
UCT
Time Complexity

Klaus Sutner
Carnegie Mellon University
Spring 2024

1 Physical Requirements

2 Complexity Measures

3 Time Classes

4 Key Classes

Getting Real 2

Our current classification of decision problems (arithmetical hierarchy) is
very useful in math, but it mostly misses the boat when it comes to
computer science.

Undecidability results are useful in that one need not bother to find a
general algorithm for, say, Diophantine equations. On the other hand,
decidability results mean that one can at least try to find a decent
algorithm.

But what we really need is a much more fine-grained classification of
problems that are decidable.

A Better Turing Machine 3

Physical Constraints 4

When computing with a microchip we have to worry about physical and
even technological constraints, rather than just logical ones.

So what does it mean that a computation is practically feasible?

There are several parts. It

must not take too long,

must not use too much memory, and

must not consume too much energy.

We will mostly deal with time and space.

Forget Energy 5

We will focus on time and space,

. . . but note that energy is increasingly important: data centers account
for more than 3% of total energy consumption in the US. The IT
industry altogether may use close to 10% of all electricity†.

Alas, reducing energy consumption is at this point mostly a technology
problem, a question of having chips generate less heat.

Amazingly, though, there is also a logical component: to compute a an
energy efficient way one has to compute reversibly: reversible
computation does not dissipate energy, at least not in principle, more
later.

†Crypto mining is a crime against mankind.

Analysis of Algorithms 6

Actual physical running time depends on many accidental factors and in
particular processor technology.

In the analysis of algorithms one usually employs a (rather loosely
specified) model of computation where we somehow “count steps,” and
only asymptotically. A natural question is whether this step-counting has
anything to do with real physical time complexity.

Claim: Experience shows that, for reasonable computa-
tions, there is a very good correlation between the logical
number of steps and the actual physical running time: more
or less, just multiply by the appropriate constant.

Example: Insertion Sort 7

10 20 30 40

0.1

0.2

0.3

0.4

Blue: predicted, red: measured physical running time.

RAMs 8

If one wants to be a bit more carefuly about this step-counting business
one can come up with models of computation that are reasonably close
to what happens in a digital computer. The standard model is a random
access machine (RAM).

For our purposes, the gold standard will be Turing machines, and those
are more primitive and will produce higher time complexity. However, the
difference is much smaller than one might think.

Claim
The speed-up on a random access machine versus a Turing machine is
only a low-degree polynomial.

For an algorithms person, this gap may seem ridiculously large, but we
will see that it does not matter much for our purposes.

Why Not RAMs? 9

It might be tempting to suggest we should redo all of complexity and
simply use RAMs or some other, more realistice model everywhere.

Tempting, but leading to disaster. Our arguments will be messy enough
with Turing machines, the added complications of RAMs would make life
much worse. Remember, we want real proofs, not just some more or less
plausible intuition and gut feeling.

Trust me, we’re better off sticking to Turing machines all the way, even
though that introduces a minor mismatch between the concrete results.

1 Physical Requirements

2 Complexity Measures

3 Time Classes

4 Key Classes

Formalizing Complexity 11

Before we dive into the realm of standard complexity measures (time,
space), it’s a good idea to spend a minute trying to figure out what
complexity means in general.

Definition (Blum 1967)
A dynamic complexity measure is a partial computable function Φ(e, x)
such that

{e}(x) ↓ iff Φ(e, x) ↓
the predicate Φ(e, x) ≃ y is decidable (uniformly in e, x and y)

Φ(e, x) ≃ y simply means: the computation of program e on input x has
complexity y – measured somehow in an effective manner.

One often quietly assumes Φ(e, x) = ∞ when {e}(x) ↑.

Time 12

Suppose we define Φ(e, x) ≃ y if the computation of

{e}(x) takes y steps

In other words,
Φ(e, x) ≃ min

(
σ | {e}σ(x) < σ

)

We can check that this Φ is a Blum complexity measure according to the
definition. Convergence is clear.

For decidability, note that we can simply run the computation, count
steps as we go along, and truncate at y.

Space 13

How about this definition: Φ(e, x) ≃ y if the computation of

{e}(x) uses y tape cells

This is not quite right: a divergent computation could still use only a
finite amount of tape. But note that we can decide whether this
happens, the machine will be caught in a loop (it returns to the same
configuration over and over). If we adjust the definition accordingly,
everything works out fine.

This is one of the elementary differences between time and space, we’ll
see more of this later.

Other Attempts 14

Would this definition work: Φ(e, x) ≃ y if the computation of

{e}(x) changes y tape symbols

How about this one: Φ(e, x) ≃ y if the computation of

{e}(x) moves the tape head y times

Exercise
Are these complexity measures? If not, fix’em.
How useful are these measures?

Reference Model: Turing Machines 15

Let’s introduce the concrete complexity measures we are going to use
from now on. Given a Turing machine M and some input x ∈ Σ⋆, we
measure “running time” as follows:

TM(x) = length of computation of M on x

So time is just the length of the associated sequence of configurations
leading from the initial configuration to the final one:

C init
x M

t
Chalt

y

This is an example of a dynamic complexity measure.

Worst Case Complexity 16

Counting steps for individual inputs is often too cumbersome, one usually
lumps together all inputs of the same size:

TM(n) = max
(

TM(x) | x has size n
)

By size we simple mean the length of the string x ∈ Σ⋆.

Note that this is worst case complexity: TM(n) is determined by the
instance of size n that causes the longest computation.

Size Matters 17

Our size measure is the length of the input string. We need Θ(log|Σ|)
bits to represent a symbol in the tape alphabet Σ, so up to a constant we
are basically counting bits. For example, to represent a natural number n
we need Θ(log n) symbols (unless we write n in unary). This is called
logarithmic size complexity and works naturally for Turing machines.

In algorithmic analysis, one often assumes that numbers have size 1: this
is justified if we know ahead of time that the numbers won’t require more
than, say, 64 bits. In this case it makes perfect sense to use a uniform
size complexity: all numbers are assumed to have size 1.

This is completely standard in the analysis of algorithms: a vertex in a
graph (an integer) has size 1, but for a big prime we have to count bits.

Typical Example 18

Suppose we want to compute a product of n integers, n pretty small:

a = a1a2 . . . an

Under the uniform measure, the input has size n. Multiplication
of two numbers takes constant time, so we can compute a in time
linear in n.

Under the logarithmic measure, the same list has size essentially the
sum of the logarithms of the integers. Suppose each ai has k bits.
Performing a brute-force left-to right multiplication requires some
O(n2k2) steps and produces an output of size O(nk).

And Turing Machines? 19

Our Turing machines naturally use the logarithmic model: we write down
numbers in binary, say.

Mostly true, but not really: we could use a tape alphabet of size 264 to
pretend we can deal with machine sized integers in one step.

Arguably, we really should fix our tape alphabet to be something like

Σ = { , 0, 1} or Σ = {0, 1}

but it’s very convenient to have larger alphabets lying around.

Problems and Languages 20

Since Turing machines naturally operate on strings (rather than integers
in classical computability theory), a decision problem x ∈ A? now turns
into a language recognition problem: we want to recognize the language
L ⊆ Σ⋆ of all Yes-instances.

In automata theory one often talks about building an acceptor that
recognizes a language. Same thing, just a change in terminology.

The Mother of All Problems 21

Fix some language L ⊆ Σ⋆ (the Yes-instances of some decision problem).

Problem: Recognition Problem (for L)
Instance: A word w ∈ Σ⋆.
Question: Is w in L?

Note the qualifier “fixed”: there is a parametrized version of the problem
where L is part of the input. This only makes sense if L can be
represented by a finite data structure such as a finite state machine or
context free grammar; here we are interested in the other scenario.

Example: Graphs 22

Suppose we want to check whether a ugraph G = ⟨V, E⟩ is planar.

We may safely assume that V = [n], so we can represent G is an n × n
binary matrix, the adjacency matrix.

By flattening out the matrix in row-major order we get a string A ∈ 2n2 .

The language Planar ⊆ 2⋆ of all such strings representing planar graphs
is our formalization of the problem.

We want to understand the complexity of the recognition problem for
Planar.

Planarity can be tested in linear time with a real algorithm, a Turing
machine will be a little slower.

Acceptance Languages 23

It is best to adjust our Turing machine model slightly to deal with
decision problems. Say, a Turing machine M acceptor is a TM that

halts on all inputs, and
always halts in one of two special states qY and qN.

We interpret halting in qY or qN as indicating “accept” or “reject,”
respectively.

Exercise
Show that we could equivalently consider TMs that always halt and, in
the end, leave a 0 or a 1 as output.

Input Tape 24

Recall that our machines have just one tape, and the input, output and
intermediate results are all written on that tape at various moments
during the computation (and we need to erase input and scratch space
before halting).

This is perfectly fine, but it makes life a little easier if we assume that the
input is given on a separate read-only input tape whereas the actual
computation is carried out on a work tape. Ultimately we will also add a
special write-only output tape, but for acceptors this is not necessary.

Separate input/output tapes are particularly important for space
complexity, where we will charge only for the work tape.

Acceptor 25

M

10100
input tape

work tape

aba acab a

qY

qN

Dire Warning 26

We already know that it is highly undecidable whether a given arbitrary
Turing machine is an acceptor: we need e ∈ TOT, plus conditions on the
permissible output. Acceptors are a semantical class, not a syntactical
one.

As a consequence, we cannot effectively enumerate these machines. This
won’t be a big issue, though: in many interesting cases we can force
totality, typically by adding a clock.

Exercise
Show that it is undecidable whether a Turing machine is an acceptor.

The Language 27

We can use an acceptor to define a language, the collection of all
accepted inputs:

L(M) = { x ∈ Σ⋆ | M accepts x }

So to solve a recognition problem we need to construct a machine M
that accepts precisely the Yes-instances of the problem. Hence, exactly
the decidable languages are recognizable in this sense.

We are interested in the case when the corresponding computation can
be carried out in the RealWorldTM.

Computable Functions 28

Decision problems are hugely important, but in general one also needs to
worry about computing some function (the output is a data structure,
rather than just a single bit).

To compute a partial function f : Σ⋆ ↛ Σ⋆ , we use a slightly different
type of Turing machine, a transducer.

A transducer

has a special halting state qH , but
may not halt on all inputs;
writes the output on a separate write-only tape.

In most concrete case we will have better information and will be able to
assert that the machine does indeed halt on all inputs. But, as always,
this property is undecidable.

Transducer 29

M

10100
input tape

work tape

aba acab a

0111

output tape

Examples 30

Example
There is a Turing machine M with acceptance language “all strings over
{a, b} with an even number of as and and even number of bs” with
running time O(n).

Example
There is a one-tape Turing machine M with acceptance language “all
palindromes over {a, b}” with running time O(n2).

Example
There is a two-tape Turing machine M with acceptance language “all
palindromes over {a, b}” with running time O(n).

1 Physical Requirements

2 Complexity Measures

3 Time Classes

4 Key Classes

Time Complexity Classes 32

We can use time-bounds to organize decision problems into classes
according to their level of difficulty, their complexity.

Definition
Let f : N → N be a function. Define

TIME(f) = { L(M) | M a TM, TM(n) = O(f(n)) }

A (deterministic) time complexity class is a class

TIME(F) =
⋃

f∈F

TIME(f).

for some (reasonable) collection of functions F .

Time Constructibility 33

There is a technical difficulty here: if the function f is wild, TIME(f)
becomes quite unwieldy and not particularly interesting.

Definition
A function t : N → N is time constructible if there is a transducer that
runs in O(t(n)) steps and, for any input of size n, writes t(n) on the
output tape (say, in binary).

We require that our machines always read all their input, so time
constructible automatically implies t(n) ≥ n.

There are slightly different notions of time constructibility in the
literature, but they all come down to the same thing.

No Big Deal 34

Other than the bound t(n) ≥ n, just about anything goes: all your
favorite arithmetic functions nk, 2n, n!, and so on are time constructible.

In fact, it is quite difficult to come up with functions that are not time
constructible. Try something like t(n) = 2n or 2n + 1, depending on
some condition of the right difficulty. Of course, this is not really an
arithmetic function, it’s logic in disguise.

Exercise
Verify that all the functions above are indeed time constructible.

Clocked Turing Machines 35

The reason one requires time constructibility is that one often needs to
simulate a Turing machine M on a bigger machine U and halt the
computation after at most t(n) steps: essentially we are adding a clock to
the machine and pull the plug on any computation that takes too long.

More precisely, the simulator U does the following:

given input x ∈ Σ⋆ for M,

compute B = t(|x|),

use a counter to keep track of the number of simulated steps,

stop the simulation when that number exceeds B,

and do whatever is appropriate.

The Catch 36

No problem, right? It would be a royal pain to implement this on an
actual Turing machine, but it is not difficult conceptually.

Right, but, for this to be useful, the whole simulation must run in time
t(|x|), and that includes the use of the clocking mechanism.

Alas, a malicious logician can cook up examples where the computation
of B = t(|x|) is hugely expensive, so the clocked simulation takes much
longer. Whence the condition of time constructibility.

Lots of Annoying Details 37

If one tries to make constructions like the added clock efficient, things
can get quite annoying. For example, here is a simple task: determine the
length of a block of as.

#aaa . . . aa# ⇝ #aaa . . . aa#100110

Alas, on a one-tape machine, this seems to take quadratic time: the head
has to zig-zag back and forth between the as and the binary counter.

This causes a problem if we are interested in sub-quadratic running times.
Of course, on a two-tape machine this could be handled in linear time.

A Trick 38

a1 a2 a3 a4 a5 a6 . . . an
0 0 1 . . .

We can achieve n log n on a single two-track tape (rather than just using
two tapes) by keeping the counter bits close to the tape head.

Exercise
Figure out the details.

Simulation 39

There is more trouble brewing: we also need to worry about the actual
simulation: we have some index e and want a master machine U to
simulate M(x) for some machine M = Me (maybe up to t steps).

We are going to keep track of configurations of M: current tape
inscription, state and head position. And, of course, we have to store the
lookup table e (the index for M). Again it is best to do this with
multiple tracks:

aℓ . . . a2 a1 p b1 b2 . . . br

e1 e2 . . . ek

One keeps the lookup table near the cell containing the state in the
configuration of M to avoid zigzagging.

Alphabet Size 40

Another issue is that, in general, the alphabet of M can be much larger
than the alphabet of the simulator U—which is fixed once and for all. So
a single symbol for M may require a whole block of symbols in U †.

We may as well assume that U has a two-track tape alphabet { , 0, 1}2.
Hence we pick up a factor of log|Σ(M)|.

This typically does not affect any application of U , but one needs to be
aware of all these issues.

†Recall the slide titled TMs Suck?

1 Physical Requirements

2 Complexity Measures

3 Time Classes

4 Key Classes

The Key Classes 42

Here are some typical examples for deterministic time complexity classes
that pop up quite naturally.

P = TIME(poly), problems solvable in polynomial time.

EXPk =
⋃

TIME(2c nk ∣∣ c > 0), kth order exponential time†.

EXP =
⋃

EXPk, full exponential time.

We could consider even faster growing functions such as 22n (doubly
exponential), but they are typically not as important in the world of real
algorithms.

†Warning: Some misguided authors define EXP as EXP1.

Closure 43

Lemma
The classes P, EXPk and EXP are all closed under union, intersection
and complement.

This is fairly obvious, we can just flip the output bit, or run two
computations without breaking the time bound. We are relying on
closure properties of polynomials here.

Note that we don’t need to interleave computations (as for the union of
semidecidable sets): everything now halts.

Our World 44

n

n2

n3

...

linear

quadratic

P(Σ∗)

cubic

EXP1

EXP2

...

EXP

P

Why P? 45

Polynomial time seems to be a reasonable first formal answer to the
question: what does it mean for a problem to be computable in the
RealWorldTM?

One often speaks of feasible or tractable problems.

These notions are intuitively compelling, but we can’t hope to prove
anything without a precise formal definition—and it seems that P works
quite well in that capacity, to first-order approximation.

Take this with a grain (a pound) of salt, we will have much more to say
about feasibility later on. In the end, P does not really work, but it’s a
good first step.

Why Big-Oh? 46

Note that we require
TM(n) = O(f(n))

rather than TM(n) ≤ f(n) as one might expect.

This is the same trick used in asymptotic analysis of algorithms to avoid
cumbersome special cases for small n. Also, it turns out that in the
Turing machine model multiplicative constants are really meaningless:

Lemma (Speed Up)
Suppose TM(n) ≤ f(n). We can build an equivalent machine M′ such
that TM′(n) ≤ c · f(n) for any constant c > 0.

Proof Sketch 47

We may assume c < 1. Suppose M has alphabet Σ. Choose a constant
k such that 1/k < c.

The new machine M′ will use alphabet Σk: each super-letter consists of
a block of k-many ordinary letters.

We modify the transition function accordingly†, so that one step of M′

corresponds to k steps by M.
2

Warning: This is a perfect example of a result that has little bearing on
physically realizable computation: Σk grows exponentially, and is
typically not implementable. One should always think about using very
small tape alphabets.

†This requires quite a bit of work, try it.

Einstein 48

I believe in intuition and inspiration
. . . at times I feel certain I am right
while not knowing the reason.

Hierarchy Theorems 49

It is intuitively clear that TIME(f) will be larger than TIME(g) provided
that f is sufficiently much “larger” than g.

Here is a technical version of this. Alas, the proof is quite intricate–for
technical reasons, not because of some deep philosophical obstructions.

Theorem (Hartmanis, Stearns 1965)
Let f be time constructible, g(n) = o(f(n)).
Then TIME(g(n)) ⊊ TIME(f(n)2).

Note the square, this is a bit weaker than what we might hope for.

Tip of the Iceberg 50

One can actually shrink the gap quite a bit,

TIME(g(n)) ⊊ TIME(f(n) log f(n))

also works.

The proof is essentially the same, except that one needs to be much
more careful in setting up the simulating machine.

Try to go through the following argument and count steps very carefully.

Cheap Example 51

Just to be clear: on rare occasions one can directly exhibit a problem
that separates the two classes.

Key example: TIME(n) ⊊ TIME(n2).

In this case, we can show that testing for palindromes is in quadratic
time, but not in linear time. Careful, though, this result is exceedingly
brittle: it only works for one-tape TMs.

Unfortunately, this approach does not help with n2 versus n3 and so on,
it’s just a single, isolated result.

We need much bigger guns.

Halting? 52

It is tempting to press a modified version of the Halting problem into
service. How about

Kf = { e | {e}f(|e|)(e) ↓ } ⊆ 2⋆

In other words, we limit all computations according to some (time
constructible) bound f .

Intuitively, this should produce a set in TIME(f) of maximum complexity.
And it should not be in TIME(g) since g = o(f), more or less.

Proof 53

So the central idea is still diagonalization, but we have to make sure that
the diagonalization does not push us over the O(f2) bound.

We assume an effective enumeration (Me) of f -bounded Turing
machines computing 0/1-valued functions.

Note: Since we are only interested in time-bounded computations here,
there is no problem with Halting. There really is an effective enumeration
of these machines by using clocks.

Furthermore, for technical reasons, we require that each machine is
repeated infinitely often (there is a bigger index for a machine that
performs the same computation in the sense that we get the same
answers. So this is the opposite of a repetition-free enumeration, an idea
that seems much more natural intuitively.

Diagonalization 54

Now define the diagonal function

δ(e) =
{

1 − Me(e) if Me(e) ↓ in time f(|e|),

0 otherwise.

Otherwise here means: the computation tries to use too much time
before producing a result, something we can easily detect by clocking the
machine.

Thus δ is total by construction and 0/1-valued.

The Machine 55

Since f(n) is time constructible, δ can easily be computed by a Turing
machine M in time f2(n), and with a bit more effort we can get down to
time f(n) log f(n).

Sketch: the simulator uses a three-track alphabet of the form Σ3, which
we may safely assume to be { , 0, 1}3.

one track for e, one for the clock, one for the simulation;

e and the counter can be kept close the to tape head of the simu-
lated machine to avoid zigzagging.

Again, time constructibility is essential here: we first compute f(|x|)
quickly, and then compare a step counter to that value.

The Contradiction 56

Now assume δ can be computed by some machine in time g.

Since g = o(f), there is an index e such that Me also computes δ and
g(e) < f(e)/2. But then Me properly computes δ.

Alas, by construction δ(e) ≃ 1 − Me(e), the usual diagonal
contradiction. 2

The real challenge here is to squeeze out every little possible speed-up for
the simulator. We want a high-performance universal machine, not just
any old piece of junk.

Great and Unmatched Wisdom 57

Most proofs in computability and complexity theory are read-once.

Read the proof (which is really a proof-sketch at best) once or twice†,
just to figure out the author’s general strategy, and perhaps a few
technical tricks.

Then throw it in the trash, and reconstruct the argument in your own
words, using your own approach. This is the only way I know to get
comfortable with these results. Parroting back someone else’s approach
over and over is pointless.

†For some small value of 2.

Corollary 58

P ̸= EXP =
⋃

EXPk

To see this note that for any polynomial p we have p(n) = o(2n), so
P ⊆ EXP1.
But EXP1 ⊊ EXP2 ⊆ EXP, done.

OK, this is a cheap shot, we could do better (try to suggest an
improvement). But you will soon see that separating classes is often very
difficult and runs into open problems in complexity theory.

The Gap Theorem 59

Just to be clear: the hierarchy theorem depends heavily on the relevant
time complexity functions being well-behaved.

Theorem (Gap Theorem)
There is a computable function f such that TIME(f) = TIME(2f).

f can be constructed by a diagonalization argument and is highly
uncivilized. It has no bearing on algorithms in the RealWorldTM.

	Physical Requirements
	Complexity Measures
	Time Classes
	Key Classes

