
UCT
Satisfiability

Klaus Sutner
Carnegie Mellon University
Spring 2024

1 Difficult Problems

2 Dealing with SAT

3 Implementation

Where Are We? 2

We have some machinery to compare the complexity of decision
problems:
complexity classes, reductions, hardness, completeness.

In the classical theory, we have a nice hierarchy of increasingly un-
solvable problems.

We are currently thinking of P as a first-order approximation to the
notion of “feasible computation.”

We would like to build a similar complexity hierarchy around P.

Davis 3

Again, the trick will be to compare problems to each other, rather than
direct lower bounds (as, for example, in the Arithmetical Hierarchy). This
idea is quite old.

We may ask, of a given problem P ,
If we could solve P , what else could we solve?
And, we may ask,
The solutions to which problems would also furnish solutions to P?

Martin Davis 1958

Entscheidungsproblem to the Rescue 4

Recall the Entscheidungsproblem: Hilbert’s idea to construct a decision
algorithm for all of math. As J. Herbrand pointed out, this is a rather
ambitious project.

In a sense, [the Entscheidungsproblem] is the most general
problem of mathematics.

Far too ambitious, as we now know, utterly and completely hopeless. Of
course, glass-half-full people will say that’s a good thing, it makes life
much more interesting,

Scaling Down 5

But: we could try to turn adversity into an asset, and use some tamer
version of the Entscheidungsproblem as a template for hard problems.

The original Entscheidungsproblem would have included in particular
arbitrary first-order questions about number theory (which kicks it out of
the arithmetical hierarchy).

We need to scale down radically. More precisely, given our interpretation
of P as corresponding to feasible problems, we are looking for a problem
that is easily decidable but does not seem to quite admit a polynomial
time algorithm.

Propositional Logic 6

It might be tempting to stick with first-order logic and reduce the domain
of discourse to something more harmless than arithmetic.

As it turns out, though, it is better to take the ax to logic itself: instead
of first-order logic we will consider propositional logic.

Recall the Circuit Value Problem: evaluating Boolean expressions is
polynomial time, but relatively difficult within P (a slightly strange
result). So it is tempting to push CVP a little bit to force it just outside
of P, say, up into EXP1.

Tautology 7

Probably the most natural question in propositional logic is

Is φ(x1, . . . , xn) a tautology?

where φ is a Boolean formula, with variables x1, . . . , xn.

This is clearly harder than simple evaluation since we have to check
exponentially many possible truth assignments (at least in the absence of
a better method).

Satisfiability 8

For technical reasons, it is better to ask the very similar question

Is φ(x1, . . . , xn) satisfiable?

Obviously, φ is a tautology iff ¬φ fails to be satisfiable, so nothing is lost
(the problems are polynomial time Turing equivalent).

But, as we will see, satisfiability is slightly better behaved than tautology
if one is concerned about resource bounds: one can easily verify that a
given truth assignment actually satisfies a formula.

The Decision Problem 9

Problem: Satisfiability (SAT)
Instance: A Boolean formula φ(x1, . . . , xn).
Question: Is φ satisfiable?

The difficulty here comes from the fact that there are 2n possible truth
assignments σ : Var → 2 . Even though we can evaluate φ[σ] in linear
time, any algorithm using brute-force search will be exponential,
something like 2npoly(n).

Of course, that does not mean that there is no better algorithm,
brute-force is just the most obvious line of attack. Incidentally, it would
also work for Tautology.

Mighty SAT 10

If you think of a Boolean formula as the kind to pretty little thingy you
encountered in 151, it might seem pretty feeble. For example

(p ⇒ q) ⇒ (q ⇒ r) ⇒ (p ⇒ r)

is clearly a tautology (the infamous cut rule). It is quite useful as a
logical axiom in a formal system, though. In fact, all the logical axioms in
any of the standard systems are obviously tautologies.

But: what if the formula has 10000 variables, and takes a megabyte of
memory? Your intuition will tell you zip about a monster like that; in
fact, a human cannot really read such a formula. Unfortunately, big
formulae are where the action is.

Example 1: VC to SAT 11

As a warm-up exercise showing off the expressiveness of SAT, we will
show how to translate the Vertex Cover problem into a satisfiability
problem.

Problem: Vertex Cover
Instance: A ugraph G, a bound k.
Question: Does G have a vertex cover of size k?

For any translation to SAT, it is critical to interpret the Boolean variables
the right way.
Let’s assume G looks like ⟨V,E⟩ where V = [n]. It seems natural to
introduce n Boolean variables

px x ∈ V,

one Boolean variable for each vertex x.

Coding Covers 12

The idea is simply that

σ(px) = 1 ⇐⇒ x is in the alleged cover

So the truth assignment σ is nothing but a bitvector for the set
Cσ = {x | σ(px) = 1 } ⊆ V .

We need to construct a formula ΦG,k that enforces this interpretation.
Let’s ignore the cardinality part for the moment. Every edge needs to
have at least one endpoint in the alleged cover Cσ:

∧
uv∈E

pu ∨ pv

This conjunction has size O(n2), so we are good.

Boolean Counting 13

We also need to make sure that |Cσ| = k. In other words, there are k
1-bits in the bitvector σ.

Write CNTs,r(p1, p2, . . . , pr) for a formula that is true under σ iff exactly
s of the r variables are true.

We could simply add CNTk,n(p1, p2, . . . , pn) to ΦG and be done.

Easy, what could possibly go wrong?

Problems with Reductions 14

To establish a many-one reduction from A to B, we need to avoid three
possible errors:

Logical correctness: we must have x ∈ A ⇔ f(x) ∈ B.

Computational simplicity: f must be easy to compute.

Size constraint: f(x) must not be too long.

In the heat of battle, it’s quite possible to screw up one of these issues.

Threshold Functions 15

The standard way to get a counting formula is to use threshold functions.

Definition
A threshold function thrm

n , 0 ≤ m ≤ n, is an n-ary Boolean function
defined by

thrm
n (x) =

{
1 if #(i

∣∣ xi = 1) ≥ m,
0 otherwise.

So thrm
n (x) simply means that at least m of the n variables are true.

Expressiveness 16

Lots of Boolean functions can be defined in terms of threshold functions.

thr0
n is the constant true.

thr1
n is n-ary disjunction.

thrn
n is n-ary conjunction.

thrk
n(x) ∧ ¬thrk+1

n (x)
is the counting function: CNTk,n(x1, x2, . . . , xn), “exactly k out of n.”

Dire Warning 17

For example, CNT2,n(x) looks like∨
i<j

(xi ∧ xj) ∧ ¬
∨

i<j<k

(xi ∧ xj ∧ xk)

What would the formula CNTk,n(x1, x2, . . . , xn) look like?∨
I∈[n]k

∧
i∈I

xi ∧ ¬
∨

J∈[n]k+1

∧
i∈J

xi

Here [n]k denotes all subsets of [n] of cardinality k.

How Big? 18

The notation used above makes it easy to write down the general
counting formula, but it does obscure the actual size a bit. To determine
size (say, the number of connectives) we need to expand out the
disjunctions and conjunctions, we can only use the binary versions plus
unary negation.

But that means that CNTk,n has size something like
(

n
k+1

)
. This is not

polynomial in n for variable k.

To be sure, it would work for fixed k, but that is not what the vertex
cover problem asks. In addition, the degree of the polynomial would be
too high in general.

Counting in Style 19

To keep the cardinality formula small, we introduce new variables

qi,j 0 ≤ i ≤ n, 0 ≤ j ≤ k + 1

with the intent that

qi,j ⇐⇒ thri
j(p1, . . . , pi)

We can determine the qi,j in a dynamic programming style, very much
like an instance of CVP.

qi,0 = 1 i = 0, . . . , n

q0,j = 0 j = 1, . . . , k + 1

qi+1,j = qi,j ∨ (qi,j−1 ∧ pi+1)

qn,k ∧ ¬qn,k+1

Total Damage 20

We get a formula ΦG,k of size O(n2) (at least with uniform size
function) that clearly can be constructed from G and k in polynomial
time. A closer look shows that we can actually get away with just
logarithmic space: all we need is a few loops over variables.

Moreover,

σ |= ΦG,k ⇐⇒ Cσ is a vertex cover of size k

and we have our translation to SAT.

Done.

Example 2: HC to SAT 21

Here is another translation, from Hamiltonian Cycle problem to
Satisfiability.

Problem: Hamiltonian Cycle
Instance: A ugraph G.
Question: Does G have a Hamiltonian cycle?

Again, it is critical to interpret the Boolean variables the right way.
Assume G looks like ⟨[n], E⟩ . We introduce n(n+ 1) Boolean variables

pt,x 0 ≤ t ≤ n, 1 ≤ x ≤ n.

Think of t as time, and of x as location.

A Big Formula 22

The Idea: the Hamiltonian path we are looking for touches node x at
time t iff σ(pt,x) = 1 for a satisfying truth assignment σ.

So we need to construct a (large) Boolean formula ΦG that enforces the
following:

σ |= ΦG ⇐⇒ σ codes a Hamiltonian cycle in G

Then ΦG is satisfiable iff G has a Hamiltonian cycle and we are done.

Of course, there is the constraint that ΦG needs to be constructible from
G in polynomial time.

Otherwise we could cheat and define ΦG = ⊥ or ΦG = ⊤ ;-)

Building ΦG 23

ΦG is a conjunction with 4 parts as follows:∧
t

CNT1,n(pt,1, pt,2, . . . , pt,n)

p0,1 ∧ pn,1∧
x ̸=1

CNT1,n(p1,x, p2,x, . . . , pn,x)

∧
t,x

(
pt,x ⇒

∨
xy∈E

pt+1,y

)
The ranges of the variables are clear.

How Bad Can It Be? 24

Since CNT1,m(x1, . . . , xm) has size Θ(m2) the size of ΦG is Θ(n3) and
thus polynomial in the size of the graph.

Moreover, ΦG can be constructed in a straightforward manner from G,
there is a polynomial time computable function that does the job.

Even better, with a little effort we see that the function is log-space
computable: we only need to keep track of a few vertices, and those
require logn bits each (recall that we don’t charge for the input/output
tapes).

It Works 25

Suppose G has a Hamiltonian cycle. We may think of this cycle as a
sequence vt, 0 ≤ t ≤ n of vertices where v0 = vn = 1.
Set σ(pt,x) = 1 iff vt = x.
It is easy to check that σ satisfies ΦG.

In the opposite direction, suppose σ satisfies ΦG. By part 1 there is a
sequence of vertices vt, 0 ≤ t ≤ n: let vt be the unique x such that
σ |= pt,x.
By part 2 every vertex appears on this list. Also, by part 3, v0 = vn = 1
so that all other vertices must appear exactly once by counting.
Lastly, by part 4, vtvt+1 is an edge.
Hence G has a Hamiltonian cycle – which can be read off directly from
the satisfying truth assignment.

Tip of an Iceberg 26

The same holds true for lots of other combinatorial problems that fit
exactly the same pattern.

Exercise
Express Independent Set and Clique as a Satisfiability problem.

Exercise
Express Subset Sum as a Satisfiability problem:

Problem: Subset Sum
Instance: A list of natural numbers a1, . . . , an, b.
Question: Is there a subset I ⊆ [n] such that

∑
i∈I ai = b?

Who Cares? 27

If we could find a fast algorithm for SAT, then we could use it to solve all
these other problems. SAT is a sort of “universal” decision algorithm, at
least for some particular type of problem.

Of course, this might not be the best strategy, it might be much better
to work in the original domain (e.g., try to find a vertex cover directly).
But, as a general strategy, this is fine.

More important for us is the opposite direction: if we cannot figure out
good algorithms for any of these other problems, then there cannot be a
good algorithm for SAT either. SAT is in a way the toughest nut to crack.

1 Difficult Problems

2 Dealing with SAT

3 Implementation

Tackling SAT 29

The brute force approach to SAT is to try all possible truth assignments,
leading to a O(2mpoly(n)) time algorithm where m is the number of
variables.

Using brute force SAT as a back-end to handle, say, Vertex Cover is
completely useless: it is much better to apply brute force to VC directly
(the formula would have Θ(n2) variables).

Big Question:
Are there any algorithms for SAT that are fast at least
some/most of the time?

SAT Algorithms 30

There is an old, but surprisingly powerful satisfiability testing algorithm
due to Davis and Putnam, originally published in 1960.

The Key Papers 31

P. C. Gilmore
A proof method for quantification theory: its justification
and realization
IBM J. Research and Development, 4 (1960) 1: 28–35

M. Davis, H. Putnam
A Computing Procedure for Quantification Theory
Journal ACM 7 (1960) 3: 201–215.

M. Davis, G. Logemann, D. Loveland
A Machine Program for Theorem Proving
Communications ACM 5 (1962) 7: 394–397.

The Real Prey 32

Note the “quantification theory” in the titles: the real target was a
method to establish validity in first-order logic (which can in some sense
be translated into propositional logic, see Herbrand structures).

This is really the afterglow of the failure of Hilbert’s program.

Thanks to Gödel we know that there cannot be a consistent and
complete Hilbert system that contains even a modest amount of
arithmetic. And, according to Church and Turing, the classical
Entscheidungsproblem is also unsolvable.

But: These big theorems do not rule out partial solutions: we are already
happy to be able to deal with some special cases.

https://en.wikipedia.org/wiki/Herbrand_structure

FOL to Propositional 33

We know that all valid formulae in FOL are recursively enumerable and
hence semidecidable, but not decidable. So the challenge is to find
computationally well-behaved methods that can identify at least some
valid formulae.

Gilmore and Davis/Putnam exploit a theorem by J. Herbrand. To show
that a FOL formula φ is valid, show that ¬φ is inconsistent. To this end

Translate ¬φ into a set of propositional logic clauses Γ .

Enumerate potential counterexamples based on Herbrand models; if
one is found, stop and declare φ to be valid.

The last step requires what is now called a SAT solver. This is not a
decision algorithm, we may keep on searching forever.

Tiny Example 34

φ ≡ P (a) ∧ ∀x (P (x) ⇒ Q(f(x))) ⇒ Q(f(a))

¬φ ≡ P (a) ∧ ∀x (P (x) ⇒ Q(f(x))) ∧ ¬Q(f(a))

≡ ∀x
(
P (a) ∧ (P (x) ⇒ Q(f(x))) ∧ ¬Q(f(a))

)
So we need to refute a universality quantified formula. To this end, we
pull out the matrix of the formula:

Γ = {P (a),¬P (x) ∨Q(f(x)),¬Q(f(a))}

So now the problem is to find a substitution for the variable x, using
terms in the available language. Here, this is fairly easy: there is only one
constant a, and only one function f . So we have terms a, f(a), f2(a), . . .

As it turns out, x = a already works.

Γ = {P (a),¬P (a) ∨Q(f(a)),¬Q(f(a))}

Rewrite in pure propositional form:

Γ0 = {p,¬p ∨ q,¬q}

Clearly, the last set of clauses is not satisfiable. Hence we have a
counterexample to the universal formula. Done.

Gilmore’s Abstract 36

A program is described which can provide a computer with quick
logical facility for syllogisms and moderately more complicated sen-
tences. The program realizes a method for proving that a sentence
of quantification theory is logically true. The program, furthermore,
provides a decision procedure over a subclass of the sentences of
quantification theory. The subclass of sentences for which the pro-
gram provides a decision procedure includes all syllogisms. Full
justification of the method is given.

A program for the IBM 704 Data Processing Machine is outlined
which realizes the method. Production runs of the program indicate
that for a class of moderately complicated sentences the program
can produce proofs in intervals ranging up to two minutes.

The “Multiplication” Method 37

Unfortunately, Gilmore’s method to check satisfiability of a propositional
formula ψ essentially comes down to this:

Transform ψ into disjunctive normal form.

Remove all conjuncts containing x and x.

If nothing is left, report success.

DOA.

The DPLL Idea 38

The basic idea of the DPLL solver is beautifully simple. Assume that the
input Γ is in conjunctive normal form: Γ is a conjunction of clauses

Γ = {C1, C2, . . . , Ck}

where each clause Ci is a disjunction of literals. As is customary, we use
set notation.

Repeatedly apply simple cleanup operations, until nothing changes.

Bite the bullet: pick a variable and explicitly set its value.

Backtrack.

SmackDown 39

As the authors point out, their method yielded a result in a 30 minute
hand-computation, where Gilmore’s algorithm running on an IBM 704
failed after 21 minutes.

The variant presented below was first implemented by Davis, Logemann
and Loveland in 1962 on an IBM 704.

Naive Algorithm 40

Here is the most basic recursive approach to SAT testing (in reality
backtracking). We are trying to build a truth-assignment σ for a set of
clauses Γ , initially σ is totally undefined.

If every clause is satisfied, then return True.

If some clause is false, then return False.

Pick any unassigned variable x.

Set σ(x) = 0. If Γ now satisfiable, return True.

Set σ(x) = 1. If Γ now satisfiable, return True.

Return False.

Three-Valued Logic 41

During the execution of the algorithm variables are either unassigned,
true or false; they change back and forth between these values.

Strictly speaking, this is best expressed in terms of a three-valued logic
with values {0, 1, ?}.

One has to redefine the Boolean operations to deal with unassigned
variables. For example

∧ 0 ? 1
0 0 0 0
? 0 ? ?
1 0 ? 1

The rules for disjunctions are entirely similar.

Streamlining Things 42

Obviously, it is a bad idea to pick x blindly for the recursive split.

Moreover, one should do regular cleanup operations to keep Γ small.

There are two simple yet surprisingly effective methods:

Unit Clause Elimination

Pure Literal Elimination

Unit Clause Elimination (UCE) 43

A unit clause is a clause that contains just one literal.

Clearly, if {x} ∈ Γ , then any satisfying truth-assignment σ must have
σ(x) = 1. So we can

update σ,
remove the clause {x},
do a bit of surgery on other clauses.

These operations will not affect satisfiability.

This process is called Unit Clause Elimination (UCE) or Boolean
constraint propagation. SAT solvers spend a lot of time on this type of
cleanup.

Subsumption/Resolution 44

There are two parts to the surgery:

Unit Subsumption: delete all clauses containing x, and

Unit Resolution: remove x from all remaining clauses.

The justification for these operations is the following. Let {x} be a unit
clause in Γ and write Γ ′ for the resulting set of clauses after UCE for
clause {x}.

Proposition
Γ and Γ ′ are equisatisfiable.

Pure Literal Elimination (PLE) 45

Here is another special case that is easily dispatched.

A pure literal in Γ is a literal that occurs only directly, but not negated.
So the formula may either contain a variable x or its negation x, but not
both.

Clearly, we can accordingly set σ(x) = 1 and remove all the clauses
containing the literal.

This may sound pretty uninspired but turns out to be useful in the real
world. Note that in order to do PLE efficiently we need to keep counters
for the number of occurrences of both x and x.

More on PLE 46

Here is a closer look at PLE. Let Γ be a set of clauses, x a variable.
Define

Γ+
x : the clauses of Γ that contain x positively,

Γ−
x : the clauses of Γ that contain x negatively, and

Γ ∗
x : the clauses of Γ that are free of x.

So we have the partition

Γ = Γ+
x ∪ Γ−

x ∪ Γ ∗
x

Note that UCE produces Γ ′ = {C − x | C ∈ Γ−
x } ∪ Γ ∗

x .

PLE lemma 47

Proposition
If x is a pure literal, then Γ and Γ ∗

x are equisatisfiable.

Since Γ ∗
x is smaller than Γ , this transformation simplifies the decision

problem.

But note that PLE flounders once all variables have positive and negative
occurrences. If, in addition, there are no unit clauses, we are stuck.

The DPLL Algorithm 48

Do UCE until no unit clauses are left.

Do PLE until no pure literals are left.

If an empty clause has appeared, return False.

If all clauses have been eliminated, return True.

Splitting: otherwise, cleverly pick one of the remaining variables, x.
Backtrack to test both

Γ, {x} and Γ, {x}

for satisfiability.
Return True if at least one of the branches returns True; False oth-
erwise.

For Glass-Half-Empty People 49

Note that UCE may well produce more unit clauses as well as pure
literals, so the first two steps hopefully will shrink the formula a bit.

Still, thanks to Splitting, this looks dangerously close to brute-force
search.

The algorithm still often succeeds beautifully in the RealWorldTM, since
it systematically exploits all possibilities to prune irrelevant parts of the
search tree.

Silly Example 50

After three UCE steps (no PLE) and one split on d we get the answer
“satisfiable”:

1 {a,b,c} {a,!b} {a,!c} {c,b} {!a,d,e} {!b}
2 {a,c} {a,!c} {c} {!a,d,e}
3 {a} {!a,d,e}
4 {d,e}

We could also have used PLE (on d, a, c):
1 {a,b,c} {a,!b} {a,!c} {c,b} {!a,d,e} {!b}
2 {a,b,c} {a,!b} {a,!c} {c,b} {!b}
3 {c,b} {!b}
4 {!b}

Example: Exactly One 51

Neither UCE nor PLE applies here, so the first step is a split.
{{!a,!b},{!a,!c},{!a,!d},{!a,!e},{!b,!c},{!b,!d},
{!b,!e},{!c,!d}, {!c,!e},{!d,!e},{a,b,c,d,e}}

{{!a},{!a,!b},{!a,!c},{!a,!d},{!a,!e},{!b,!c},
{!b,!d},{!b,!e}, {!c,!d},{!c,!e},{!d,!e},{a,b,c,d,e}}

{{!b},{!b,!c},{!b,!d},{!b,!e},{!c,!d},{!c,!e},
{!d,!e},{b,c,d,e}}

{{!c},{!c,!d},{!c,!e},{!d,!e},{c,d,e}}

{{d},{d,e},{!d,!e}}

True

Of course, this formula is trivially satisfiable, but note how the algorithm
quickly homes in on one possible assignment.

Correctness 52

Claim
The Davis/Putnam algorithm is correct: it returns true if, and only if, the
input formula is satisfiable.

Proof.
We already know that UCE and PLE preserve satisfiability. Let x be any
literal in φ. Then by Boole-Shannon expansion

φ(x,y) ≡ (x ∧ φ(1,y)) ∨ (x ∧ φ(0,y))

But splitting checks exactly the two formulae on the right for
satisfiability; hence φ is satisfiable if, and only if, at least one of the two
branches returns true.
Termination is obvious.

2

1 Difficult Problems

2 Dealing with SAT

3 Implementation

Bad News 54

One can think of DPLL as a particular kind of a method called
resolution. Unfortunately, it inherits potentially exponential running time
as shown by Tseitin in 1966.

Intuitively, this is not really surprising: too many splits will kill efficiency,
and DPLL has no clever mechanism of controlling splits.

And there is the Levin-Cook theorem (which we will prove soon) that
shows that SAT is NP-complete, so one should not expect algorithmic
miracles. In a sense, the theorem supports experience: the algorithms
exhibit exponential blowup, on occasion.

https://en.wikipedia.org/wiki/Resolution_(logic)

Good News 55

In practice, though, Davis/Putnam is usually quite fast, even for huge
formulae.

It is not entirely understood why formulae that appear in real-world
problems tend to produce something like polynomial running time when
tackled by DPLL.

Take the restriction to RealWorldTM problems here with a grain of salt.
For example, in algebra, DPLL has been used to solve problems in the
theory of so-called quasi groups (cancellative groupoids). In a typical
case, there are n3 Boolean variables and about n4 to n6 clauses; n might
be 10 or 20.

Tens of thousands of variables and millions of clauses can often be
handled.

Bookkeeping 56

We pretended that literals are removed from clauses: in reality, they
would simply be marked False. In this setting, a unit clause has all but
one literals marked False.

Similarly, if every clause has a true literal, then the algorithm returns
True. And, if some clause has only false literals, then it returns False.

So one should keep count of non-false literals in each clause. And one
should know where a variable appears positively and negatively.

At present, it seems that lean-and-mean is the way to go with SAT
solvers. Keeping track of too much information gets in the way.

Splitting 57

There are several strategies to choose the next variable in a split. Note
that one also needs to determine which truth value to try first.

Remove the most clauses.

Use most frequently occurring literal.

Focus on small clauses.

Do everything at random.

A Hack: Watch Pointers 58

Here is a clever hack that minimizes the number of times a clause needs
to be inspected (after the algorithm has performed one of its basic
steps).

For every clause, keep pointers to two unassigned literals.

For each variable, keep track of watched clauses (positive and nega-
tive).

The key idea: examine a clause only when one of its watched literals is
assigned False.

Watching 59

Suppose literal x is assigned True and let C be a clause on the watch list
for x.

k = # literals in C ℓ = # false literals in C ℓ′ = # true literals in C

If ℓ = k: return False.

If 0 < ℓ′: return True.

If ℓ < k: check for UCE.

Otherwise: update pointers and watch lists.

As it turns out, the additional bookkeeping is more than compensated for
by cutting down on the number of inspected clauses.

The Real World 60

If you want to see some cutting edge problems that can be solved by SAT
algorithms (or can’t quite be solved at present) take a look at

satcompetition

satlive

Try to implement DPLL yourself, you will see that it’s pretty hopeless to
get up to the level of performance of the programs that win these
competitions.

http://www.satcompetition.org
http://www.satlive.org

	Difficult Problems
	Dealing with SAT
	Implementation

