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Separation 2

Note that the arithmetical hierarchy is cumulative, Σk ⊆ Σk+1.

How would we go about proving Σk ⫋ Σk+1?

General Problem: We have two complexity classes C1 ⊆ C2.
We want to separate the two classes: show C1 ̸= C2.

OK, but how? A natural approach is to find a particularly difficult
element in C2, and hope it won’t fit into C1.

Next Question: How does one compare the difficulty of two
arbitrary problems?



Cop Out 3

Comparing the intrinsic difficulty (logical depth) of computational
problems in general can be quite tricky, it often looks like the old
apples-and-oranges situation.

Fortunately, for decision problems we can weasel around this issue: we
can always compare Yes/No answers, even if the questions are totally
unrelated.

Restricting one’s attention to decision problems is less of a loss than one
might think, one can often rephrase more general questions in terms of
decision problems, without losing much information.



Reductions 4

Suppose C ⊆ P(N) is some collection of decision problems.

Definition
A reduction is a pre-order ⪯ (reflexive and transitive) on P(N).

B is C-hard (for ⪯) if A ⪯ B for all A ∈ C.

B is C-complete (for ⪯) if B is C-hard and B ∈ C.

Very often we also want ⪯ to be compatible with C:

A ⪯ B, B ∈ C implies A ∈ C



Keeping It Simple 5

A ⪯ B is supposed to mean that B contains enough information to
determine membership in A, modulo a little auxiliary computation
expressed by ⪯.

For this to be interesting, ⪯ needs to be fairly weak computationally.
The heavy lifting should happen in B, not in the auxiliary computation.
Otherwise we could get weird and not particularly helpful situations like
K ⪯ ∅.

Compatibility tries to address this issue, the reduction has to be civilized
(with respect to class C).



Hardness is Easy 6

It is not difficult to fabricate a hard set B for C: just take the disjoint
union over the whole class. As an example, consider the class E of all
semidecidable sets and let

H = { ⟨e, x⟩ | x ∈ We } ⊆ N

By definition, H contains information about all of E , so H is certainly
E-hard (we’ll talk about the right reduction in a moment). In this case,
H is itself a member of E , so we have a complete set.

Alas, achieving completeness in general can be difficult: to obtain
hardness we want to pack a lot of information into the set, but to ensure
membership in C we have to keep the set simple–a classical case of
clashing requirements.



Tackling AH 7

So to prove Post’s theorem that the arithmetical hierarchy does not
collapse, the hope is that we can

come up with a reasonable notion of reduction for the classes Σn,

and find a Σn-complete set for each n,

and show that these complete sets are all different.

And, it would be nice to have some natural examples of Σn-complete
sets, at least for the first few levels.



The Mother of All Reductions 8

We still need to explain what we mean concretely by a reduction.
Because of compatibility, we will wind up with different reductions for
different complexity classes.

What is the most general way we could translate some decision problem
A into another decision problem B?

The idea is to pretend that we can solve B, and use this (quite possibly
fictitious) ability to answer questions about A. Note that we may ask
repeated questions about B, and initially we will allow arbitrarily
complicated computations surrounding these queries..



Turing’s Wild Idea 9

Let us suppose we are supplied with some unspecified means
of solving number-theoretic problems; a kind of oracle as it
were . . . this oracle cannot be a machine. With the help of
the oracle we could form a new kind of machine (call them
o-machines), having as one of its fundamental processes
that of solving a given number-theoretic problem.



Classical Oracles 10



Quoi? 11

Oracle machines were introduced by Turing in a 1939 paper under
the name of o-machines (as opposed to the original a-machines).
Curiously, he never really exploited this idea (Post and Kleene did).

As we will see, OTMs provide a powerful way to classify problems
according to their complexity.

Think of the oracle as a data base, created by an alien super-civilization
a trillion years ago. The oracle Turing machine has access to all
their wisdom.



Less Informally 12

Fix some set A ⊆ N. We want to add knowledge about A to a Turing
machine: the machine writes x ∈ N on a special tape (alternatively, a
special area on the main tape) and then enters a magical query state
qquery.

At this point, a genie takes over and checks whether x ∈ A. If so, the
machine state is changed to qyes, otherwise it is changed to qno.

Then the normal computation resumes.

Definition
A Turing machine with this added facility is an oracle Turing machine
(OTM) with oracle A.



For Real 13

The last slide is rather vague. But one can make the notion of an oracle
Turing machine precise, the same way as an ordinary Turing machine can
be defined precisely (in the usual pseudo-set-theory setting).

Exercise
Give a precise definition of oracle Turing machines by redefining the
next-step relation.

We write MA
e for the eth OTM with oracle A and {e}A for the

corresponding partial function.



R. I. Soare 14

The Turing o-machine is the single most important concept
in computability, theoretical or practical.



Comments 15

The whole point behind Turing machines (meaning a-machines) is
that they are physically realizable, at least in principle. They cap-
ture everything that is physically possible, and more.

But o-machines are NOT, though some esteemed members of the
hyper-computation community fail to realize that.

The one exception is when the oracle A is decidable: in this case we
can replace magic by another Turing machine.

In other words, decidable oracles are no better than none, we get no
additional power (but note that the running time might improve).



The Key Generalization 16

We can now generalize all the basic notions we have relative to an
arbitrary oracle A: we copy our old definitions, replacing TM by OTM
everywhere.

A-computable

A-decidable

A-semidecidable

So computable is ∅-computable and so forth.



More Precisely . . . 17

Definition
Let A, B ⊆ N. A partial function f : Nk ↛ N is computable in A or
A-computable if there is an oracle Turing machine that computes f using
A as an oracle.
A set B is Turing-reducible to A or A-decidable if its characteristic
function is A-computable.
A set B is semidecidable in A or A-semidecidable if it is the support of
an A-computable function.

Turing reducibility is usually written

B ≤T A



A Preorder 18

Proposition
Turing reducibility is a preorder (reflexive and transitive):

A ≤T A.
A ≤T B and B ≤T C implies A ≤T C.

Proof. Every call to oracle B in the algorithm for A can be replaced by
a computation which uses calls to oracle C.
The actual computation can be absorbed by the algorithm, so that all
that remains are the calls to oracle C.

2

Of course, ≤T is not symmetric. There even are incomparable
semidecidable sets, but that’s more complicated.



Dire Warning 19

Note that by definition Turing reducibility can handle complements:

A ≤T A

As a consequence, Turing reducibility is compatible with the class of all
arithmetical sets, but not with the class E of semidecidable sets, or Σn in
general; it is simply too brutish for these classes.

We will need to fix this later, but, for the time being, let’s just explore
Turing reducibility.



A Meta-Theorem 20

As it turns out, the machinery we developed for computable functions
carries over to A-computable functions, just about verbatim.
In particular we still have a Kleene style enumeration

{e}A

of all A-computable functions.

Then B ≤T A means

B(x) ≃ {e}A(x)

for some index e (we abuse notation slightly by writing B for the
characteristic function of B).



Reduction to Halting 21

Claim
Every semidecidable set is K-decidable.

Proof. Let W be semidecidable. We will translate a membership query
for W into a membership query for K.
Here is an overly careful argument. Define the following function:

g(x, z) ≃

{
0 if x ∈ W ,

↑ otherwise.

Clearly, g is computable and has some index ĝ. Then

g(x, z) ≃ {ĝ}(x, z) ≃ {S1
1(ĝ, x)}(z)

by the S-m-n theorem.



The map f(x) := S1
1(ĝ, x) is easily computable (primitive recursive).

But then x ∈ W ⇐⇒ f(x) ∈ K, done. 2

This is the anal-retentive version of the proof, usually this would be
abbreviated to something a bit more cryptic like so: let

{f(x)}(z) ≃

{
0 if x ∈ W ,

↑ otherwise.

Then f is primitive recursive, blahblahblah, done.



Truth in Advertising 23

Note that the critical point here is that an index for the last function is
easily computable. One can prove this formally by applying the S-m-n
theorem, but usually no one bothers.

Since an oracle TM can compute f , it can check membership in W by
making just one call to the oracle and returning the same answer true or
false (a bit like tail recursion).

This is a very special case, in general multiple calls are needed and the
OTM has to do more work than just computing a primitive recursive
function.
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Better Reductions 25

The fact that Turing reducibility automatically clobbers complements
makes is it awkward to use in connection with semidecidability.
Essentially, Turing reducibility is just too coarse for semidecidable sets.

We are looking for a weaker reduction that is compatible:

A ⪯ B, B semidecidable implies A semidecidable

Forward Pointer: Finding the right notion of reducibility is absolutely
critical for lower complexity classes like NP.



Many-One 26

Here is a type of reduction that is suggested by some of the examples
above.

Definition
Let A, B ⊆ N. A is many-one reducible to B if there exists a computable
function f : N → N such that

x ∈ A ⇐⇒ f(x) ∈ B.

If function f is in addition injective, then A is one-one reducible to B.

In symbols: A ≤m B and A ≤1 B.



Downward Closure 27

Proposition

A ≤m B implies A ≤T B

Incidentally, the opposite implication is false.

Proposition

A ≤m B and B decidable implies that A is decidable.

A ≤m B and B semidecidable implies that A is semidecidable.



One-One 28

Recall our proof that all semidecidable sets are many-one reducible to K:
there is an easily computable function f that returns a program that
either computes the constant-zero function, or the totally divergent
function. We have x ∈ W ⇐⇒ f(x) ∈ K, so W ≤m K.

As it turns out, we can even force f to be one-one, so in fact W ≤1 K †.

Start with a many-one function f , and construct an injective
transformation g in a way that sets g(x) = f(x) provided that
f(x) ̸= g(z) for all z < x.

Otherwise modify the program e = f(x) to do something useless, like
counting to x before the actual program runs. The new program e′ has
the same input/output behavior as e, but can be chosen different from all
the programs already encountered.

†This is a bit of a hack and does not mean much, but on-one reducibility comes in
handy in some theorem.



Convention 29

In conjunction with the arithmetical hierarchy, the default
reduction is many-one reducibility.

E.g., when we say that A is Σn-complete this means

A ∈ Σn and B ≤m A, all B ∈ Σn

In particular E-complete always is defined this way.

Exercise
Show that ≤m is compatible with Σn:

B ≤m A, A ∈ Σn implies B ∈ Σn



Some Index Sets 30

Here is a small collection of natural index sets.

FIN = { e ∈ N | We is finite }
INF = { e ∈ N | We is infinite }

TOT = { e ∈ N | We = N }
REC = { e ∈ N | We is decidable }
CMP = { e ∈ N | We is complete }

By Rice’s theorem, they are all undecidable. But we would like to
understand their relative complexity more precisely.



Relative Complexity 31

Theorem

K <T FIN <T REC

FIN ≡T INF ≡T TOT

FIN ≡T INF is clear, but the others require work.

Also, we would like to have many-one reductions whenever possible.

We’ll just hint at what needs to be done for a proof.



How Bad Can It Be? 32

Intuitively, FIN is not semidecidable since by definition

e ∈ FIN ⇐⇒ ∃ b ∀ x, σ (x ∈ We,σ ⇒ x < b)

The matrix of the formula is easily decidable, but we are not just doing
an infinite search (that would be the ∃ b part). Because of the universal
quantifier, the only obvious bound we get from this is Σ2.

But note: this is just an upper bound, not a lower bound. Experience
shows, though, that unless we are obviously wasting quantifiers these
upper bounds are tight.



Lower Bound 33

Claim: FIN is Σ2-complete.

To see this, suppose A ∈ Σ2 arbitrary. We will show that A ≤m FIN.

First note that by the definition of Σ2 we have

x ∈ A ⇔ ∃ s ∀ t R(x, s, t)

for some decidable relation R.
Define f(x) = e where e is an index such that

We = { z | ∀ s < z ∃ t ¬R(x, s, t) }

One can check that the set on the right is indeed semidecidable.

Then f is the desired many-one reduction.



Even Worse 34

Unsurprisingly, REC is even worse. Quantifier counting produces an
upper bound of Σ3

e ∈ REC ⇐⇒ ∃ e′ (We = N − We′)
⇐⇒ ∃ e′ ∀ x (∀ σ (We,σ ∩ We′,σ = ∅) ∧ ∃ τ (x ∈ We,τ ∪ We′,τ ))

As before, this upper bound is already tight, one can show that
A ≤m REC for any Σ3 set A.

Alas, this requires more work . . .



Another Proof 35

We will show that

INF ≤m TOT

As a warmup exercise, consider the downward closure operation

dc(A) = { x ∈ N | ∃ a ∈ A (a ≥ x) }

So dc(A) fills in the holes in A.

In general

dc(A) =
{

{ z | z ≤ max A } if A is finite,
N otherwise.



Effectivizing the Argument 36

So dc(A) translates from infinite to total, fairly close to what we want.

But note that dc(W ) is r.e. whenever W is r.e. Moreover, we can
compute an index for dc(W ) from an index for W . In fact, there is a
primitive recursive function f that does it:

{f(e)}(z) ≃

{
0 if ∃ u (u ≥ z ∧ u ∈ We),

↑ otherwise.

Hence {f(e)} is either constant 0, or undefined for all sufficiently large z.
More precisely, We is infinite iff Wf(e) = N.

Hence we have the desired reduction: e ∈ INF ⇐⇒ f(e) ∈ TOT, done.
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Motivation 38

So far, we only have one basic separation result: decidable is different
from semidecidable because of the Halting set.

It might be a good idea to try to generalize this step from ∅ to K, so we
can produce a whole chain of increasingly complicated sets (hopefully in
the arithmetical hierarchy).



The Jump 39

Here is nice way to explain (and generalize) the increasing levels of
complexity in the arithmetical hierarchy.

Definition
The jump of A ⊆ N is the Halting Set for OTMs with oracle A:

A′ = { e | {e}A(e) ↓ }

So ∅′ = K is just the ordinary Halting Set.

But ∅′′ = K ′ is a new beast of higher complexity.

And ∅′′′ is even worse, things are getting more and more undecidable.



How Bad is It? 40

Lemma
A′ is A-semidecidable but not A-decidable.

Proof.
The proof is verbatim the same as for plain Halting†.

2

So we get an infinite hierarchy of more and more complicated problems:

∅, ∅′, ∅′′, ∅′′′, . . . , ∅(n), . . .

In reality, though, nothing much beyond ∅(4) seems to play a major role
(except for problems entirely outside of this hierarchy like arithmetic
truth).

†There is such a thing as a free lunch, on rare occasions.



Jumping the Shark 41

Even worse, we can collect all these sets into a single one, essen-
tially by taking a disjoint union:

∅(ω) = { ⟨e, n⟩ | e ∈ ∅(n) }

This happens to be exactly arithmetic truth.

And nothing stops us from forming (∅ω)′, (∅ω)′′ and so on. We can
iterate the jump transfinitely often: ω2 times, ωω times,

ε0 = ωωω
. . .

times. This is a subject for generalized recursion theory.

Aspirin, anyone?



Reductions vs. Jump 42

Lemma
A is semidecidable in B if, and only if, A ≤1 B′.

Proof. Suppose A is semidecidable in B. Hence there is a primitive
recursive function f such that

{f(x)}B(z) ≃

{
0 if x ∈ A,
↑ otherwise.



Proof, contd. 43

By assumption, this function f(x) is B-computable.
But then x ∈ A ⇐⇒ f(x) ∈ B′.
As usual, we can force f to be injective by choosing a different index for
each x.

Now suppose A ≤1 B′, say, x ∈ A ⇐⇒ f(x) ∈ B′.
To enumerate A given B as oracle, proceed in stages.
At stage σ, compute f(x) for all x < σ.
Enumerate B′

σ using oracle B.
If any of the f(x) appear in B′

s, enumerate the corresponding xs into
A. 2



Jump in the AH 44

Theorem (Jump Theorem)

∅(n) is Σn-complete.

A ∈ Σn+1 iff A is semidecidable in ∅(n).

A ∈ ∆n+1 iff A ≤T ∅(n).



Concrete Examples 45

So ∅′ = K is just the ordinary Halting Set.

But ∅′′ = K ′ captures totality: TOT ≤T ∅′′.

Similarly ∅′′′ captures decidability: REC ≤T ∅′′′.

And ∅′′′′ takes care of Universality: UTM ≤T ∅′′′′.

For higher levels, things become a bit more obscure, there aren’t really
natural examples.



Turing versus One-One 46

Theorem
A ≤T B if, and only if, A′ ≤1 B′.

Proof.
By definition chasing.

2



Levels of AH 47

Theorem
A is in Σn+1 if, and only if, A is semidecidable in some Πn set or some
Σn set.

Proof.
⇒ : Use the description of semidecidability in terms of projections.

⇐: Suppose for some Πn set B we have

x ∈ A ⇔ x ∈ W B
e

⇔ ∃ σ, α (α = B ↾ σ ∧ x ∈ W α
e,σ)

Here α is supposed to be the finite approximation of B of length σ, just a
bit-vector that replaces the oracle, and only works for queries less than σ.

2



Proof Jump Theorem 48

We use induction on n; note that n = 1 is under control.

A ∈ Σn+1 ⇔ A is semidecidable in some B ∈ Πn

⇔ A is semidecidable in some C ∈ Σn

⇔ A is semidecidable in ∅(n)

⇔ A ≤1 ∅(n+1)

2



Turing Degrees 49

We can lump together problems that are mutually Turing reducible, in
some sense these problems are “equivalent.”

Definition
Two sets A and B are Turing equivalent if

A ≤T B and B ≤T A

This defines an equivalence relation ≡T whose equivalence classes are
called Turing degrees.

Notation:

degT (A) = { B | A ≡T B }



Degrees of Unsolvability 50

Historically, Turing degrees were called degrees of unsolvability since they
measure the distance between a problem and solvability.

The only degree that is easy to describe is

degT (∅) = all decidable sets.

How about the degree of the Halting Problem, degT (K)?
Or an index set like TOT?



Just Two Results 51

Theorem (Friedberg, Muchnik 1955/57)
There exist two semidecidable sets that are not comparable wrto Turing
reducibility.

Theorem (Sacks 1964)
Let A and B semidecidable such that A <T B. Then there exists a
semidecidable C such that A <T C <T B.



Quoi? 52

These results are somewhat counterintuitive (at least to me they are, and
I’m quite familiar with the proofs).

Write E for the class of semidecidable sets. It is a fact of historical
experience that for any concrete problem A ∈ E the following happens:

Someone proves that A is decidable, or
someone proves that A is E-complete.

After a century of computability theory, not a single natural example of
an intermediate degree is known. No one has any idea why.



The Proofs 53

The proof to the Friedberg-Muchnik theorem uses a new technique,
called a finite injury priority argument. CRT lost its innocence in those
days: priority arguments are significantly more complicated than anything
that has come before.

And, annoyingly, they always seem to produce artificial results.

A lot of people find that rather off-putting.



Hao Wang 54

The study of degrees [of unsolvability] seems to be appealing only
to some special kind of temperament since the results seem to go
into many different directions. Methods of proof are emphasized
to the extent that the main interest in this area is said to be
not so much the conclusions proved as the elaborate methods of
proof.

Hao Wang, 1977

Hao Wang was a student W.V.O. Quine and Stephen Cook as his
student.
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