UCT

Non-Determinism and NP

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2024

D080

-

w

=y

Capturing SAT

Nondeterministic Machines

NP Examples

* LOOP(1)

Where Are We?

@ SAT is a natural decision problem that appears to be just a little bit out-
side of the realm of feasible computation.

o Lots of combinatorial problems are reducible to SAT, so pinning down its
complexity is of great theoretical and practical interest.

@ One question we need to answer: is there a natural complexity class where
SAT lives?

Kleene Star

Recall from HW two languages based on Kleene's star operation:
L= {xlazz...wk | k > O,J}i EL}
L;;.g = {xl#mg##xk | k>0,z; € L}

where # is a new symbol not in .

Claim: If L is in P, then both L* and L}, are also in PP.

This is fairly easy to see for L},: here we are given the factors z; directly and
can just check that they are all in L.

Guessing

But L* is more complicated: we cannot simply enumerate all possible
factorizations
r =T1T2...Tk

since there are exponentially many.

Wild Idea I: how about we change our algorithms so that they
can guess the right factorization, and then verify that it works?

This will horrify an algorithms person, but, as we will see, it works out just fine.
We will switch from ordinary, deterministic algorithms to nondeterministic ones.

Exploiting CRT

Another way to approach this problem is to try to exploit the old decidable
versus semidecidable distinction, the bottom level of the arithmetical hierarchy
(we will deal with the full hierarchy later).

Wild Idea Il: Suppose polynomial time corresponds to decidable.
What is the analogue of semidecidable?

Well, we need to do a projection. That should produce a class that closely
mirrors semidecidable.

Projections and Words

In the context of languages, let us define projections as follows: Given a
marked language
L C X435

where # is a special symbol not in X' we set
proj(L) ={x € X" | Jw € X" (wH#zr € L) }

For all practical purposes, this is the same as going from X* x X* to X*, but
avoids Cartesian products.

We call w the witness and x the instance of a string w#x.
For example, proj ({ a'#b i >0 }) = b*. Here projection reduces complexity,

but that is far from true in general: recall that all semidecidable sets are
projections of decidable ones.

Catastrophe

Unfortunately, projecting P we get all semidecidable sets.

To see why, consider the following marked language, a tame version of the
Halting set:

U={0"%#e|{e}o(e) | }

By adding a prefix 07 we greatly reduce the complexity of the language (this is
actually an important technique called padding):

Claim

U is polynomial time.

But: proj(U) is the Halting set, the mother of all undecidable sets and
complete for semidecidable sets (level Xy in the AH).

Unbounded Search

Projecting U = { 0#e | {e}-(e) | } is essentially the same as searching for
some stage o such that {e}.(e) J.

In general, this is an unbounded search and promptly wrecks decidability.

If we are interested in low complexity classes we cannot allow unbounded
searches, we have to truncate the search somehow. It's a fair guess that we
should only conduct a polynomial search: if nothing is found by then, we give

up.

The Fix

We replace full projections with polynomially bounded projections:
projp(L) ={z € X | Jwe X* (|w| < p(|z]) A wH#Hx € L) }

where p is some polynomial. Thus, we require the witness w to be relatively
short wrto the instance z. We usually don't bother to state the polynomial p
explicitly.

Definition
The collection of all polynomially bounded projections of P is called
nondeterministic polynomial time, in symbols NP.

Intuitively, P corresponds to decidable in the arithmetical hierarchy, and NP
corresponds to semidecidable.

Example 1

Suppose we encode ugraphs as n x n Boolean strings, together with a number
k in binary as
T=ULU2 ... Up2 k1...l€10gn e 2"
———— ——

graph number

Filtering out the strings for which the graph does indeed have a vertex cover of
size k we have a natural encoding of the vertex cover decision problem. Call
this language VC.

Claim
VC is in NP.

Just add a bitvector for the cover to get an appropriate marked language:
WHLT = WiW2 ... Wn FUL ... Up2 k1 ... Klogn

This language is easily in P, and VC is its polynomially bounded projection:
n = |w| < |z| =n?+logn.

10

Example 2 11

Similarly we can encode a propositional formula ¢ as some bit-string
(¢) = uruz ... uy (the encoding details don't matter). Then SAT can be
thought of as the language

SAT = {(p) | ¢ is satisfiable } C 2*

Claim
SAT is in NP.

Just add a bitvector for the satisfying truth assignment to get the marked
language:
WHU = WW2 . .. Wi FFUL - . . Un

where m < n is the number of variables in ¢. Clearly, the last language is in P,
and SAT is its polynomially bounded projection.

Exercises 12

Exercise

Go through the various combinatorial problems we have mentioned
(Independent Set, Clique, Subset Sum, Hamiltonian Cycle) and verify that they
are all in NP.

Exercise
How about Tautology?

Exercise

How about Inequivalence of programs?

Problem: Inequivalence
Instance: Two total programs e, and es.
Question: Is there some x such that {e1}(x) # {e2}(z)?

Closure Properties 13

Lemma

The class NP is closed under intersection and union.

Proof.

Let K; = projp(L;) € NP where L; C X*#X* are the polynomial time witness
languages, i =1, 2.

Then K1 U K> = projp(L1 U L2), where the bounding polynomial is suitably
chosen.

Intersection requires a slight modification K1 N K2 = projp (L1 M La).

Exercise
What is this modification? What is the mysterious operator 17

And Complement?

Again, just like with semidecidable sets, complementation runs into difficulties:
¢ K < Vw,|w| <p(lz)) (w#z ¢ L)

Of course, w#x ¢ L is still polynomial time decidable.
But, there is no obvious reason why it should be possible to replace the
universal quantifier by an existential one, with a polynomial bound: it seems

like we need to check exponentially many w.

So we get a class of problems is obtained by complementation, corresponding
to II; in the arithmetical hierarchy.

We write co-NIP for this class, the negation of all problems in NP.

14

Future Attractions: Polynomial Hierarchy

sr=nf =p
211;-1 = P"OJ'p(Hr}:)
r = comp(Ef,,D)

AP =P nf

PH:U25

This is the same construction as for the arithmetical hierarchy, except that

@ we start at P, and

@ we use polynomial bounded projections.

15

The BIG Difference

For the arithmetical hierarchy, we know that X, # X, 41.
For the polynomial hierarchy, one' suspects that X2 £ E,’;l.
But we don't even know that XF # XF | ie., whether P # NP.

Similarly, we don’t know that X¥ # IIT" i.e., whether NP # co-NP.

Remember, | always said that, in many ways, the classical theory is easier than
the complexity version. Adding resource constraints makes life much, much
harder.

fNot necessarily everyone, though. Some people think that the hierarchy collapses.

16

2 Nondeterministic Machines

Nondeterminism

Our definition of NP is based on the geometric concept of projection
(augmented a bit), so one might wonder if there is some alternative
machine-based definition.

The main idea here is nondeterminism, first introduced in the seminal paper

M. Rabin, D. Scott
Finite Automata and Their Decision Problems

IBM Journal of Research and Development
Volume 3, Number 2, Page 114 (1959)

This is about finite state machines, but how about Turing machines?

18

Nondeterministic Turing Machines 19

We want to define a nondeterministic Turing machine acceptor.

Classical Turing machines have transition functions of the form

§:Q x X -»Qx X x{+1,0}

To introduce nondeterminism, we switch to a more general transition relation
0 C QXY xQxXx{+£1,0}.
The idea being that (p, a, g, b,d) € 6 means that the machine could go to state

q, write symbol b and move the head by d, but could possibly also do
something else, or get stuck.

Computation Trees 20

In a nondeterministic Turing machine the one-step relation C 4, C’ is no
longer single-valued. Hence, instead of a linear sequence, we get a computation
tree Tz.

Transducers versus Acceptors 21

Critical Question: how does this kind of machine compute?

If we are interested in computing a function f: X* — X* there is a problem:
what if different branches come up with different answers? This is quite tricky.

But there is one easy scenario: if we want a decision algorithm, a function
f:X* — 2, we can use the following definition:

The machine accepts =z if there is at least
one branch in 7, ending in the accept state.

This is a direct copy of the definition for nondeterministic finite state machines,
which definition we already know to make perfect sense. Think about the two
killer-apps for FSMs: pattern matching and decision algorithms.

Running Time

How should one define running time in the setting?
Tm(z) = min(|B] | B accepting branch in 7;)

and similarly for T (n).

The min really is justified here: we could make the right guesses and choose a
short accepting path. Of course, there could be longer accepting paths, but
they really don’'t matter in this model.

22

Again ... 23

By definition, we say that a nondeterministic Turing machine accepts input x if
there is at least one accepting branch in the computation tree 7.

Just to be clear: there may be lots of non-accepting branches in the same tree.
In fact, in most natural examples, this will be the case: wrong nondeterministic
choices lead to rejection, only the “right” sequence of choices ultimately leads

to acceptance.

Note that we are not insisting on a certain fraction of all branches being
accepting, the idea behind probabilistic computation; a single one is enough.
More on probabilistic algorithms later.

Choice Sequences 24

We can clean up nondeterministic Turing machines a bit. First, it is easy to see
that the number of choices at each step can be limited to two. Second, it is
safe to assume that there are exactly two choices at each step. Yes?

In this situation, every branch in the computation tree is determined by a
choice sequence, a bit-sequence S € 2*. The accepting branch (if any) has
length Ta(z).

Nondeterminism is Useless

Is there anything a nondeterministic acceptor can do that a deterministic one
cannot? Yes and no.

Theorem (Deterministic Simulation)

Let M be a nondeterministic acceptor running in time t(n).
Then M can be simulated by a deterministic machine.

Proof.

We may assume that M is a nice binary-choice, uniform branch-length
machine as above. We can systematically check all possible choice sequences
S € 2t where n is the length of the input. If one of these simulated
computations ends in acceptance, return Yes; otherwise return No.

Note that this is perfectly constructive: we can build the deterministic machine
from the nondeterministic one.

25

Generalize 26

The last argument also works for nondeterministic TMs that semidecide
membership in some semidecidable set.

In this case, we enumerate possible choice sequences S € 2* in length-lex order
and check for each one whether the machine accepts with these
nondeterministic choices. If so, we halt (and thereby accept).

Otherwise, the simulation runs forever (and thereby rejects).

In CRT this pretty much ends the discussion: nondeterministic machines are
perfectly useless, we can always build a better-behaved deterministic
counterpart.

Nondeterminism is Great

How much does it cost to eliminate the nondeterminism in an acceptor?
Suppose t(n) is the running time of the nondeterministic machine.

Then the running time of the deterministic simulator machine for civilized time

complexities t is certainly
0(2ct(n))

where ¢ > 0 is some constant depending on the machine. Alas, in general that
seems to be the only bound we can come up with.

In other words, brute force deterministic simulation produces an exponential
blow-up in compute time. For abstract computations (say, primitive recursive
running times) this exponential slow-down is trifling. But for real algorithms it
makes a huge difference.

Warning: the fact that the obvious deterministic simulation method is
exponential does not mean that there might not be a better algorithm. This is
most emphatically not a lower bound result.

27

Nondeterministic Complexity Classes

We can now lift the definitions of deterministic time complexity classes to
nondeterministic ones.

Definition
Let f: N — N be a time-constructible function.

NTIME(f) = { L(M) | M a nondeterministic TM, Tx¢(n) = O(f(n)) }

As before, this generalizes easily to NTIME(F) for a class of functions F.

From the definitions and deterministic simulation we have

TIME(f) C NTIME(f) C TIME(2°¢))

28

Equivalence 29

Theorem
NP = NTIME(poly)

Proof. Assume K = proj,(L) € NP where L is a marked language in P, say,
LC U" 2P(M 42" There is a nondeterministic TM M that, on input instance
x € 2", generates a string w € 2P and then verifies in a polynomial time
computation that w is a witness for z, i.e., w#x € L. Clearly, M runs in
polynomial time.

On the other hand, assume M is a poly time nondeterministic TM. By using
the choice sequence approach from above, we may assume that M
nondeterministically generates a choice sequence w and then checks in
deterministic polynomial time that w#x has some property. Use those strings
to form a marked language whose projection is £(M).

O

Guess and Verify 30

The standard interpretation of this approach to “solving” a decision problem is
as follows. Given an instance x:

@ Guess a witness w, a bit-string of length polynomial in the length of x.

@ Verify some polynomial time property of w#x.

Witness w corresponds to a particular branch in 7, and the polynomial time
test just verifies that this branch ends in the accept state. So for all
Yes-instances there is an appropriate witness, but for No-instances no such
witness exists.

So if we only could clairvoyantly produce the right witness, the whole decision
procedure would take polynomial time. But a brute-force search over all
potential witnesses takes exponential time.

P and NP

Arguably, the most important “small” classes are P and NP.

P = TIME(poly)

NP = NTIME(poly)

Clearly P C NP, but what is the difference? Can we separate the two classes?

More pointedly: is this definition at all useful?

Rant: No, definitions are not arbitrary.

They are right or wrong, just like conjectures, theorems, proofs.

31

Justification? 32

So far, there are two good reasons why the definition of NP might be useful:

o Nondeterminism is critical in the theory and in applications of finite state
machines. Without it, grep and the like would disappear.

@ There seem to be lots of examples of natural decision problems that live
in NP — P: Satisfiability, Vertex Cover, Subset Sum, Hamiltonian Cycle,

All nice and good, but to really make a dent we need to

o fix a notion of reducibility suitable for I’ and NP, and

@ identify hard and complete problems wrto this reducibility.

Déja Vu All Over Again

It is natural to try polynomial time many-one reductions, or perhaps
logarithmic space reductions (recall that polynomial time Turing reductions are
a bit too coarse).

In either case, we have compatibility:
A=<B,BeP implies AeP
A=<B,BeNP implies AeNP

so this looks good.

As usual, constructing a hard set is easy, but the real challenge is to find an
NP-complete problem. Even better would be a natural NP-complete problem.

33

3 NP Examples

Showing Membership in NP 35

Given an instance z, we are looking for the existence of some object w, a
“witness” or*“solution” for z, that is not too large, and that demonstrates that
T is a yes-instance.

Usually we are in a situation where

witness obvious from the problem statement

size easily polynomial

Usually, both parts are fairly easy, even no-brainers. But not always.

It may be hard to find the right witness (primality testing), or it may be hard to
show polynomial size (LOOP programs). This is admittedly rare, but it does
happen.

Comment 36

You have all seen lots of problems in 251 that are clearly in NP.

| will here focus on those where membership is far from obvious. They are part
of NP, just like their more popular peers.

Mostly Easy: Traveling Salesman (TSP) 37

In the general Traveling Salesman Problem, we are given a n by n matrix of
distances d(i, j) € NT: think of [n] as a collection of cities, and d(i, j) as the
distance between city i and city j.

Formally, a tour is permutation 7 of [n]. For simplicity assume 7(1) = 1. Thus
we go from city 1 = 7(1) to 7(2), then 7(3) and so on till w(n), and ultimately
return to city 1. The cost of this tour is

cost(r Zd (i + 1)) + d(m(n), 1)

This is a classical minimization problem: we want a tour of minimal cost.

As usual, in the decision version there is an additional bound K and we ask
whether there is a tour of cost at most K.

Variants 38

In the Metric (or Triangle) TSP the distances are required to be similar to
actual geometric distances: they need to be symmetric and conform to the
triangle inequality:

In the Euclidean TSP we are given a finite set .S of points in the plane, and the
distances are defined to be the standard Euclidean distance between these
points.

Thus, distances in the Euclidean TSP are also symmetric and obey the triangle
inequality. But beware ...

Points in the Plane? 39

General TSP and Metric TSP are perfectly well-behaved finitary problems, just
a square matrix of positive integers, and an integer bound. Clearly in NP.

To make sense of the Euclidean version, we read “points in the plane” as points
in Q x Q. In fact, by scaling, we may assume the points are in Z X Z.

Much better, but there still is a problem: one has to compare expressions of

the form
Vvail+ /a2 + ...+ /ak

for integral a; to compare the lengths of tours or parts thereof. The problem is,
we need to do this in a polynomial amount of computation. Unfortunately, the
roots are usually not rational numbers.

Small Example

40

Comparing

The last two icosahedron tours are both pretty good. To figure out which is
better, one needs to determine the sign of

544000 + 500011833 — 1000v'461401 — 1000v' 462113+
— 2000v/724645 + 10001056890 + 1000v/ 1058285

The numerical value is about 83103.7, so the first, more symmetric tour is
better. But this requires an error analysis for the numerical algorithms used
(the error here is guaranteed to be less than 1).

41

Bigger Example

42

Approximating Square Roots 43

To ensure membership in NP for Euclidean TSP, we need to limit precision to a
polynomial number of digits. It is currently not known whether that is enough
to deal with Euclidean TSP.

The standard workaround is to simply truncate, by brute-force. For example,
one could use only the integer part of the actual value. Of course, that is a
slightly different problem, a different metric.

At any rate, when it is claimed that Euclidean TSP is in NP, it is always in
reference to this modified version of the problem.

Hamiltonian Cycle 44

A Hamiltonian cycle in an undirected graph G is a cycle that contains every
vertex of GG exactly once.

Don't confuse Hamiltonian and Eulerian cycles: an Eulerian cycle is required to
use every edge of the graph exactly once. While this may seem to be a minor
difference, it most emphatically is not:

@ One can test in linear time whether a graph has an Eulerian cycle: the
graph only needs to be connected, and every node must have even degree.

@ But there is no known polynomial time test for Hamiltonicity.

Exercise

Come up with a reasonable algorithm to test Eulericity (or is it Eulerianess?).
Your algorithm should construct an Eulerian cycle if one exists, and return
“No” otherwise.

Hamiltonian versus TSP

Note that finding a Hamiltonian cycle seems to be a little easier than tackling
TSP: all we need is a cycle, there are no distances.

For suppose G = (V, E) is an undirected graph. Think of the vertices as cities,
and define the following distances:

d(u, v) 1 fuvekFE,
u,v) = .
2 otherwise.

Then G has a Hamiltonian cycle iff there is a TSP tour of cost n = |V|.

Incidentally, this reduction produces a Metric TSP instance.

45

Fairly Easy: A Pebbling Game 46

Here is a slightly more complicated example.

Consider a directed acyclic graph GG. You want to place pebbles on all the
nodes with out-degree 0 subject to the following rules:

Initially all nodes are empty (unpebbled).

Each node is pebbled at most once.

A new pebble can be placed on node x only if there are pebbles on all
predecessors: all y such that yz € E. Hence we have to start at indegree
0 nodes.

A pebble can be removed at any time.

Of course, there is a catch: you want to use the minimal number of pebbles
(removed pebbles can be reused). So we have a decision problem: can G be
pebbled with K pebbles?

The Real Prey a7

The real goal is to minimize temporary storage when executing a straight-line
program. For example, here is a circuit corresponding to a SLP for complex
multiplication (given two pairs of real numbers):

Register Allocation

In general, the nodes of the digraph correspond to computational tasks, and
execution of node/task x requires the results of all tasks y such that yz € E.

For simple arithmetic operations, the pebbles correspond to registers, so this is
really about register allocation.

Recall that there is a simple linear time algorithm to “sequentialize” the tasks
using just one processor: topological sorting.

But this does not answer our problem: it just says “execute the tasks in such
and such order” and ignores resource issues entirely.

48

A Simpler Example

VoV Y
4

49

Bad Solution

50

How Many Pebbles? 51

Given a permutation m = x1,...,x, of the vertices which describes a certain
pebbling order, the corresponding minimal pebble sets are determined as
follows:

Po=10
P, = P,y +x; — all useless pebbles in P;_;

A pebble at y is useless if all vertices x such that (y,z) € E are already taken
care of.

The size of P, is considered to be the number of pebbles before the removal of
the useless ones (that is, |P;—1| + 1).

Exercise

Verify that given the permutation m we can compute in polynomial time the
optimal pebbling strategy that pebbles the vertices in order given by .

Bad Solution, Contd.

The pebble sets for the bad example. The top row indicates the stages of the
construction.

0 1.2 3 4 5 6 7 8 9 10 11 12
-1 1 1 1 1 1 3 5 7 8 10 12
2 2 2 2 2 4 6 8 9 11
3 3 3 3 5 7 9 10
4 4 4 6 8
5 5 7
6
6

The bottom row indicates the number of pebbles used at this stage, before
removal of unneeded pebbles.

52

Optimal Solution 53
og
O

O~

®/

Requires only 5 pebbles.

Pebbling is in NP

As usual, we consider the decision version:

Problem: Pebbling (Decision Version)
Instance: A directed acyclic graph G and a bound K.
Question: Can G be pebbled with at most K pebbles?

To see membership in NP we guess the right pebbling strategy S and verify
that it requires no more than K pebbles.

Ignoring details, this test can certainly be done in polynomial time.

In fact, we could slightly improve matters by guessing a permutation of the
vertices and then use our previous result that allows us to compute the best
possible strategy using the order given by the permutation.

Of course, there are still too many permutations . ..

54

Different Versions 55

A minor variant of the problem allows one to shift one pebble from y to = given
an edge yx € E.

This makes essentially no difference (just one pebble).

A much different version of the Pebbling game allows one to re-pebble a vertex,
arbitrarily often. This corresponds to recomputing a value, rather than storing
it in a register. Needless to say, there is a trade-off: recomputation takes longer
but may well require fewer pebbles than our version.

This is actually very important for simulations translating time into space, but
we won't go there.

Hard Witness: Primality

We now know that Primality is in P, based on an absolutely brilliant high
school algorithm that appears to be useless in practice. That result was
foreshadowed a long time ago.

First, the complement of Primality, Composite, is obviously in NIP: guess the
factors, and multiply them out.

Second, Pratt showed that Primality is actually in NP.

Together this means Primality is in NP N co-NP, and thus somewhat likely to
slide down into P. This is solely a matter of experience, not a hard technical
result: natural problems in NP N co-NIP tend to wind up in P, possibly after a
lot of work. Primality testing is now known to be in polynomial time.

56

Preliminaries

The multiplicative subgroup of Z,, = Z/nZ for n > 0:

Zy ={z|ged(z,n) =1,1<z<n},
Recall: Euler’s totient function ¢(n) = |Z;,|,
The order of z € Z},, ord(z) = min(k > 1 ‘ z¥ =1 (mod n)),
g is a generator of Zy, iff ord(g) = ¢(n).

Proposition

=[Ip5 '(pi — 1) wheren =[] p{".
Hence n is prime iff $(n) = n — 1 iff Z;, has a generator of order n — 1.

Just to be clear: the proposition says that primality testing is easy provided
that factoring is easy—this is of no direct algorithmic use.

57

Pratt’s Theorem

Theorem (Pratt 1975)
Primality is in NIP.

Proof.

procedure primeq(n)

if n <42

then use brute force to test primality

else
guess a generator g of Z,
guess the prime factorization of n — 1, say n — 1 = [py*
verify that ¢" ' =1 (mod n)
verify that for all ¢ = "p—‘il: 97 # 1 (mod n)
verify that all p; are prime

if everything checks

then return Yes

else return No

58

Example

Verification of primality of the p; is done recursively by making calls
primeq(p;). The arithmetic for each call to primeq is clearly polynomial in
O(logn). The total number of recursive calls is O(logn) as all p; < n/2.

Example

The following tables show that 733 is prime.

n="733

n =61

n—1=22.3.61,9g=6

n—1=2%.3.59g=2

6732 =1 (mod 733)

6266 = —1 (mod 733)
6%** = 425 (mod 733)
6'2 =299 (mod 733)

299 =1 (mod 61)
230 = 1 (mod 61)
62° = 47 (mod 61)
6'2 =9 (mod 61)

59

O

Hard Size: LOOP Programs

Here is a simple toy language that nicely captures the notion of “easily
computable” in the sense of CRT.

Again variables range over N, and we have a single constant 0. The programs
are described informally as follows:

reset z=0
increment r=xz+1
assignments =1y
sequential composition P;Q
control dox: P od

Note that there are no arithmetic operations, no conditionals, no subroutines,
nothing fancy. If you are familiar with primitive recursive functions: these are
exactly the same as loop computable.

60

The Loops 61

The semantics are clear except for the loop construct:

dox : P od

This is intended to mean: Execute P exactly n times where n is the value of x
before the loop is entered.

In other words, if P changes the value of x the number of executions will still
be the same. We could get the same effect by not allowing x to appear in P.
It follows that all loop programs terminate, regardless of the input.

Here are some typical examples for the use of loops.

LOOP Addition

Addition and multiplication are not a primitive operation, but are easy to
implement addition in a LOOP program. We indicate input and output
variables in a comment line:

1 // add : x, y ——> z
2 z = X;

3 do y :

4 z = z+1;

5 od

1 // mult : x, y -> z

2 z = 0;

3 do x

4 do y :

5 z = z+1;
6 od

7 od

LOOP Predecessor

How about the predecessor function? In some frameworks this is the first real
challenge'.
0 ifx =0,

r—1 otherwise.

pred(z) =z > 1 = {

This requires a little trick, which is not totally obvious. We use an extra
variable that lags behind.

1 // pred : x —> z
2 z = 0;

3 v = 0;

4 do x :

5 z v;
6 = v+l;
7 od

fKleene figured out how to do this in the A-calculus.

63

LOOP Hierarchy 64

There is a natural way to measure the complexity of a loop program: the
maximum nesting depth of all loops in the program.

Define LOOP;, to be the collection of all loop programs where the maximum
nesting depth is k.

For example, addition is in LOOP1, and multiplication is in LOOP>.
As a consequence, any polynomial in Z[z1,...,%,] can be calculated by a

LOOP2 program: represent every integer z by two natural numbers z; and z_
with the intent that 2 = 2z — 2_.

Inequivalence of Loop Programs

Let's say that two loop programs P; and P» are inequivalent if there is some
input x such that Pi(x) # P2(x). Naturally one would like to understand the
complexity of inequivalence testing for LOOPy,.

o LOOPy is trivially in P.

@ LOOP:; is undecidable by Matiyasevic (Hilbert's 10th problem).

o LOOP; is not obvious.
Note the amazing and abrupt jump from polynomial time (and really totally
trivial) to X1-complete.

LOOP; must be somewhere in between, but it's not entirely clear where it will
land.

65

Inequivalence 66

We could guess a witness x, and then check that P;(x) # Pa(x).

More precisely, it is not hard to see that given & and a LOOP; program P, we
can evaluate P(x) in time polynomial in the size of P and x.

So the real problem is: how long is the shortest witness x?

Theorem (Tsichritzis 1970)
Inequivalence of LOOP programs is in NP.

NP-Hardness is fairly easy to see, so we have an NP-complete problem.

4 % LOOP(1)

Loop O

Proposition

Inequivalence for LOOP(0) programs is decidable in polynomial time.

Proof.

Given the program P, we can easily compute an index i and a constant d > 0
such that P computes

x—d or x— x; +d

But then equivalence and hence inequivalence are trivial to check: index and
constants have to be the same for both programs.

Exercise
Devise a fast algorithm to test Equivalence of LOOP(0) programs.

68

Loop 2 and Up 69

Lemma
Inequivalence for LOOP(2) programs is undecidable.

Proof. Given a multivariate integer polynomial p(x) one can easily build a
program P that computes

sign(p(x)) € {0,1}

P is naturally level 2 since all the arithmetic can be handled there.

Let @ be the trivial program that computes the constant 0 function. Then
Inequivalence for P and Q comes down solving a Diophantine equation, which
problem is undecidable by Matiyasevic's theorem.

O

Loop 1 70

That leaves Inequivalence for level 1 open: can we check if two rudimentary
functions disagree on some input?

One might suspect that Inequivalence of rudimentary functions is indeed
decidable since these functions are in some sense periodic or piecewise affine.

But the details bear some careful explanation: level 2 is not far away, and there
Inequivalence is already undecidable.

As it turns out, Inequivalence for LOOP(1) program is decidable, but is already
NP-hard, so there is likely no fast algorithm for checking equivalence of such
programs.

Partitioning the Domain 71

Definition

Define an equivalence relation =g,,, on N" as follows: « and y are equivalent if
e x; < BVy; < implies z; = y;, and
o x; > B Ay; > [implies z; = y; (mod u).

Each equivalence class of =g, is either a singleton or infinite.

The number of equivalence classes is (3 + u)™: each component of the vector
is either completely fixed (if it is less than j3) or fixed modulo .

A simple case arises when 3 = 0: then we are simply subdividing N™ into
hypercubes of size pu".

Example

Consider the function
f(z1,22) =21 + 21 mod 2 4 z2 div 2 + 1.

For 8 =0, u = 2 we get the following classes:

S Ol oy J |

o N W

cre e e e o o o o
N O 0 0 e o6 o (o
~r0 O 6 o 0 o o o o
or® e e e o o o o

©r® |0 e e o o o o

72

Example, contd.

f(z1,22) = z1 + 21 mod 2 + z2 div 2+ 1

The corresponding four component functions for the equivalence classes are

1 1 1 3
T1+ 5322+ 35 T1+ 322+ 35

I1+%I2+1 z1+%x2+2

In essence, the mod terms affect the additive constant and the div terms
produce the fractional coefficients.

73

Rudimentary Functions 74

Here is another way to describe LOOP(1) functions.

Definition

A class of functions is a clone if it closed under composition and projections
T — ;.

A function is rudimentary if it is a member of the least clone containing
constants 0, 1, addition, predecessor, division and remainder with fixed

modulus, and an if-then function.

By an if-then function we mean the following:

y ifxz>0,
0 otherwise.

W(x,y) = {

Describing Rudimentary Functions

Theorem

For each rudimentary function f : N" — N there are constants 3 and p such
the restriction of f to the equivalence classes of =g, is an affine function:

f(x) :Zci > @5 Ar @

1

Proof.

Use induction on the buildup of f. Here are the important cases.

fi+ fo B = max(B1, B2) W= 1 fia
it B=p1+m W= 1
W(f1, f2) | B=max(B1,P2) + p2 p= pipz
fidive B =5 L= cpa
fimode | B=05 L= cu

75

Simple Example

Suppose g(z) is affine on the classes of =, .

So there is a family of u many affine functions G; such that
9(x) = Ga mod u(x)

Set f(z) = g(z) mod c. Then

f (@) = Gz mod u(z) mod ¢ = G4 mod p(x mod ¢) mod ¢

and we have to distinguish at most cu classes for f.

76

A Basis Set 77

One can push things a bit further and show that if a rudimentary function f is
piecewise affine with respect to =g ,, then f is completely determined by its
values on the basis set

S={z|z; <B+2u}.

In other words, if g is another rudimentary function with parameters 3 and p
and we have

Va e S(f(z) = g(x))

then the two functions already agree everywhere.

Putting Things Together

Note that =g,/ refines =g ,, whenever 3’ > 3 and u’ = cp.

Hence we can always choose the same parameters for any two functions.

Theorem

78

Let fi1 and fa> be two rudimentary functions with common parameters 3 and .

Then the two functions are equivalent iff they agree on

{w|2: <B+2u}

Inequivalence 79

Theorem
Inequivalence for LOOP(1) is NP-complete

Proof.

For membership, we can easily compute the common parameters 3 and p from
the programs.

We can then guess the witness in the test set
S={z|zi<p+2n}
and verify that the two programs indeed differ on this input by running the

corresponding computations.

Except for guessing the witness, all of this can be handled in in deterministic
polynomial time. But the witnesses are short, so the whole procedure is in NP.

Hardness

For hardness we show how to reduce 3SAT to Inequivalence.

Suppose we have Boolean variables x1, 2, ...,z and clauses C1,C5, ..., Cp,.

Now consider a clause Cj, say, C; = x V3V z. We compute the truth value
c; € 2 of C; as follows:

z = 0;
if(x==1) z =1;
if(y==0) z =1;
if(z==1) z =1;
Lastly, we compute min(cy, ..., cm), the truth value of the whole formula.

The corresponding program is easily LOOP(1) (it operates solely on Boolean
values and does not begin to exploit the possibilities of arithmetic) and
inequivalent to O iff the formula is satisfiable.

80

	Capturing SAT
	Nondeterministic Machines
	NP Examples
	* LOOP(1)

