
15-451/651 Algorithm Design & Analysis, Spring 2024

Recitation #10

Objectives

• Finding approximations with relaxations to known algorithms

• Finding approximations with LP relaxations

Recitation Problems

1. (Client Commissions) Fed up with 451 students forgetting about how cool flow net-
works are as soon as they learn about LPs, Daniel decides to quit his job and become a
freelance painter.

As a freelance painter, he receives commissions from clients, and wants to find a sched-
ule to complete them in a timely manner so that more people want to commission art
from him. As an artist dedicated to his craft, Daniel has the self-imposed rule that when-
ever he starts working on a commission he doesn’t stop until it’s done. Daniel also does
not need to eat or sleep and can spend every single second painting.

Namely, for each commission i with an order time oi (when the commission is ordered
by a client), and a painting time pi (how long he must work on painting that commis-
sion), Daniel has a finish time Ti . He wants to minimize

∑

i Ti .

Why Daniel uses this metric and not something such as maxi Ti is because if given one
big and one small commission at the same time, that metric can’t differentiate between
doing the small first and the large second, or vice versa, while the sum metric can.

However, haunted by knowledge from his old life as an Algorithms professor, Daniel
realizes that this problem is NP-hard. So, he wants to find a way to approximate it using
a poly-time algorithm. Since he is done with his old life of algorithms, Daniel asks you
for help finding a 2-approximation.

Consider the following relaxation of the problem: An "unrestricted" schedule is a sched-
ule where Daniel can stop working on one commission in the middle of painting and re-
sume from where he left off later. We can compute the optimal unrestricted schedule in
polynomial time1. Let T ′i be the finish time of job i in the optimal unrestricted schedule.

(a) Scheduling with "unrestricted" schedules is a relaxation of scheduling in general.
In other words, any valid "restricted" schedule is also a valid "unrestricted" sched-
ule. Note that this is only in one direction. It isn’t true that a valid "unrestricted"
schedule can be turned into a "restricted" schedule. What does this imply about
the relationship (=, ≤, or ≥) between

∑

i T ′i and O P T ?

1In fact, you can do it greedily. At any time, process the job with shortest remaining processing time. This is
called the shortest remaining processing time (SRPT) rule. Try to show why this is optimal.

1



2



(b) For the following parts we will use a specific indexing scheme. Let commission j
be the j t h commission that the unrestricted schedule finishes. Prove the following:

T ′j ≥
j

max
k=1

ok

T ′j ≥
j
∑

k=1

pk

3



4



(c) Suppose that the restricted schedule finishes commissions in the exact same order
as the unrestricted schedule. Show that for the j t h finished commission , Tj ≤ 2T ′j .
Conclude that the restricted schedule is a 2-approx of O P T .

5



2. (CMU Mandated Algorithms Problem) After Daniel leaves teaching, David cannot fathom
continuing teaching 451 alone. More than that, he cannot imagine even being in the
field of algorithms any more. So he decides to switch fields and become a telecommu-
nications networks expert.

As his first foray into the field, he decides to tackle the problem of SONET ring loading,
a classical problem in telecommunications networks.

Unfortunately, CMU is not happy with the fact that a core class just had one of its profes-
sors quit and the other change fields. So they force David to continue teaching 451, and
tell him that he must continue assigning work that requires students to do algorithms.

However disappointed, David realizes that he can at least give algorithms problems on
telecommunications networks topics. So, he assigns you a basic version of his new re-
search area, the SONET ring loading problem. The problem goes as such:

We have a cycle with n vertices, numbered 0 through n − 1 clockwise around the cycle.
We are also given a set of requests. Each request is a pair (i , j )where i is the source vertex
and j the target vertex. The call can be routed either clockwise or counterclockwise
through the cycle. The objective is to route the calls so as to minimize the load (total
number of uses) of the most loaded edge of the cycle.

Write a linear program relaxation for the problem, and use it to give a 2-approximation
algorithm using a rounding argument. Remember that a linear program relaxation is
an LP such that if you could force some variables to be integers, you would solve the
problem exactly.

(a) An intuitive start is have a variable Lk representing the load of an edge ek , and to
minimize the maximum load over all edges. However, this objective:

minimize max
i

Lk

as presented is not a linear combination.

Come up with a way to have an LP solver minimize the maximum load over all
edges.

Hint: This might be more involved than just coming up with a new objective.

(b) Now that we have an objective function, let’s build the rest of the LP relaxation.

6



What are the variables of our LP, and what do they represent in regards to the orig-
inal problem?

(c) Finally, what are the constraints on these variables?

Hint: The hard constraint is the constraint for the load on an edge. Consider for a
given edge ek and a call (i , j )when that edge will actually have load on it from that
call.

7



(d) Now, using this LP relaxation, give an algorithm for routing each call and prove why
this gives a 2-approximation on the minimized maximum load.

8


