
UCT
Turing Machines

Klaus Sutner
Carnegie Mellon University
Spring 2023

1 ∗ Turing Machines

2 ∗ Turing Computability

3 Enumeration and Diagonalization

4 The Busy Beaver Problem

5 Semidecidability

Alan Turing (1912–1954) 2

The Source 3

A. Turing
On Computable Numbers, with an Application to the
Entscheidungsproblem
Proc.London Math.Soc., 2–42 (1936-7), pp. 230–265.

Turing called his now eponymous devices a-machines, a for automatic.
These do not halt: their purpose is to write the infinite binary expansion
of a real number on (part of) the tape.

Our description of a TM is the modern one due to Davis and Kleene.
The main justification for TMs as the standard model of computation is
that they work very well for complexity theory.

http://www.cs.cmu.edu/~uct/resources/Turing1936.pdf

Before Turing 4

There were two models of computation in existence before Turing’s
seminal 1936 paper, both developed by logicians, and based on
elementary ideas in math: equations and functional composition.

Herbrand-Gödel equations.
Those describe recursive functions in the most general sense (recur-
sion on multiple variables; by contrast primitive recursive functions
allow recursion only on one variable).

Church’s λ-computable functions.
The λ-calculus is the abstract theory of functional composition.
Very elegant, very hard to use for any concrete purpose (there are
no data structures).

Turing’s Machines 5

Brilliant Idea: Observe a human computor, then abstract
away all the merely biological stuff and formalize what is
left.

Everyone agrees that mathematicians compute (among other things such
as drinking coffee or proving theorems). So we could try to define an
abstract machine that can perform any calculation whatsoever that could
be performed in principle by a mathematician, and only those.

Note the hedge “in principle”: we will ignore “merely physical”
constraints such as the computor dying of old age and decrepitude, or
running out of scratch paper after using up the whole universe.

A Concrete Turing Machine 6

No Joke 7

Obviously, whoever built the LEGO Turing machine has a lot of extra
time on their hands.

But, the construction brings out a very important issue: Turing machines
are clearly physically realizable. Our standard notion of computation is
perfectly compatible with our physical universe.

This is not so clear for other mathematical tools: for example, do the
reals† actually describe physical reality?

†If you think the answer is obviously Yes, note that a logician can easily come
up with several versions of the reals. Which is the that one corresponds to actual
physics?

An Abstract Turing Machine 8

aba acab a

work tape

read/write head

finite state control

The Pieces 9

A tape: a bi-infinite strip of paper, subdivided into cells. Each cell
contains a single letter; all but finitely many contain just a blank.
So we have a tape inscription and we can represent it as a finite
word over the tape alphabet (ignore the infinitely many blanks).

A read/write head that is positioned at a particular cell. That head
can move left and right.

A finite state control that directs the head: symbols are read and
written, the head is moved around and the internal state of the FSC
changes.

Formalization 10

alphabet Σ: finite set of symbols, special blank symbol in Σ

state set Q: finite set of possible mind configurations

δ : Q × Σ ↛ Q × Σ × {−1, 0, +1} : partial transition function

a special initial state qinit ∈ Q

a special halting state qhalt ∈ Q.

Definition
A Turing machine† is a structure M = ⟨Q, Σ, δ, qinit, qhalt⟩.

†This is not Turing’s original definition; he was interested in machines that do
not halt and instead produce the infinite binary expansion of a real number. For us,
halting is key.

Sanity Check 11

Let us agree on the following conventions:

The tape alphabet contains at least two symbols. It is often conve-
nient to let Σ = {0, 1} and think of 0 as the blank symbol.

δ(qhalt, a) is undefined for all a ∈ Σ.

This will be used in a moment when we define what it means for a
TM to halt.

Turing Machines are Brilliant 12

Of all the standard models of computation, Turing machines are most
easily shown to capture precisely the intuitive notion of computability:
arguably they correspond to the abilities of a human computor.

In addition, TMs are fairly simple, certainly much more palatable then
Herbrand-Gödel equations or Church’s λ-calculus, but not as nice as
models that are closer to actual hardware such as register machines or
random access machines, let alone programming languages.

And they work extremely well in the context of complexity theory, unlike
some of the other models. For us, this reason alone settles the question
of which model to use.

Wittgenstein 13

Turing’s “Machines”.
These machines are humans who calculate.

Turing Machines Suck 14

One substantial drawback of TMs is that it is hugely cumbersome to
actually construct interesting examples. Say, a TM that computes
multiplication of naturals given in binary. Or a universal machine that
can be run on nice examples. Or try to prove that Turing machines can
compute primitive recursive functions.

Similarly, even tiny TMs with single-digit number of states are often just
about impossible to analyze (busy beaver problems).

Other models such as register machines or while-programs are better
behaved in this regard. Fortunately one can usually get around the gory
details and appeal to common sense: “clearly, one can construct a TM
that does such-and-such . . . “

A Quibble 15

Arguably the most natural examples of computation come from
arithmetic: operations like addition, multiplication, exponentiation, gcd,
prime factorization and so on are clearly all computable.

These all involve natural numbers, they are referred to as arithmetic
functions, maps Nk → N. In fact, all of CRT was developed in terms of
arithmetic functions. Computable arithmetic functions are historically
called partial recursive functions. The ones that are in addition total are
called (total) recursive functions.

But: Turing machines naturally operate on strings, not numbers. This is
a blessing for complexity theory where we have to deal with data
structures such as adjacency matrices as input, but for arithmetic it’s a
bit of a type mismatch.

Coding 16

There is a simple fix: we just code natural numbers as strings, typically
either in unary or binary. No big deal, but certainly a misalignment.

On the other hand, sometimes it is very convenient not to have to worry
about all the possible details of string encodings. So in this case, we
think of strings simply as numbers: we simply interpret the letters of the
alphabet as digits.

For example, we could think of some program P as a number e ∈ N,
called an index for P : think of the representation of P in memory as a
number written in binary (maybe add a leading 1). Ditto for all other
discrete data structures.

Lame Example: Successor Function 17

Tape alphabet Σ = { , |}
States Q = {0, 1, 2, 3}
Initial state qinit = 0, final state qhalt = 3.
The transition function δ is given be the following table:

p σ δ(p, σ)
0 1 +1
1 2 | −1
1 | 1 | +1
2 3 0
2 | 2 | −1

So the machine gets stuck if it is in state 0 but reads symbol 1. This
won’t matter during actual computations.

Why not Diagrams? 18

DFAs can be nicely represented by diagrams that have labeled edges of
the form

p
a−−→ q

to indicate that (p, a, q) ∈ δ.

While it is still possible to draw diagrams for Turing machines, the
transitions now take the form

p
a:b:d−−−−→ q

to indicate that δ(p, a)=(q, b, d). This produces a lot of visual clutter and
is much less useful: the tape content is missing.

Sample Run 19

Addition 20

We are using fat unary notation, n is represented by

n 7→ ||| . . . ||︸ ︷︷ ︸
n+1

Hence we have to erase two 1s at the end:

0 1 +1
1 2 | +1
1 | 1 | +1
2 3 −1
2 | 2 | +1
3 | 4 −1
4 | 5 −1
5 6 0
5 | 5 | −1

0 is the initial state, 6 is the final state

Sample Run 21

Copy 22

Here is a Turing machine† that copies its input: x 7→ xx.

†Written in Mathematica, so it can actually be executed.

A Run 23

Palindromes 24

Correctness 25

Exercise
What would a complete correctness proof for the Turing machine that
performs unary addition look like? What is difficult about the proof?

Exercise
Construct a Turing machine that performs addition when the input is
given in binary. What would the execution pictures look like in this case?
How hard is a correctness proof?

Exercise
Figure out how the palindrome TM works and prove that it is correct
(you need a convention for accepting versus rejecting computations).

Exercise (Hard)
Show that any one-tape Turing machine requires quadratic time to
recognize palindromes.

1 ∗ Turing Machines

2 ∗ Turing Computability

3 Enumeration and Diagonalization

4 The Busy Beaver Problem

5 Semidecidability

This is Fraud 27

The pictures are stunningly beautiful, but we have not really explained
what they are a picture of.

More precisely, we have a definition of a Turing machine, but we appeal
to intuition when it comes to computations of these machines. As far as
intuition is concerned, this is fine, but to prove anything we also need
clear, formal definitions.

The Approach 28

Given any type of machine M, to define computations of M, it is a good
idea to think about interrupting a computation.

What information is minimally needed to resume the computation later?
This is called a configuration or instantaneous description (ID).

Then we explain how M moves from one configuration to the next, the
one-step relation. Chaining together single steps by induction, we get a
many-step relation that formalizes computations of arbitrary length.

We have to add input/output conventions, and then we’re done.

Formalizing TM Computation 29

Configurations here consist of:

the current state
the current tape inscription (non-blank part only)
the current head position

So we have three pieces of information that we need to keep track of.
They are all finite objects, so there is no problem in describing them by
some explicit datatype. Something like a triple in Q × Γ ⋆ × N. Make
sure to figure out the details.

As it turns out, the following, less obvious, representation works very well
in practice.

String Representation 30

We may safely assume that Q ∩ Σ = ∅. We will use Q ∪ Σ as an
alphabet and use strings of the form Σ+ Q Σ+ to encode configurations.

Definition
A configuration or instantaneous description (ID) is a word y p x where
x, y ∈ Σ+ and p ∈ Q:

ymym−1 . . . y1 p x1x2 . . . xn

means that the read/write head is positioned at x1 and the tape
inscription is ym . . . y1x1 . . . xn.

One of the reasons this formalization is particularly useful is that one can
use the theory of finite state machines to explain what it means to
perform one step in a computation (a transducer can handle this task).

Details 31

The last description really captures one particular type of Turing
machine: a

TM with a single, two-way-infinite tape

with inscriptions of the form

. . . ym . . . y1 x1 . . . xn . . .

where the head is at x1 and the machine is in state p.

Alas, this is just the tip of the iceberg: it is also useful to consider
machines that have multiple tapes (each with a separate read/write
head) and/or one-way-infinite tapes. In addition, later we will use
separate read-only input tapes, and write-only output-tapes (these are
always one-way-infinite).

More Details 32

We may safely assume that n, m ≥ 1 since we can always let y1 and x1
be the blank symbol.

It also makes sense to choose n and m to be minimal such that yx
captures all the non-blank symbols on the tape. We won’t bother to
make this part of the definition, though, it really does not matter much.

This is subtly different from a model where are tape inscription is a map
Z → Γ with finite support: our approach is coordinate free. Usually that
is better, but sometimes it is preferable to keep track of the absolute
position on the tape.

One Step 33

Next we need to explain a single step in a computation:

ypx M
1

y′qx′

Recall that we assume x and y to be non-empty (otherwise set
y1 = x1 =). Now let δ(p, x1) = (q, a, ∆). Then the next configuration
is defined by

ym . . .y1 p x1x2 . . . xn ⇝

ym . . .y2 q y1ax2 . . . xn ∆ = −1

ym . . .y1 q a x2 . . . xn ∆ = 0

ym . . .y1a q x2 . . . xn ∆ = +1

Note that there is no next configuration whenever δ(p, x1) is undefined.

Multiple Steps 34

Now we extend the “one-step” relation to multiple steps by induction:

one step
C M

1
C ′ ⇐⇒ as on the last slide

exactly t steps
C M

t
C ′ ⇐⇒ ∃ D

(
C M

t−1
D ∧ D M

1
C ′)

any finite number of steps
C M C ′ ⇐⇒ ∃ t

(
C M

t
C ′)

Complexity 35

Lemma
The relation M

t is primitive recursive, uniformly in t.

Meaning that there is a primitive recursive relation R ⊆ N3 such that

R(t, C, C ′) ⇐⇒ C M
t

C ′

Here the configurations are coded as naturals simply by using sequence
numbers. Say, let Σ = [n] and Q = [n+1, m], set

⟨C⟩ = ⟨yk, . . . , y1, q, x1, . . . , xℓ⟩

Look at the website if you want to know details about primitive recursive
functions and coding tricks such as sequence numbers.

Warning 36

In the context of abstract computation, the relation M
t is easy. But the

relation M most emphatically is not.

In fact, if we can compute the length of a computation in a primitive
recursive manner, then the whole function is already primitive recursive:
we just run the Turing machine an appropriate number of steps. If not,
we are sunk: we just have to run the machine without any idea if and
when it might stop.

So the difference between primitive recursive and Turing computable is
just one unbounded search, one existential quantifier. As we will see, this
makes a world of difference.

Input and Output 37

Given any input x = x1x2 . . . xn ∈ Σ⋆, the initial configuration for x is

C init
x = qinit x1x2 . . . xn

A halting configuration is of the form y p x where δ(p, x1) is undefined.
Thus, a halting configuration has no next configuration.

An output configuration is of the form

Chalt
y = qhalt y1y2 . . . ym

Thus an output configuration is in particular halting, but there may well
be other halting configurations: the machine may get stuck.

Conventions 38

For the initial configuration, we have chosen to place the head at the last
blank to the left of the input symbol, there are lots of other possibilities
(e.g, qinitx1 . . . xn).

For a halting configuration to be an output configuration, we require our
machines to erase the tape except for the output, and to position the
tape head properly before halting. This makes it fairly easy to compose
two machines sequentially. Of course, it makes it harder to design the
machine in the first place.

It is often convenient to assume that the input x contains no blanks (this
makes it easy to go to the end). Alternatively, one can allow single
blanks to separate parts of the input (a double blank would indicate the
end of the input).

Exercises 39

Exercise
Explain in detail how to deal with blanks in the input.

Exercise
Come up with a way to associate output with arbitrary halting
configurations. Make sure that it is computationally easy to read off the
output.

Exercise
Can your machines be simulated by machines conforming to our
definitions?

Halting and Output 40

We say that machine M halts on input x if

C init
x M C

where C is some halting configuration.

We say that y ∈ Σ⋆ is the output of the computation of machine M on
input x ∈ Σ⋆ if

C init
x M Chalt

y

Note that is trivial to read off the actual output string, given the
corresponding output configuration.

Computing a Function 41

Similarly, M computes the partial function f : Σ⋆ ↛ Σ⋆ if, for all
x ∈ Σ⋆,

If f is defined on x, then C init
x M Chalt

y and f(x) = y.

If f is undefined on x, the computation of M on x does not halt.

With a view towards algorithms, one might object that total functions are
more appropriate, we want all computations to be finite. As we will see
shortly, partial functions are baked into the foundations of computability,
there is no way to avoid them.

Computability Defined 42

Definition
A partial function f : Σ⋆ ↛ Σ⋆ is (Turing) computable if there is a
Turing machine M that computes f .

There is a mountain of evidence that, for any reasonable model of
computation M, it turns out that M-computable is equivalent to Turing
computable, so it makes sense to simple say computable, without
reference to any particular model.

Halting 43

To hammer this home: Turing machines naturally produce partial
functions, this is a feature that is hardwired in the definitions. Of course,
some machines halt on all inputs and produce a total function, but as we
will see, this is not a property that is easy to check.

We can construct machines that are guaranteed to halt, e.g., by
attaching a clock that simply interrupts the computation at some point
(and returns some default value if it has not finished by then). But in
general, all we get is partial functions.

As it turns out, this is actually a lifesaver: without partial functions we
are automatically sunk.

Why Not Total? 44

Suppose we have some definition of computability that uses only total
functions. For simplicity, say we are dealing with arithmetic functions
Nk → N.

Clearly we can express our computable functions by an index, a natural
number e that encodes the details of the definition. This is not hard to
do for any known model of computation.

But then a function that takes as input an index e and an argument x,
and evaluates the corresponding function on x, must also be computable.

This is just what any interpreter for a real programming language does.
What could go wrong?

Disaster Strikes 45

Let’s call our interpreter eval, and let’s define a new function f as follows:

f(x) := eval(x, x) + 1

Since we assume we have only total functions, f is also total. And f is
clearly computable since eval is. OK, but then f has some index e.
Disaster strikes via diagonalization:

f(e) = eval(e, e) + 1 = f(e) + 1

So under very reasonable assumptions, we are forced to allow some of our
computable functions to be partial.

Dealing with Divergence 46

Since we cannot avoid partial functions, it is helpful to adjust notation a
bit. We write

f(x) ↓ f(x) ↑

to indicated that partial function f on input x is defined/undefined.
We’ll also say f converges/diverges.

Given expressions α, β involving partial functions, we use Kleene equality:

α ≃ β

to indicate that either

both α and β are defined (the computations involved all terminate)
and have the same value, or
both α and β are undefined (some computation diverges).

A Typical Glitch 47

Suppose M is some arbitrary Turing machine.
Does M always compute some partial function f?

Sadly, no. M might halt on some input, but not in an output
configuration (in other words, the machine gets stuck somewhere). But
we can fix this: we can construct a new machine M′ such that

if M halts on x with output y, then M′ does the same,
for all other x, M′ does not halt on x.

So M′ computes the partial function that M meant to compute.

Exercise
Show how to construct M′ from M.

Convention 48

From now on, we assume that all our Turing machines
compute partial functions.

This is entirely reasonable, since we easily construct the nice machined
M′ from the original machine M (the construction is easily primitive
recursive). By contrast, assuming that all machines compute total
functions is utterly unreasonable and wrecks any further discussion.

Turing Decidability 49

So we have notion of computability for functions, and we can use the
standard trick of characteristic functions to translate it to sets and
relations.

charA(x) =
{

1 x ∈ A

0 otherwise.

Definition
A set (relation) A ⊆ Σ⋆ is (Turing) decidable if its characteristic function
is Turing computable.

We use the same terminology for A ⊆ Nk via encoding.

Decidability 50

x

Yes

No

A

The machine A always halts.

Acceptors versus Transducers 51

Informally, a problem is decidable if there is a decision algorithm A that
returns Yes or No depending on whether the input has the property in
question.

Again, these Turing machines must always halt, and return a one-bit
output. They are often called acceptors.

By contrast, a Turing machine that computes some arbitrary (and
possibly partial function) is called a transducer‡.

‡The same terminology is also used for finite state machines.

Closure Properties 52

Lemma
The decidable sets are closed under intersection, union and complement.
In other words, the decidable sets form a Boolean algebra.

Proof.
Consider two decidable sets A, B ⊆ N. We have two TMs MA and MB

that decide membership.

Since we are dealing with Turing machines, we can simply run both MA

and MB on input x sequentially.

It is straightforward to process the output of the two runs and return the
correct yes/no answer.

2

Rant 53

The last proof is a perfect example of why Turing machines are a royal
pain to use. After exploring them for a little bit, one may easily become
convinced that one could, in principle, construct a master Turing machine
that handles the sequential execution of the two serf machines, and
produces the right output.

But no one has ever done this in the sense of actually writing down a
transition table, simply because the details are far too messy and no
relevant insights could be gained from this exercise.

By contrast, the analogous result for finite state machine constructs the
machines directly, and this construction is useful in a number of
algorithms (text searching and model checking).

Turing Computability and Robustness 54

So, we have a notion of a function being computable by a Turing machine
that seems to conform very well to our intuition about computability..

This notion does not change if we modify our definitions slightly:

one-way infinite tapes
multiple tapes
different head movements
multiple heads
different input/output conventions
different coding conventions

Note that without this kind of robustness our model would be of rather
dubious value: each variant would produce a different notion of
computability.

Exercises 55

Exercise
Show how to modify our definitions so that Turing machines have total
transition functions, but produce the same class of computable functions.

Exercise
Prove that some of the modifications on the last slide similarly yield a
type of machine that produces the same class of computable functions as
our original Turing machines.

“Prove” here means: think about it for long enough so that you become
convinced that an actual proof could be constructed if one really needed
a detailed argument.

1 ∗ Turing Machines

2 ∗ Turing Computability

3 Enumeration and Diagonalization

4 The Busy Beaver Problem

5 Semidecidability

Models of Computation 57

We can specify a model M of computation by defining

a space C of possible configurations (snapshots),

a “one-step” relation,

an input and output convention,

a coding convention (if needed).

The details vary greatly, but we always have the same pattern.

Major Warning: Minute details about input/output/coding conventions
become really important in low complexity classes; higher up they are
mostly interchangeable.

Whole Computation 58

Given a one-step relation C M

1
C ′, multiple steps and whole

computations are defined in the obvious way:

C M

0
C ′ :⇔ C = C ′

C M

t
C ′ :⇔ ∃ C ′′ C M

t−1
C ′′ ∧ C ′′

M

1
C ′

C M C ′ :⇔ ∃ t C M

t
C ′

A computation (or a run) of M is a sequence of configurations C0, C1,
C2, . . . where Ci M Ci+1.

Input/Output 59

One needs a way to provide input from some set X, a map

inp : X → C

as well as an output map to some set Y :

outp : C ↛ Y

Both maps are very typically very simple, essentially just a bit of
re-formatting (they do not contribute to the complexity of the
computation).

A minor technical issue: the output map may only be defined on some of
the configurations (the “halting” configurations).

Models of Computation 60

C

Nk
N

C C ′

The number-theoretic scenario: input and output are natural numbers.

Models of Computation, II 61

C

C C ′

Σ∗ Σ∗

The string scenario: input and output are words over some alphabet.

TMs and Strings 62

Recall that Turing machines are glorified type writers, they operate on
strings, not the naturals.

When a TM computes an arithmetical function, the input/output
conventions are typically unary or binary. OCCTM† that converts
between the two formats, so, as far as general computability goes, it
doesn’t matter.

But it matters greatly in low complexity classes where we cannot tolerate
an exponential time precomputation.

†OCCTM: one can construct a TM

Enumerations 63

Turing realized that the usual standard distinction between data and code
is actually an illusion.

Nowadays, this observation is a snoozer, but a century ago it was a bit a
a leap. No one thought of the Euclidean algorithm as being the same
kind of bird as the numbers it consumes as input.

At any rate, using standard coding machinery, we can express a Turing
machine M as a natural number M̂, the (Turing) index for M.

As a consequence, we can get an enumeration (Me)e≥0 of all TMs.

Strings 64

Thinking of an index as a natural number is the arithmetic approach to
life, hugely popular since Gödel’s use of arithmetization in his
incompleteness theorem (his infamous Gödel numbers).

Alternatively, we can think of e as a string over some suitable alphabet
that encodes the machine. Of course, the binary alphabet 2 is good
enough. Again we get an enumeration (Me)e∈2⋆ but this time the list is
organized in length-lex order†. Or we could think of the whole TM as
being written down as a string, it’s easy to come up with some
reasonable convention.

Strings or numbers, there is not much difference between the two
scenarios. I will keep talking about indices as natural numbers, but you
can just think of them as binary strings.

†Lexicographic order is a bad idea, it is not a well order.

Enumerating Computable Functions 65

Recall that all our machines compute partial functions, so once we have
an enumeration for the machines, we also have an enumeration for all
partial computable functions. Classically this was often written

φe or {e}

So ({e})e≥0 is a complete listing of all these functions.

We won’t deal with arity issues here, they are purely technical. So we’ll
happily write things like {e}(x, y) and so on.

Keeping notation simple is better than going overboard on precision.
Read Hartley Rogers’ book if you think otherwise.

Universal Turing Machines 66

The fact that we can code a Turing machine as integers, and we can
think of them as defining functions on integers, has an interesting
consequence, first realized by Turing himself:

OCCTM U that takes as input numbers e and x, interprets e
as the index M̂ of a Turing machine M, and then simulates
M on input x.
U will halt on e and x iff M halts on x; moreover, U will
return the same output in this case.

Any such machine U is called a universal Turing machine (UTM).

The details of the construction of U are very tedious, but it’s “clear” that
this can be done, see Turing’s 1936 paper.

UTM 67

U
M̂

x

M(x)

U(M̂, x) ≃ M(x)

Comments 68

If U is given a number/string e as input that fails to code a Turing
machine we assume that U fails to halt. Just a convention, U could
halt (say, with output 0).

Note that U is by no means uniquely determined, there are lots and
lots of choices. One has to make sure these choices do not affect
the result in question.

A very interesting question is how large a universal Turing machine
needs to be. Amazingly, there is a 2-state, 5-symbol UTM. And a
flaky 2-state, 3-symbol UTM.

The Key Observation 69

In classical computability theory, it is entirely irrelevant how the
simulation is organized and how efficient it is. No problem if the running
time of the simulator is exponentially larger.

This does not work in complexity theory! Fortunately, it turns out that
one can make the universal machine quite fast, easily polynomial time,
more later.

A beautiful and non-trivial example of OCCTM.

The Halting Problem 70

Problem: (Full) Halting Problem
Instance: An index e, an input x.
Question: Does Me on input x halt?

Theorem
The Halting Problem is undecidable.

There are other versions of the Halting Problem, see below, whence the
qualifier “full.”

Diagonalization 71

Suppose we have a halting tester TM H that checks whether Me on x
halts. Define a new machine D, that, on input e, does the following:

if H(e, e) = 1
then

diverge
else

halt

Let d be the index of this machine. But then D halts on input d iff it
fails to halt, a contradiction. 2

Again, OCCTM . . .

Function Proof 72

We can express the issue also in terms of partial recursive functions.

If Halting were decidable we could define a function g by

g(x) ≃

{
{x}(x) + 1 if {x}(x) ↓,
0 otherwise.

Thus g is a computable, total function, so g ≃ {e} for some e. We get a
contradiction by diagonalizing via input e:

If {e}(e) ≃ y, then g(e) = y + 1 = g(e) + 1.
If {e}(e) ↑, then g(e) = 0.

Other Halting Problems 73

Here are two variants of our Full Halting Problem:

Problem: Halting Problem
Instance: Index e.
Question: Does Turing machine Me halt on input e?

Problem: Pure Halting
Instance: Index e.
Question: Does Turing machine Me halt on empty tape?

Pure Halting makes little sense from the perspective of computable
functions, but it’s perfectly fine as a question about TMs.

They Are All Undecidable 74

We know that Full Halting is undecidable, but the proof shows that
ordinary Halting is already undecidable.

For Pure Halting, suppose we have some index e. Build a machine

first writes e on the tape, then
simulate Me on input e.

Use a reduction:
The new machine has some index e′ and we can compute e′ easily from e
(primitive recursive). But then a solution to Pure Halting would produce
a solution to Halting, so the former must also be undecidable.

A Closer Look 75

We are given index e and need to decide Halting for Me.

There is a TM T that computes a new index e′ for a machine Me′ takes
simulates the computation of Me on input e.

Then e is a yes-instance of Full Halting iff e′ is a yes-instance of Pure
Halting. Since e′ is computable from e, Pure Halting must also be
undecidable.

OCCTM, OCCTM, OCCTM, . . .

1 ∗ Turing Machines

2 ∗ Turing Computability

3 Enumeration and Diagonalization

4 The Busy Beaver Problem

5 Semidecidability

Busy Beaver Problem 77

In 1962, Tibor Rado described a now famous problem in computability.
Consider Turing machines on tape alphabet Σ = {0, 1} (where 0 is the
blank symbol) and n states.

Question: What is the largest number of 1’s any such
machine can write on an initially blank tape, and then halt?

Halting is crucial, otherwise we could trivially write infinitely many 1’s.

Other Variants 78

Rado’s original question is actually slightly arbitrary, here are two versions
more firmly rooted in computability theory.

Time Complexity What is the largest number of moves a halting n-
state machine can make?

Space Complexity What is the largest number of tape cells a halting
n-state machine can use?

Incidentally, it is standard practice to ignore the halting state in the
count, so n means “n ordinary states plus one halting state.” Also, one
insists that that the tape head always moves.

Hierarchy 79

We write BBH(n) for largest time complexity of any halting n-state
machine and refer to BBH as the Busy Beaver function.

We will also consider the original version of the problem and write
BBW(n) for the largest number of 1’s written on the tape when an
n-state machine halts.

Clearly, BBH(n) ≥ BBW(n), but the former has the advantage of relating
more directly to the Halting Problem, which one would suspect to be the
central issue with busy beaver functions.

Busy Beaver n = 1 80

BBH(1) = 1

To see this, note that any attempt to make a second move would already
lead to an infinite loop.
Similarly, BBW(1) = 1.

Busy Beaver n = 2 81

Amazingly, the answer is no longer obvious: BBW(2) = 4 and
BBH(2) = 6 with the same champion.

0 1
p (q,1,R) (q,1,L)
q (p,1,L) halt

p0 1q0 p11 q011 p0111 1q111

Orbit 82

Busy Beaver n = 3 83

Here things start to get messy: there are 4 826 809 Turing machines to
consider.

Exploiting isomorphisms, filtering out machines where all 4 states are
reachable (in the diagram, not necessarily the computation on empty
tape), and checking for halting we get down to 405 072.

From the last group we can pick out the champions.

Write-Champion 84

Halt-Champion 85

How bad can it be? 86

The number of machines quickly becomes very difficult to manage:

n #machines
4 6 975 757 441
5 16 679 880 978 201

As usual, the problem is not isomorph-rejection (which requires
constructing all machines first), but to only build non-isomorphic ones to
begin with. And, given these numbers, it won’t make much of dent no
matter what.

6-State Busy Beaver 87

For n = 6 all hell breaks loose, we have only lower bounds. For example,
it has been known for a while that

BBW(6) ≥ 4.6 × 101439

The raw search space here has size 59 604 644 775 390 625, but this can
be improved a bit exploiting symmetries and reachability.

Halting gets very messy here, though: there is no good heuristic as to
when the run should be truncated (leading to the conclusion that the
machine is not halting).

The Marxen-Buntrock Machine 88

The current 5-state champion was found by Marxen and Buntrock, and
its discovery is a small miracle. Here is the table of the machine. Clearly
all 5 states plus the halt state are reachable in the diagram.

0 1
1 (2,1,R) (3,1,L)
2 (3,1,R) (2,1,R)
3 (4,1,R) (5,0,L)
4 (1,1,L) (4,1,L)
5 halt (1,0,L)

Of course, that’s nowhere near enough: they need to appear in the
computation on empty tape.

50 Steps 89

400 Steps 90

Misleading Pictures 91

Looking at a run of the Marxen-Buntrock machine for a few hundred or
even a few thousand steps one invariably becomes convinced that the
machine never halts: the machine zig-zags back and forth, sometimes
building solid blocks of 1’s, sometimes a striped pattern.

Whatever the details, the machine seems to be in a “loop” (not a an easy
concept to clarify for Turing machines). Bear in mind: there are only 5
states, there is no obvious method to code an instruction such as “do
some zig-zag move 1 million times, then stop”.

And yet, this machine

stops after 47 176 870 steps
writes 10(100)4097

Why is this Hard? 92

There are several fundamental obstructions to computing busy beaver
numbers, in increasing levels of depth.

Brute-force search quickly becomes infeasible, even for single-digit
values of n.

The Halting conundrum: Even if we could somehow deal with com-
binatorial explosion, there is the problem that we don’t know if a
machine will ever halt – it might just keep running forever.

Reasoning about the behavior of Turing machines in a formal sys-
tem like Peano arithmetic or Zermelo-Fraenkel set theory is neces-
sarily of limited use.

State of the Art 93

n BBH(n) BBW(n)
1 1 1
2 6 4
3 21 6
4 107 13
5 ≥47 176 870 ≥4098
6 >7.4 × 1036 534 >3.5 × 1018 267

Concrete values are only available for n ≤ 4, beyond that, we only have
bounds. And these bounds soon get ridiculous:

BBH(7) > 102·10101018 705 353

Alas, these results are not as robust as one would like them to be, see
Harland 2016 for a critique.

http://www.cs.cmu.edu/~cdm/papers/Harland2016.pdf

1 ∗ Turing Machines

2 ∗ Turing Computability

3 Enumeration and Diagonalization

4 The Busy Beaver Problem

5 Semidecidability

Semidecidability 95

Halting is undecidable, so it is natural to ask whether there is a
reasonable description of the level of difficulty associated with Halting. In
more modern terms: is there a complexity class that Halting naturally
lives in?

Definition
A set A ⊆ Nk is (Turing) semidecidable if there is a Turing machine M
that halts precisely on all x such that x ∈ A.

Proposition
Halting is semidecidable.

Quoi? 96

In terms of algorithms, this is quite weird: we have a “semi-decision
algorithm” for A, a broken decision algorithm that

correctly returns the answer Yes, if the answer is indeed Yes, but

diverges and runs forever if the answer is No.

x

Yes

zip

A

Who Cares? 97

Semidecidability may appear to be a rather useless idea in the world of
real algorithms. Alas, it is arguably more fundamental than decidability,
trust me. Here is the key connection.

Lemma
A ⊆ N is decidable iff A and N − A are both semidecidable.

Note that it follows from the lemma that not-Halting, the complement of
Halting, is not even semidecidable The complements of semidecidable
sets are called co-semidecidable.

This is the tip of an iceberg: decidable, semidecidable and
co-semidecidable problems are just the very bottom of an infinite
hierarchy of increasingly complicated and highly non-computable
problems.

Proof 98

Left to right is obvious: we can turn a decision algorithm for A into
semi-decision algorithms for A and for N − A.

For the opposite direction, suppose we have two TMs M and M′ that
semidecide membership in A and N − A, respectively.

Note that we cannot run the two machines sequentially: the first one
might diverge, when the second one would converge.

But, we can run them in parallel: alternate between M and M′, one
step at a time. Since N = A ∪̇ (N − A), exactly one of them will halt,
producing the correct answer.

2

Closure Properties 99

Lemma
The semidecidable sets are closed under intersection and union.

Proof.
Consider two semidecidable sets A, B ⊆ N. We have two TMs MA and
MB that semidecide membership.

For intersection, we can run the machines sequentially: if both terminate
we halt.

For union, we run the machines in parallel, and halt as soon as one of
them terminates.

This produces the right behavior: halting if the condition is satisfied,
divergence otherwise.

2

Terminology 100

One traditionally codes problems as sets A ⊆ N and writes

∆1 decidable sets
Σ1 semidecidable sets
Π1 co-semidecidable sets

Theorem
The classes ∆1, Σ1 and Π1 are all distinct.

Recursively Enumerable Sets 101

There is another way to look at semidecidable sets: one can generate
them in a computable manner.

Definition
A ⊆ N recursively enumerable (r.e.) if there is a partial Turing
computable function f : N ↛ N such that A is the range of f .

The special case A = ∅ is a nuisance here, some authors prefer to keep it
separate, and insist that f is total, otherwise. In general that would
mean that a particular element in A can be enumerated repeatedly, even
infinitely often (that is actually useful on occasion).

Cleaning Up 102

As defined, the support of the enumeration function f could be anything.
That’s often inconvenient, we will show that the support of f can always
be chosen to be an initial segment of N.

Lemma
We may assume without loss of generality that the support of f is N or
{0, 1, . . . , n − 1} for some n, and that f is injective.

In essence, f is just a table (finite or infinite), containing one element of
A in each row, with every element appearing exactly once. This is trivial
in the la-la land of set theory, but we want the function to be
computable.

A few preliminaries before the proof.

Two Approaches 103

There are two basic approaches towards studying the complexity of a
collection A of objects:

Recognition Develop an algorithm that, given an object, determines
whether it belongs to A.

Generation Develop a method that allows one to generate all objects
in A in some systematic fashion.

Obviously these tasks are closely connected, but not quite the same:
recognition is more difficult in general.

Connection 104

Suppose A ⊆ S where S is some ambient set. For us right now, S = N.

Recognition to Generation
Run through the elements of S in some systematic fashion. For
each object x, check if x is in A. If so, output x; otherwise just
keep going.

Generation to Recognition
Given an object x, start generating A. If x ever pops up, return
Yes.

The step from Generating to Recognition only produces a semidecision
procedure. We need some additional information to allow us to truncate
the search. For example, we might know that after a while, only objects
“larger” than x are generated, so at that point we can give up.

Interrupting a Computation 105

Suppose we have a Turing machine M that computes some function f .
A key idea is that we can interrupt a computation at σ steps. We refer to
σ as a stage in the computation.

fσ(x) ≃

{
y if C init

x M
<σ

Chalt
y

σ otherwise.

So fσ(x) = σ signals that the computation has not converged so far,
though it might converge later.

We may safely assume that

fσ(x) = y implies x, y < σ

Limits 106

Claim: fσ(x) is easy to compute (say, primitive recursive).

If M halts on x, then fσ(x) ≃ y for some y and all stages σ ≥ σ0.

Otherwise, fσ(x) = σ for all σ.

One could think of f as being the limit of the fσ:

f(x) ≃ lim
σ→∞

fσ(x)

Definitions in Stages 107

It is often convenient to define computable functions in stages: one
explains what to do for each stage σ ≥ 0.

Stage σ:
Perform some operations depending on σ and previous stages.
Possibly define f(x) = y for some x, y < σ.

The operations at stage σ are “trivial” (say, primitive recursive), they are
guaranteed to take only finitely many steps.

We are allowed to define f(x) only once, we cannot change our mind at
a later stage.

Dovetailing 108

Using stages, one can in effect run infinitely many computations in
parallel. This method is often referred to as dovetailing:

Problem: Halts Somewhere
Instance: A partial computable function f .
Question: Is there some input x such that f on x converges?

Obviously we cannot simply try f on 0, 1, . . . sequentially. But we can
use stages:

Stage σ:
Compute fσ(0), fσ(1), . . . , fσ(σ−1).

We stop as soon as one of these truncated computations halts. So Halts
Somewhere is semidecidable.

Proof of Lemma 109

Given an arbitrary enumeration f , we construct a new well-behaved
enumeration function g as follows.

We proceed in stages σ ≥ 0. Initially, set a counter z to 0.

Stage σ:
Compute fσ(0), . . . , fσ(σ−1).
If a new value y appears, set g(z) ≃ y and increment z.

Then g is computable, injective, has the same range as f and its
support† spt f is an initial segment of N, as required.

2

†The support of a partial function is the set of inputs for which it is defined; un-
fortunately called domain (of definition) by some.

Semidecidable is Recursively Enumerable 110

Lemma
A set A ⊆ N is semidecidable iff it is recursively enumerable.

Proof. Suppose A is semidecidable, say A = spt f for some computable
function f .
We construct a computable function g such that A = rng g in stages:

Stage σ:
Compute fσ(0), . . . , fσ(σ−1).
If a new value x < σ such that f(x) ↓ appears, set g(z) ≃ x
and increment z.

Opposite Direction 111

Suppose A = rng g.
We construct a computable function f such that A = spt f in stages:

Stage σ:
Compute gσ(0), . . . , gσ(σ−1).
If a new value g(x) ≃ y < σ appears, set f(y) ≃ 0.

By construction, f is computable and is defined exactly on all the
numbers in the range of g.

2

Aside: Hilbert’s Dream 112

Recall Hilbert’s dream of finding a simple axiom system H that is
consistent and complete, and suffices to express all of math (actually,
plain arithmetic is enough of a challenge)?

It is easy to see that the theorems provable in any formal system are
recursively enumerable:

enumerate all possible sequences of formulae in length-lex order

filter out the ones that are actual proofs, and output their results.

The first step is purely combinatorial, and the second one exploits the
fact that being a valid proof is a purely syntactical property. No problem
for a Turing machine.

Completeness Kills 113

Now suppose you have some conjecture φ, a potential theorem.

Since Hilbert wanted H to be consistent and complete, the enumeration
of theorems from the last slide must always produce either φ or ¬φ.

Et voila, we can solve the Entscheidungsproblem for H.

To be clear, this works fine for some limited systems like Presburger
arithmetic (addition only) or Abelian groups, but in general we have a
catastrophic failure: a lot of areas of math are inherently undecidable.

Upcoming Attractions 114

The relationship between

∆1 vs Σ1

is entirely analogous to

P vs NP

Alas, we know how to use diagonalizing to separate ∆1 from Σ1, but we
currently have no idea how to separate P from NP.
In fact, some noteable researchers (Knuth, Levin) think the last two
classes might be the same.

	* Turing Machines
	* Turing Computability
	Enumeration and Diagonalization
	The Busy Beaver Problem
	Semidecidability

