakes. How? Two experts: one says “Up” all the time, the other “Down” all the time. Fix any
prediction algorithm. Since this algorithm is deterministic, you (as the adversary) know what
prediction it will make on any day, if you know what happened on all previous days. So as the
adversary, you can now make the “real” outcome on this day be the opposite of the algorithm’s
prediction for this day. This means the algorithm makes a mistake on all days. But one of the
experts must be right on at least 50% of the days.

25.4 Randomized Weighted Majority
Given the lower bound above for deterministic algorithms, randomization seems like a natural
source of help. (At least the example above would fail.) Let’s define the Randomized Weighted
Majority algorithm:

Algorithm: Randomized weighted majority

Start with unit weights. At each time, predict 1 with probability
∑

j says 1

w j

∑

j

w j

,

and 0 otherwise. Whenever an expert makes a mistake, multiply its weight by (1−ε).
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Note that the weights are pretty much like in the basic MW algorithm, just reduced more gently.
(Moreover, note that the prediction we make does not alter the weight reduction step.) A slightly
different, but equivalent view is the following:

Remark: Equivalent probabilistic view of randomized weighted majority

Start with unit weights. At each time, pick a random expert, where expert i is picked with
probability wi

∑

j w j
, and predict that picked expert’s prediction. And each time an expert

makes a mistake, multiply its weight by (1−ε).

The analysis similar to Theorem 25.1, we just need to handle expectations, and will need a few
more inequalities to get a handle on the final potential.

Theorem 25.2

Let ε ≤ 1/2. If on some sequence of days, the best expert makes M mistakes. The ex-
pected number of mistakes the randomized weighted majority algorithm makes is at
most

(1+ε)M +
ln n

ε
.

Proof. Again, let us look at the potentialΦ=
∑

j w j , the total weight in the system. Having fixed
the outcome on all days, this potential varies deterministically.

Let Ft be the fraction of the total weight on the t th day of experts who make a mistake on that
day. This means that on day t our probability of making a mistake is Ft . Hence the expected
number of mistakes we make overall is

∑

t Ft .

On the t t h day, we claim that Φne w = Φo l d · (1− εFt ). We can prove this as follows. Let Wwrong

be the weight of the experts who were wrong on day t , and Wcorrect be the weight of the experts
who were right. This means that Ft =Wwrong/Φo l d . The old potential can be written as

Φo l d = Wwrong
︸ ︷︷ ︸

weight goes
down (1−ε)

+ Wcorrect
︸ ︷︷ ︸

stays same

,

so the new potential is

Φne w = (1−ε)Wwrong+Wcorrect,

= (1−ε)Wwrong+ (Φo l d −Wwrong),

=Φo l d −εWwrong.

Then we can use the fact that Wwrong =Φo l d Ft , to write the new potential as

Φne w =Φo l d −εWwrong,

=Φo l d −εΦo l d Ft ,

=Φo l d (1−εFt )
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So, using the useful inequality (1+ x )≤ e x for all x ∈R, we get

Φ f i na l = n ·
∏

t

(1−εFt ),

≤ n · e −ε
∑

t Ft

Again, we also have Φ f i na l ≥ (1−ε)M , so

(1−ε)M ≤ n · e −ε
∑

t Ft ⇒ ε
∑

t

Ft ≤M ln
1

(1−ε)
+ ln n .

We can now use another useful inequality, that ln 1
(1−ε) =− ln(1−ε)≤ ε+ε2 for ε ∈ [0, 1

2 ] to get

expected number of mistakes =
∑

t

Ft ≤ (1+ε)M +
ln n

ε
.

Pretty sweet, right? The number of mistakes we make is almost the same as the best expert,
plus this additive term that just depends on n and ε, but is independent of the input sequence.

25.4.1 The error rate and the “regret”
In the last section we obtained a bound on the expected total number of mistakes. Another
interesting quantity to look at is the rate of mistakes, i.e., what fraction of the time do we make
a mistake in the long run? We can take the result of Theorem 25.2 and divide by T to get the
error rate, so

expected number of mistakes

T
≤
(1+ε)M

T
+

ln n

εT
,

expected error rate≤
M

T
+
εM

T
+

ln n

εT

Now we note two things.

- The quantity M /T is the optimal error rate, i.e., the error rate of the best expert.

- Since the optimal number of mistakes M is at most T , we can write, εM /T ≤ ε

So we have

expected error rate≤ optimal error rate+ε+
ln n

εT

We can choose any ε we want, so lets pick one that makes this quantity as small as possible,

ε=
q

ln n
T .

our error rate ≤ optimal error rate +2

√

√ ln n

T
.
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Remark: Regret

This last term, 2
q

ln n
T is called the “regret”, and it goes to zero as T →∞. So as we do the

prediction for longer and longer (i.e., T →∞), our error rate gets as close as we want to
the optimal error rate. (We have “vanishing regret”.)

25.5 Generalization
Optional content — Not required knowledge for the exams

Fractional Costs. Suppose each day t , instead of costs that are zero (no mistake) or one (mis-
take), we have costs c t

i in [0, 1]. We can extend the result to that setting with a very slight change:
update the weight of an expert i by wi ← wi (1− εc t

i ). With small changes in the analysis, the
guarantee of Theorem 25.2 goes through unchanged! (Exercise: Show this!)
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Exercises: Online Learning

Problem 59. Argue that, in the setting where the best expert makes no mistakes, you cannot
design a deterministic algorithm that makes fewer than log2 n mistakes in the worst case in this
setting.

Problem 60. Suppose the predictions belonged to some set of K items instead of being binary.
(E.g., you could say “cloudy”, “sunny”, “rain”, “snow”.) Give determinstic algorithms showing
the bound of O (M log n )mistakes still holds.

Problem 61. Show that, in the deterministic weighted majority algorithm, if we reduce the
weight not by 1/2 but by (1−ε) for some ε≤ 1/2, then the number of mistakes is at most 2(1+
ε)M +O ( log n

ε ). (Hint: check out the approximations we use in the proof of Theorem 25.2.)
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