15-451/651 Algorithm Design & Analysis, Spring 2024 Extra Review Problems

Fingerprinting

- 1. (Short answer / multiple choice)
 - (i) The Karp-Rabin algorithm may yield
 - (a) A false positive
 - (b) A false negative
 - (c) Either of the above
 - (ii) In the Karp-Rabin algorithm, suppose we have a text of length m and want to find a string of length n. After we pick a prime, what is the tightest bound of the runtime of this algorithm?
 - (a) O(m+n)
 - (b) $O(\log m + \log n)$
 - (c) $O(n \log m)$
 - (d) $O(m \log n)$
 - (e) O(mn)
 - (iii) Given an *n*-bit number *x*, the number of distinct prime divisors of *x* is at most (pick the smallest correct value from among the following):
 - (a) $\log \log n$
 - (b) $\log n$
 - (c) *n*
 - (d) n^2
 - (iv) Given any *x* in the range 2, 3, ..., *n* the number of distinct prime divisors of *x* is at most (pick the smallest correct value from among the following):
 - (a) $O(\log \log n)$
 - (b) $O(\log n)$
 - (c) O(n)
 - (d) $O(n^2)$
 - (e) *O*(2^{*n*})

2. (General analysis of Karp-Rabin)

- (a) In lecture we analyzed the complexity of the Karp-Rabin algorithm for $\Sigma = \{0, 1\}$, and showed that to achieve 1% error, this required a random $O(\log m + \log n)$ -bit prime. Generalize this for any Σ . How many bits should *p* be to retain 1% error?
- (b) Now suppose we want an error rate of δ , how large should our prime be?