
UCT
Computability, Fundamentals

Klaus Sutner
Carnegie Mellon University
Spring 2024



Where Are We? 1

Turing machines provide the reference model of computability.

Every Turing machine can be associated with an index e ∈ N.

There is a universal Turing machine U that can simulate any Turing
machine given its index.

The Halting problem “does U(e, e) ↓?” is the prime example of an
undecidable problem.

Halting is difficult to determine even for very small machines.

Halting gives rise to the class of semidecidable problem.



1 The Recursion Theorem

2 Beyond Semidecidability



Index Computation 3

Recall the enumeration {e} of all partial computable functions. Having
an index e that represents a function makes it possible to manipulate
functions by manipulating their indices instead.

For example, there is an easily computable function f such that f(e, e′)
is an index for a machine M that composes Me and Me′ : first run Me,
if there is output, feed it to Me′ and return the output of that
computation:

Mf(e,e′) computes {e} ◦ {e′}

In terms of functions:

{f(e, e′)} ≃ {e} ◦ {e′}

This is just software engineering, no problem. Well, actually OCCTM.



Kleene’s S-m-n theorem 4

Here is another index computation: we can fix a few arguments in a
computable function and obtain another computable function. Yes, this
is a no-brainer, but we are trying to be a bit formal here.

Theorem
For every m, n ≥ 1 there is a primitive recursive function Sm

n such that

{Sm
n (e, p)}(n)(x) ≃ {e}(m+n)(p, x).

Proof.
Klar (as per number theorist E. Landau).
You can also think of this as a form of currying.

2

http://www.cs.cmu.edu/~uct/resources/00-primrec.pdf


WTF? 5

From a programming perspective, this is blindingly obvious; so obvious, it
might look like a typo.

But we are dealing with a formal framework, not general intuition about
computation, or some semantics-free programming language.

Think about what the theorem really says: OCCTM that, given an index
e and a list of integers p, computes the index of a new TM that behaves
like Me with some of the arguments bound to p. Can be done for sure,
but it’s the usual pain.



TM Properties 6

We are often interested in collections of Turing machines (or their
associated functions) that have certain properties. We can think of these
collections as subset of N via indices. Typical example:

INF = { e ∈ N | {e} converges on infinitely many inputs }

Note that for {e} ≃ {e′} we have e ∈ INF ⇔ e′ ∈ INF, we dealing with a
structural property of the machines rather than some nonsense property
of the indices (say, e is divisible by 17).

We will see that such structural properties are always undecidable unless
they are trivial.



Why? 7

For this kind of argument, it is absolutely critical to first develop a solid
intuition–the technical details are then are tedious (OCCTM) but not
conceptually all that difficult†.

Key Intuition:
INF seems even harder than Halting: we need to check
whether Me(x) ↓ for for infinitely many x, so in a sense we
have to solve infinitely many Halting problems.

We will provide a very elegant proof in a while, here is a more pedestrian
approach that is a template for many other arguments of this kind.

†This is a special feature of computability theory, similar claims do not hold in
other areas (say, proof theory or real analysis).



Towards Hardness of INF 8

Suppose index e is the input. We can build another TM M that, on
input z, will test whether run {e}(e) halts before z steps. If so, M
returns 0; otherwise the new machine diverges.

More precisely, there is an easily computable function f (a program
transformation) such that e′ = f(e):

{e′}(z) ≃

{
0 if {e}z(e) = z,

↑ otherwise.

Recall that {e}z(e) = z means: the computation has not yet finished at
step z.

Check that we are really concocting a computable function with index
e′ = f(e) and the transformation f itself is also computable.



Inheriting Undecidability 9

Write K ⊆ N for the plain Halting problem.

Note that {e′} is constant 0 when e /∈ K. On the other hand, if e ∈ K,
{e}(z) will converge only for all z < s, the number of steps it takes
{e}(e) to stop. Then

e /∈ K ⇐⇒ {f(e)} halts everywhere ⇐⇒ f(e) ∈ INF

Since f is computable, and K is undecidable, INF cannot be decidable.

In a way, we are switching time with space in this argument.



Lower Bounds 10

This is just a lower bound, we know INF is not decidable, but we cannot
say anything more constructive about its level of unsolvability. As it turns
out, INF is not even semidecidable nor co-semidecidable. We need a
better classification for this kind of problem.

Next up: a hugely powerful theorem that makes it possible to establish
all kinds of results about computability in a very elegant and concise
manner. It is a bit abstract, though.

Batten down the hatches.



Second Recursion Theorem 11

The next result is utterly amazing: it shows that we can solve functional
equations of computable functions in mind-numbing generality.

Theorem (Kleene, Second Recursion Theorem, 1938)
Let F : Nn+1 ↛ N be a computable function. Then there exists an index
e⋆ such that for all x ∈ Nn:

{e⋆}(x) ≃ F (e⋆, x).

Moreover, e⋆ can be computed effectively from an index for F .

Think of e⋆ as some program, x as input and F as an interpreter running
e⋆ on x: then the claim is obvious, even for arbitrary e⋆. However, the
theorem holds for arbitrary computable F !



No Way 12

At first glance, this sounds utterly wrong.

What if F (e, x) ≃ {e}(x) + 1?

Then we need {e⋆}(x) ≃ {e⋆}(x) + 1.

Solution: Any totally undefined function {e⋆}.

This is why it’s important to deal with Kleene equality ≃ rather than
ordinary equality =.

In general it requires extra effort to show that a function obtained from
the theorem is, say, total. A priori, all we get is a computable function,
no more. And, this computable function may be undefined in many
places, including everywhere.



Weird Consequences 13

The theorem has some rather strange consequences:

Let F (e, x) ≃ e. Then e⋆ ≃ {e⋆}(x).

Let F (e, x) ≃ {x}(e). Then {x}(e⋆) ≃ {e⋆}(x).

These F are clearly computable, so there is no way around these
conclusions–no matter how strange they look.

These examples are certainly bizarre, but not particularly useful. As it
turns out, there are applications where the recursion theorem is
absolutely critical.



Quines 14

In a similar vein, programs with the property that e ≃ {e}() are referred
to as quines, programs that print themselves.

The real challenge here is that one needs to deal with the idiosyncrasies
(more often: idiocies) of a particular programming language.

Exercise
Write a quine in your favorite programming language.

https://en.wikipedia.org/wiki/Quine_(computing)


The Fixed Point Version 15

Here is slightly more straightforward version of the recursion theorem
that often comes in handy.

Corollary (Rogers, 1967)
Let f : N → N be a recursive function. Then there exists an index e⋆

such that
{e⋆}(x) ≃ {f(e⋆)}(x).

Proof.
Define F (e, x) ≃ {f(e)}(x).

2



Intuition 16

Think of f as some program transformation. For example, f(e) could be
the program that does sequential composition of program e with itself.

Then, no matter how f is chosen, there will always be a program e⋆ for
which application of f does not change the I/O behavior. So every
program transformation has a fixed point, a program whose behavior
does not change under the transformation.

This seems to contradict the fact that we can make the transformation
change the behavior, but there is a way out: we are dealing with partial
functions that can be undefined at the places where things are different.
In fact, the result may well be totally undefined.



Example: Self-Composition 17

Suppose that
{f(e)}(z) ≃ {e}

(
{e}(z)

)
So we are looking for functions that are idempotent: g ≃ g ◦ g.

The totally undefined function works, but there are many other solutions:
for example, we could replace every primefactor pk in z by p.

Exercise
Come up with another example of a program transformation where the
recursion theorem has easily explainable solutions.



The Horror Proof 18

We will prove the second recursion theorem directly. Define

h(e, x) ≃ F (S1
n(e, e), x)

Let ĥ be an index for h and set

e⋆ := S1
n(ĥ, ĥ)

Then

{e⋆}(x) ≃ {S1
n(ĥ, ĥ)}(x)

≃ {ĥ}(ĥ, x)

≃ h(ĥ, x)

≃ F (S1
n(ĥ, ĥ), x)

≃ F (e⋆, x)

2



Quoi? 19

This is one of the most infuriating proofs known to mankind. Every step
is trivial equational reasoning, but the whole argument makes no sense.

The recursion theorist J. C. Owings called it “barbarically short” and
“nearly incapable of rational analysis.”

Owings also suggested a way to make sense out of it: think of it as a
diagonal argument that fails. Cute, but does not really help either.

Did I mention that Kleene was a genius?



I Know Who I Am 20

Here is a good intuitive way to think about the RT. The typical definition
of a computable function Q looks like so:

Q: input x

some computation
return . . .

But with the RT we can use an index q = Q̂ for Q inside the definition:

Q: input x

some computation using q

return . . .



Again . . . 21

This may sound breathtakingly wrong: after all, we are in the process of
defining Q, so where the hell is the index q = Q̂ supposed to come from?

Sorry, but that is precisely what the recursion theorem says we can do,
with impunity.

Maybe it helps to think of Q as being stored in digital memory and being
able to read its own source code? Try.



Application: Halting 22

Assume for the sake of a contradiction that the halting set
K = { e | {e}(e) ↓ } is decidable.

Define Q by

input x
if q ∈ K // K decidable
then ↑
else return 0

Then Q(q) ↓ implies Q(q) ↑, and Q(q) ↑ implies Q(q) ↓.

↑↓↓↑↑↓↓↑↑↓↓↑↑↓↑↓↓↑↑↑↑↑↑↓↑↓↓↑↑↓↓↑↑↓↑↓↓↓↑↑↑↓↑↓



Application: Ackermann 23

Recall the definition of the Ackermann function, a function defined by a
double recursion. We write z+ for z+1.

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x, A(x+, y))

A is a perfect example of a Herbrand-Gödel-computable function and it is
known that these are the same as Turing-computable. The Ackermann
function was introduced as an example of a function that is computable,
but not primitive recursive (it grows faster than any primitive recursive
function).

It turns out that A is total, but that requires a proof (by double
induction or induction to ω2).



Ackermann and RT 24

Define Q by

input x, y
if x = 0
then return y + 1
elseif y = 0

then return {q}(x−1, 1)
else return {q}(x−1, {q}(x, y−1))

Then Q = {q} is none other than the Ackermann function and we have
another proof of its computability. Of course, one still has to work to
demonstrate totality.



Enumerating RE Sets 25

Define

We = { x | {e}(x) ↓ } ⊆ N

to be the eth semidecidable set, so (We)e≥0 is an effective enumeration
of all semidecidable sets.

We can use this enumeration to ask questions about semidecidable sets.
For example, we might be interested in all non-empty semidecidable sets:

NE = { e | We ̸= ∅ }

This is essentially the same as Halting Somewhere, so we already know
that NE is semidecidable.

Note that membership in NE is determined by the properties of We, not
e itself (like being prime, having an odd number of digits, . . . )



Index Sets 26

Any such set is called an index set.

More precisely, let’s say that P ⊆ N is a non-trivial index set if

We = We′ implies e ∈ P ⇔ e′ ∈ P ,

eY ∈ P and eN /∈ P for some eY and eN .

Since an index set is just a set of natural numbers we can ask whether it
is decidable, semidecidable, co-semidecidable, . . .



Application: Rice’s Theorem 27

Typical examples are

We is empty
We is finite
We = N
We is decidable

Claim
All of these index sets seem undecidable; in other words, all these
properties of semidecidable sets are undecidable.



Rice’s Theorem 28

One can slog one’s way through separate proofs for all these properties;
good exercise. For example We = N is just another way of saying
e ∈ TOT.

But there is a universal tool that kills them all off, in one fell swoop.

Theorem (Rice 1953)
Every non-trivial index set is undecidable. In other words, every
non-trivial property of semidecidable sets is undecidable.



Proof of Rice 29

Let P be a non-trivial index set.

For the sake of a contradiction assume P is decidable.

Define Q by

input x
if q ∈ P // P decidable
then return {eN }(x)
else return {eY }(x)

But then q ∈ P implies Q ≃ {eN } and thus q /∈ P .

On the other hand, q /∈ P implies Q ≃ {eY } and thus q ∈ P .
2



1 The Recursion Theorem

2 Beyond Semidecidability



Our World 31

semidecidable

decidable

co-semidecidable

So far, we have examples of sets in three distinct complexity classes.

Question: Could this be everything?



Bad Answer 32

As usual, we can resort to set theory and counting arguments: there are
2ℵ0 subsets of N.

Only countably many of them are decidable, semidecidable and
co-semidecidable.

So almost all sets A ⊆ N must be more complicated.

True, but like all cardinality based existence arguments unsatisfactory and
bordering on useless. We want concrete examples, and perhaps a nice
hierarchy.



The Misery of Counting 33

Here is another example where mere counting provides very little
information. Cantor proved in 1874 that there are uncountably many
transcendental reals: the algebraic reals are countable.

At that time, the only known transcendentals were Liouville numbers and
e (C. Hermite), π came a bit later (1882, by F. Lindemann).
0.11000100000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 . . .

Needless to say, Cantor’s result has nothing to say about numbers such as

e + π or e π or eπ

https://en.wikipedia.org/wiki/Liouville_number


Kleene Normal Form 34

In an effort to find concrete examples, it helps to try to pin down the
difference between decidable and semidecidable more carefully.

We claim that there is a trivially decidable relation T (e, x, t) and a simple
decoding function D such that

{e}(x) ↓ ⇐⇒ ∃ t T (e, x, t)

{e}(x) ≃ D(min
(

t | T (e, x, t)
)
)

Think of the t in T (e, x, t) as the number of steps in the computation
(given e, x, t we can easily construct the actual computation).

D then simply extracts the output of the computation.



Unboundable Search 35

Again, T (e, x, t) is trivial to compute.

The problem is that we do not know how large t has to be to produce
convergence: we cannot compute a bound on t from e and x. If we
could compute a bound β(x) ahead of time, everything is easy: just
compute T (e, x, β(x)) and check; that’s our decision algorithm for We.

But without a bound we are reduced to an unbounded search, and we are
stuck with semidecidability.

Clever Idea:
Think of the unbounded search as a projection.



Geometric Projection 36



Projections 37

Definition
Suppose R ⊆ Nn+1. The projection S ⊆ Nn of R is defined by

S(x) :⇔ ∃ z R(z, x)

This is just the formal version of unbounded search:

input x
foreach w ∈ N do

if (w, x) ∈ R
then return YES

return NO

Note, though, that if the answer is NO, then this takes ω steps.



Who Cares? 38

In other words: the projection S of R is semidecidable whenever R is
decidable: we can search for a witness z.

Much more is true: all semidecidable sets arise in this manner.

Lemma
Every semidecidable set is a projection of a decidable set.

This follows directly from Kleene normal form.



Logic and Geometry 39

Logically, the step from decidable to semidecidable corresponds to
unbounded search, or existential quantification.

The step from semidecidable to co-semidecidable is negation.

These operations are logical, but we can also think of them as geometric:
negation corresponds to taking complements, and search/existential
quantification corresponds to projections.

Bringing geometry into the mix can be hugely helpful.



Piling On 40

Wild Idea: What if we close decidable sets under both
projections and complements?

Well, we clearly get semidecidable and co-semidecidable ones.

But there is more: we also get projections of co-semidecidable sets, their
complements, projections thereof, and so on and so on.

Of course, they might all turn out to be the same, but we will see they’re
all different.



Projections and Complements 41

Let’s write down careful definitions for these purely set-theoretic
operations (which, on the face of it, might have nothing to do with
computability).

Let A ⊆ Nn where n ≥ 1. We write

proj(A) = { x ∈ Nn−1 | ∃ z (z, x) ∈ A } ⊆ Nn−1.

for projections, and compl(A) or A for the complement Nn − A.

For any collection C ⊆ P(Nn) of subsets of Nn, n ≥ 1, define proj(C) to
be the collection of all projections of sets in C. Likewise, define compl(C)
to be the collection of all complements of sets in C.



Arithmetical Hierarchy 42

Definition
Define classes of subsets of Nn:

Σ0 = Π0 = all decidable sets

Σk+1 = proj(Πk)

Πk = compl(Σk)

∆k = Σk ∩ Πk

Thus, ∆0 = ∆1 is the class of all decidable sets, Σ1 is the class of all
semidecidable sets, and Π1 is the class of all co-semidecidable sets.

This is also known as the Kleene-Mostowski hierarchy.



A Diagram 43

∆5

Σ4 Π4

∆4

Σ3 Π3

∆3

Σ2 Π2

∆2

Σ1 Π1

∆1



Arithmetical Sets 44

Definition
A set A ⊆ Nn is arithmetical if it belongs to some class Σk.

It follows by the usual cardinality mumbo-jumbo that the class of
arithmetical sets is countable, so we are missing almost all subsets of N.

One very important example of a set we are missing is arithmetical truth:
the set of all (code numbers of) formulas of arithmetic that are true is
not an element in this hierarchy. To capture this set, one needs another
hierarchy, the analytical hierarchy. There, arithmetic truth appears at
level ∆1

1, just outside of our arithmetical sets.

https://en.wikipedia.org/wiki/Analytical_hierarchy


The Bottom of AH 45

Of practical relevance are mostly the first few levels of the arithmetical
hierarchy. We have already seen examples of decidable, semidecidable
sets and co-semidecidable sets.
Here are some other examples.

TOT is Π2.
The indices of all finite r.e. sets form a Σ2 set:

FIN = { e | We finite }

The indices of all cofinite r.e. sets form a Σ3 set:

Cof = { e | We cofinite }

None of these sets belong to the next lower ∆k level of the hierarchy.



Heuristic 46

To say that A ⊆ N is Π2 comes down to this: there is a decidable
property P such that

x ∈ A ⇐⇒ ∀ u ∃ v P (u, v, x)

⇐⇒ ¬∃ u ¬∃ v P (u, v, x)

corresponding to a sequence project–complement–project–complement.

Writing down the set in terms of alternating quantifiers usually produces
the right spot in the arithmetical hierarchy.



Decidable Sets 47

Consider the index set of all decidable (recursive) sets:

REC = { e | We decidable }

To locate REC in the arithmetical hierarchy note

e ∈ REC ⇔ ∃ e′ (We ∩ We′ = ∅ ∧ We ∪ We′ = N)

⇔ ∃ e′ (∀ σ (We,σ ∩ We′,σ = ∅) ∧ ∀ x ∃ τ (x ∈ We,τ ∪ We′,τ ))

⇔ ∃ e′ ∀ x, σ ∃ τ (We,σ ∩ We′,σ = ∅ ∧ x ∈ We,τ ∪ We′,τ )

So, REC ∈ Σ3. As it turns out, REC /∈ ∆3.



The Big Question 48

At the bottom level of the hierarchy, it certainly seems that higher levels
are strictly larger:

Σ0 ⊊ Σ1 ⊊ Σ2 ⊊ Σ3 ⊊ . . .

Except for the first inclusion, we don’t know for sure.

In principle, it could happen that Σ42 = Σ43. We need a proof that the
hierarchy does not collapse.



Emil Post 49

Theorem (Post’s Hierarchy Theorem)
All the inclusions ∆k ⫋ Σk, Πk ⫋ ∆k+1 are proper, k ≥ 1.

We will encounter a similar hierarchy in complexity theory (just add a
polynomial time bound everywhere), but there it is not known whether
the hierarchy is proper.

We will skip the proof (there are notes on our website if you are
interested).



Exercises 50

Exercise
Show that FIN is Σ2 by constructing this set using projections and
complementation.

Exercise
Show that Cof is Σ3 by constructing this set using projections and
complementation.

Exercise
Find the position in the hierarchy of

TOT = { e | We = N }


	The Recursion Theorem
	Beyond Semidecidability

