
UCT

NP and Completeness

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Separation

2 Cook-Levin

3 Beachhead

Where Are We? 2

We have a complexity class NP that seems to be a proper extension of P.

We have a natural problem SAT in NP that works well as a target in nu-
merous reductions.

We need to show that SAT is indeed NP-complete.

This should help in any attempt to separate the classes: P = NP iff SAT is in P.

The (Small) World 3

NP

P

NP-complete

Polynomial Time Reductions 4

We already have a promising reduction: polynomial time many-one reducibility
A ≤p

m B:
x ∈ A ⇐⇒ f(x) ∈ B

Polynomial time reducibility is is nicely compatible with P and NP. Log-space
reductions are another plausible option.

To produce an NP-complete problem we have two basic options:

Try to scale down the Halting problem (add polynomial time bounds ev-
erywhere and keep all fingers crossed).

Work on a particular natural problem, in particular SAT.

Recall: Enumerating Machines 5

We can construct an enumeration (Me)e of all polynomial time Turing
machines: just run a clock and stop the machine after ne + e steps if it has not
halted already.
But then there is a universal, deterministic machine U that simulates Me with
only a polynomial slowdown. More precisely, U on input e#x simulates Me on
x in running time q(ne + e) where q is some polynomial (even low degree).

Of course, U itself is not a polynomial time machine, the running time
increases for different choices of e.

Likewise, there is a universal, nondeterministic machine Und that simulates
nondeterministic polynomial time machines Ne with only a polynomial
slowdown in the same sense as above. Again, Und itself is not polynomial time.

So, one has to be a bit careful where the polynomial time bounds should go.

Constructing an NP-complete Problem 6

Same old, same old: Let’s try to scale down the Halting set.

So we want to use the universal machine Und that can simulate machines in the
enumeration (Ne) of nondeterministic, polynomial time Turing machines just
mentioned. A first shot would be to define

K = { e#x | x accepted by Ne }

It is easy to see that K is NP-hard, but there is no reason why it should be in
NP; simulation of Ne is not a task that can be handled within a fixed
polynomial time bound (Und itself is not polynomial time).

Or, in terms of witnesses: we would have to commit to some fixed polynomial
to bound the size of witnesses for K, but the witnesses for L(Ne) could be
arbitrarily much larger.

No good.

An Ugly Set 7

We can fix the problem by padding † the input so that we can compensate for
the running time of Ne.

K̂ = { 0t # e#x | x accepted by Ne in ≤ t = |x|e + e steps }

Proposition
K̂ is in NP.

Proof.
To see this note that the slowdown by Und is polynomial, say, the simulation
takes q(ne + e) steps.
But then Und can test, in time polynomial in |0t# e#x| = t+ |e| + |x| + 2,
whether Ne indeed accepts x in the required time. 2

†This is similar to the construction that shows full projections move from P to full semidecid-
able (whence we use polynomially bounded projections).

Hardness 8

Proposition
K̂ is NP-hard.

Proof.
Consider A = L(Ne) ∈ NP arbitrary. Then the function

x 7→ 0|x|e+|e| # e#x

is polynomial time computable and shows that A ≤p
m K̂.

2

Hence, K̂ is indeed NP-complete.

It Works, But . . . 9

So we have the desired existence theorem.

Theorem
There is an NP-complete language.

Alas, this result is perfectly useless when it comes to our list of interesting NP
problems: they bear no resemblance whatsoever to K̂.

We have a foothold in the world of NP-completeness, but to show that one of
these natural problems is NP-complete we would have to find a reduction from
K̂ to, say, Pebbling or Vertex Cover.

Good luck on that.

And Separation? 10

Our first NP-complete problem K̂ is a bit artificial, but it still helps to bring the
separation question for P and NP into sharp focus:

Claim: P ̸= NP iff K̂ /∈ P.

This type of claim will be much sharper if we show that a practical problem
such as SAT is NP-complete.

Aside: Regular Intersection Emptiness 11

Our padded version of Halting

K̂ = { 0t # e#x | x accepted by Ne in ≤ t = |x|e + e steps }

has a remarkable property: the following intersection problem is undecidable.

Problem: Regular Intersection Emptiness (for K̂)
Instance: A regular language R.
Question: Is R ∩ K̂ empty?

Exercise
Why should this be difficult?

1 Separation

2 Cook-Levin

3 Beachhead

The Key Problems 13

Recall your favorite decision problems about Boolean formulae:

Problem: Satisfiability
Instance: A Boolean formula φ.
Question: Is φ satisfiable?

Problem: Tautology
Instance: A Boolean formula φ.
Question: Is φ a tautology?

SAT is clearly in NP, TAUT in co-NP. And, we have seen several examples of
reductions from NP to SAT. One might suspect that SAT is so expressive, it
can be used to code up any problem in NP (recall, it’s a watered down version
of the Entscheidungsproblem).

Cook-Levin Theorem 14

This motivates the following result.

Theorem (Cook-Levin 1971/1973)
The Satisfiability Problem is NP-complete.

Membership in NP is easy using the standard guess-and-verify approach.

But hardness takes work: we need to find an abstract argument that shows
that any problem in NP already can be expressed in terms of SAT.

Note that the following proof is strictly read-once: read it, then throw it away
and reconstruct your own proof.

Proof Idea 15

Let A be an arbitrary set in NP. Then there is some polynomial time decidable
marked language L such that A = projP (L). We may safely assume that the
witness w has length n′ = p(n), n = |x|.

So there is a deterministic polynomial time Turing machine M such that M
accepts w#x for some w ∈ 2n

′
iff x ∈ A.

The idea is to construct a (rather large) Boolean formula Φx such that

Φx is satisfiable ⇐⇒ M accepts w#x for some w ∈ 2n
′
.

While the formula is fairly long, it can easily be constructed from x and M in
time polynomial in n.

Coding Time 16

As always, we need to be clear about the meaning of the Boolean variables.
First off, let N = q(n) be the running time of the machine.

If we have a list of Boolean variables

X0, X1, . . . , XN

and a truth assignment σ we can think of σ(Xt) as the value of variable X at
time t.

We will use Φx to pin down the value of Xt+1 in terms of Xt (and other
variables). ∧

t<N

Xt+1 ⇐⇒ φ(. . . , Xt, . . .)

Thus, specifying the value of X0 for all variables pins down all values.

Coding Numbers 17

If we need to code a number r in a certain range, say 1 ≤ r ≤ s, we can simply
use variables

X(1), X(2), . . . , X(s)

plus a stipulation that exactly one of them is true under σ:

CNT1,s
(
X(1), X(2), . . . , X(s)

)
Here CNT1,s(x1, . . . , xs) is the counting function that we’ve encountered
before. Note that this formula has size O(s2), which is OK as long as the
number of variables is polynomial in n.

We could use a more concise representation writing r in binary using only log s
bits, but there is no need for this.

Coding Hardware 18

Let m = |Q| and γ = |Γ |. Combining these two ideas we can set up
polynomially many Boolean variables

states St(p) 0 ≤ t ≤ N , 1 ≤ p ≤ m

head position Ht(i) 0 ≤ t, i ≤ N

tape inscription Tt(i, a) 0 ≤ t, i ≤ N , 1 ≤ a ≤ γ

that express, for each time 0 ≤ t ≤ N , which state the machine is in, where the
head is, and what’s on the tape.

The computation has length at most N and we may safely assume that the
tape head travels no further (one-way infinite tape): at time 0 we use
p(n) + n+ 1 cells, and we can adjust q accordingly. Hence Ht(i), i ≤ N
suffices.

Pinning Things Down 19

Here are some of the conjuncts making up Φx:

Φ1 =
∧
t≤N

CNT1,m(St(1), . . . , St(m))

Φ2 =
∧
t≤N

CNT1,N (Ht(0), . . . , Ht(N))

Φ3 =
∧
i,t≤N

CNT1,γ(Tt(i, 1), . . . , Tt(i, γ))

Clearly, any satisfying truth assignment fixes, for each time t, a unique state,
head position, and tape inscription (exactly one symbol from the tape alphabet
in each tape cell).

Coding Moves 20

We need to express the constraint that the variables change from time t to time
t+ 1 only in accordance with the transition function of the Turing machine.

More pieces of Φx:

Φ4 =
∧
t<N

δ(p,a)=(q,b,∆)

St(p) ∧Ht(i) ∧ Tt(i, a) ⇒ St+1(q) ∧Ht+1(i+∆) ∧ Tt+1(i, b)

Φ5 =
∧
t,i<N

¬Ht(i) ⇒
∧
a

Tt+1(i, a) = Tt(i, a)

Start and Stop 21

Initially we are in state q0, the head is at cell 0; at the end we accept:

Φ6 = H0(0) ∧ S0(q0) ∧ SN (qY).

The last part, Φ7, specifies the initial tape contents like so. The following are
all true

T0(0,) blank for tapehead
T0(n′ + 1,#) separator

T0(n′ + 2, x1), . . . , T0(n′ + n+ 2, xn) actual input
T0(n′ + n+ 3,), . . . , T0(N,) blank tape

whereas the following are unspecified

T0(1, a), . . . , T0(n′, a) space for witness

Putting It All Together 22

Finally, assemble the pieces in a big conjunction:

Φx = Φ1 ∧ . . . ∧ Φ7

Claim
The whole formula Φx has size polynomial in n.

Proof. Count. 2

And It Works 23

Now suppose Φx is satisfied by truth assignment σ.
By Φ1, Φ2, Φ3 assignment σ defines, for each time t,

a unique state pt,
a unique head positioned ht,
a unique tape inscription Ct,

By Φ7, inscription C0 looks like

w1 . . . wn′ #x1 . . . xn

By Φ4, Φ5 and Φ6, the sequence (pt, ht, Ct)t≤N correctly describes an
accepting computation of M on w#x.

Conversely, every witness plus corresponding accepting computation can be
translated into a satisfying truth assignment σ.

That’s it. 2

Exercises 24

Exercise
Determine the size of Φx more precisely. Convince yourself that the formula
can be constructed in logarithmic space.

Exercise
Our construction simulates a deterministic Turing machine on a marked
language. Instead, use a nondeterministic machine directly (this requires only
minor modifications in the formula).

Improvements 25

General Principle: after each hardness argument, try to understand what
limitations can be placed on the instances without ruining hardness.

For example, for Halting we don’t need {e}(x), just {e}(e) is enough. In fact,
even {e}() is fine.

This is often important for future hardness arguments: it is easier to deal with
a limited set of instances.

Corollary
The Satisfiability Problem is NP-complete for formulae in 3-CNF.

Proof One 26

Our original argument constructs a Boolean formula Φx without any particular
regard for a normal form.

But: closer inspection shows that the overall structure is one big conjunction.

It is not difficult to rewrite all the subformulae into disjunctions of literals.

This may slightly increase the size of the formula, but only by a polynomial
amount.

In other words, we can easily force Φx to be in CNF. From there, it is
straightforward to get to 3-CNF by splitting long clauses.

Proof Two 27

A better solution is to think more structurally and to show that any formula Φ
can be associated with another formula Φ′ in CNF that is equisatisfiable and
only polynomially larger than Φ.

The problem here is the following: The formula

φ = (p10 ∧ p11) ∨ (p20 ∧ p21) ∨ . . . ∨ (pn0 ∧ pn1)

is in DNF, but conversion to CNF using the standard rewrite rules produces the
exponentially larger formula

φ ≡
∧

f :[n]→2

∨
i∈[n]

pif(i)

Note that there appear to be no short-cuts: the 2n disjunctions of length n
must all appear.

Even Worse 28

Consider the formula
φn = p1 ⊕ p2 ⊕ . . .⊕ pn

where ⊕ is exclusive or.

Here both DNF and CNF have 2n−1 terms of length n each.

Exercise
Figure out what these normal forms look like.
Try to reason why they are in fact minimal.

Tseitin’s Trick 29

Thinking outside of the Box: For equisatisfiability, we don’t need to stick to
the original set of variables: we could add a few.

For a propositional variable p we let qp = p. For the whole formula φ we
introduce a clause {qφ}. Otherwise we introduce clauses for all subformulae of
Φ as follows:

q¬ψ : {qψ, q¬ψ}, {¬qψ,¬q¬ψ}

qψ∨φ : {¬qψ, qψ∨φ}, {¬qφ, qψ∨φ}, {qφ, qψ,¬qψ∨φ}

qψ∧φ : {qψ,¬qψ∧φ}, {qφ,¬qψ∧φ}, {¬qψ,¬qφ, qψ∧φ}

The intended meaning of qψ is pinned down by these clauses, e.g.

qψ∨φ ≡ qψ ∨ qφ

Example 30

Consider again the formula

φ = (p10 ∧ p11) ∨ (p20 ∧ p21) ∨ . . . ∨ (pn0 ∧ pn1)

Set Bk = (pk0 ∧ pk1) and Ak = Bk ∨Bk+1 ∨ . . . ∨Bn for k = 1, . . . , n− 1 .
Thus, φ = A1 and all the subformulae other than variables are of the form Ak
or Bk.
The clauses in the Tseitin form of φ are as follows (we ignore the variables):

qAk : {qBk ,¬qBk∧Ak−1 }, {qAk−1 ,¬qBk∧Ak−1 }, {¬qBk ,¬qAk−1 , qBk∧Ak−1 }

qBk : {pk0,¬qBk }, {pk1,¬qBk }, {¬pk1,¬pk0, qBk }

Exercise
Make sure you understand in the example how any satisfying assignment to φ
extends to a satisfying assignment of the Tseitin CNF, and conversely.

Preserving Satisfiability 31

Theorem
Let Γ be the set of clauses in Tseitin CNF for formula ϕ. Then Γ and ϕ are
equisatisfiable. Moreover, C can be constructed in time linear in the size of ϕ.

Proof.
⇒ : Suppose that σ |= Γ .
An easy induction shows that for any subformula ψ we have [[ψ]]σ = [[qψ]]σ.
Hence [[ϕ]]σ = [[qϕ]]σ = 1 since {qϕ} is a clause in C.

⇐: Assume that σ |= ϕ.
Define a new valuation τ by τ(qψ) = [[ψ]]σ for all subformulae ψ. It is easy to
check that τ |= Γ .

2

Logarithmic Space 32

A closer look at the construction of Φx reveals that O(logn) memory is
sufficient. For example, to generate∧

t≤N

CNT1,m(St(1), . . . , St(m))

it suffices to have a counter for t, several auxiliary counters that spell out the
counting formula and a few pointers into the formula (depending on coding
details).

Since we do not charge for the output tape, this requires no more than
logarithmic memory. Hence we actually have a logarithmic space reduction.

Application: LOOP Programs 33

Recall our simple arithmetic programming language:

initialize x = 0
assignments x = y
increment x = x+ 1
sequential composition P ;Q
control do x : P od

We are interested in Inequivalence for loop programs of depth 1. As mentioned,
membership in NP is quite difficult to establish, but hardness is now quite
straightforward.

This lay of the land is unusual, but it does occur occasionally.

Hardness 34

For hardness we show how to reduce 3SAT to Inequivalence.

Suppose we have Boolean variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm.

Now consider a clause Ci, say, Ci = x ∨ y ∨ z. We compute the truth value
ci ∈ 2 of Ci as follows:

c = 0;
if(x == 1) c = 1;
if(y == 0) c = 1;
if(z == 1) c = 1;

Lastly, we compute min(c1, . . . , cm), the truth value of the whole formula.

The corresponding program is easily Loop(1) (it operates solely on Boolean
values and does not begin to exploit the possibilities of arithmetic) and
inequivalent to 0, the constant-zero program, iff the formula is satisfiable.

1 Separation

2 Cook-Levin

3 Beachhead

Spreading Completeness 36

Satisfiability is a tremendously important practical problem, but if this were the
only relevant NP-complete problem the whole notion would still be somewhat
academic.

But as Richard Karp realized after reading Cook’s paper, there are dozens
(actually: thousands) of combinatorial problems that all turn out to be
NP-complete. So none of them will admit a polynomial time solution unless
P = NP.

The proof method is interesting: some problems are proven hard by direct
reduction from SAT, then these are used to show other problems are hard, and
so on . . . By transitivity one could, in principle, produce a direct reduction from
SAT, but in reality these direct reductions are often very hard to find.

Trouble 37

Saved 38

Almost Saved 39

Better Beachhead 40

To find a reduction from SAT to some combinatorial problem it is usually quite
a bit easier to deal with just 3-SAT (which we also know to be NP-complete).

It now suffices to find a polynomial time computable function

f : 3-CNF −→ Graphs × Integers

such that φ in 3-CNF is satisfiable iff for f(φ) = (G, k) the graph G has a
vertex cover of size k.

Again, by transitivity one could, in principle, produce a direct reduction, but
that may be significantly more difficult.

Vertex Cover 41

Theorem
Vertex Cover is NP-complete.

Proof.
Suppose we have a 3-CNF formula Φ = Φ1 ∧ Φ2 ∧ . . . ∧ Φm where
Φi = {zi,1, zi,2, zi,3}.

The Boolean variables are x1, . . . , xn .

We start with a graph G′ on 2n+ 3m vertices.

Vertices: xi, xi for i = 1, . . . , n and ui,1, ui,2, ui,3 for i = 1, . . . ,m .
Edges: one edge between xi and xi, and three edges that turn ui,1, ui,2,
ui,3 into a triangle.

These are truth-setting edges and clause-edges, respectively.

Proof, cont’d. 42

It is easy to see that every vertex cover of G′ must have at least n+ 2m
vertices: one for each truth-setting edge, and two of the clause-edges (which
form a triangle).

These choices are arbitrary, so there are lots of these covers.

So far we have only used n and m, but not the formula itself.

Let G be the graph obtained by adding 3m more link-edges to G′:

if zi,j = xs connect ui,j to xs
if zi,j = ¬xs connect ui,j to xs

Lastly, set the bound to k = n+ 2m.

Picture 43

x x y y z z

y

zx

Proof, cont’d. 44

Claim
G has a cover of size k = n+ 2m iff the formula is satisfiable.

To see this, note that any cover C defines an assignment σ:

σ(xi) =
{

1 if xi ∈ C,
0 otherwise.

Then σ satisfies the formula: one vertex in each clause triangle is not in C; its
link-edge must be covered from the other end. Hence the corresponding literal
is true by construction.

Conversely, every satisfying assignment translates into a cover.
2

Important Points 45

For this construction to work we need two crucial ingredients. Suppose
f(Φ) = (G, k).

The graph G and the bound k can be computed from Φ in polynomial
time.

G has a vertex cover of size k if, and only if, Φ is satisfiable.

Many other completeness proofs look very similar: it is trivial to see that the
problem is in NP, and it requires work (sometimes a lot of it) to produce
hardness.

Cheap Shot 46

Corollary
Independent Set and Clique are NP-complete.

There is no need to prove this from scratch, instead we can exploit the logical
connection between vertex covers, independent sets and cliques.

Exercise
Prove that Independent Set and Clique are NP-complete.

Hamiltonian Cycle 47

Theorem
Hamiltonian Cycle is NP-complete.

Note that this is a clean decision problem, taken directly from graph theory.
There is no artificial bound to force things into this format.

A similar problem is Hamiltonian Path: we are looking for a path that touches
every vertex exactly once (but need not form a cycle).

Argument 48

Membership is obvious, for hardness reduce from Vertex Cover.

Let G = ⟨V,E⟩ be a ugraph, and k a bound, 1 ≤ k ≤ n = |V |. We may
assume wlog that all vertices have degree at least 2 (why?).

For each v, fix an enumeration uvi , i ∈ [deg(v)], of all its neighbors.

Define a new graph H as follows:

Vertices anchor vertices a1, . . . , ak
box vertices e, v, i for all v ∈ e ∈ E, i ∈ [6].

Edges chain edges (connecting anchors and boxes)
box edges (inside a box)

Edges 49

Chain Edges:

{aj , e, uv1 , 1 } and {aj , e, uvdeg(v), 6 } for all j ∈ [k].
These edges connect the anchor points to the first and last box on the v-
chain. e is understood to be {v, uvi }.

{ e, uvi , 6 , e, uvi+1, 1 } for 1 ≤ i < deg(v),
These edges connect two consecutive boxes on the v-chain.

Box Edges:

{ e, v, i , e, v, i+ 1 }, { e, v, 1 , e, u, 3 } and { e, v, 4 , e, u, 6 } for all
{u, v} = e ∈ E.

These edges form a 12-point gadget, a box that appears on the v-chain.

A Box 50

eu1 eu2 eu3 eu4 eu5 eu6

ev1 ev2 ev3 ev4 ev5 ev6

The box representing edge e = {u, v}.
It is connected to the rest of the graph only at the 4 corners (to form a chain,
and connect to the anchor vertices).

And More 51

Now assume that P is a Hamiltonian cycle in G.

Claim 1: P must enter and exit each box at the same side. P can pass
through the e-box in exactly one of two ways: type full (covers all vertices) or
type half (covers only the points on the side where it entered).

To see this, take a pen and try to traverse the box. There simply are no other
possibilities.

eu1 eu2 eu3 eu4 eu5 eu6

ev1 ev2 ev3 ev4 ev5 ev6

Picture 52

v

u

v

w

w

x

u v w x

And More 53

Claim 2: Without loss of generality, P consists of blocks

ai, e, u
v
1 , 1 , . . . , e, uvd(v), 6 , ai+1

going from an anchor point to another, and containing the whole v-chain.

Claim 3: G has a vertex cover of size k.

To see this define C = { v ∈ V | P uses the v-chain }. Now let
e = {u, v} ∈ E. As P passes through the e-box it must use the u-chain or
v-chain. Thus C covers e.

Finale 54

Suppose G has a vertex cover of size k.

Claim 4: Then H has a Hamiltonian cycle.

Construct P as follows: P has k blocks ai, e, uv1 , 1 , . . . , e, uvd(v), 6 , ai+1

where v is in C.
The way P passes through the e-box on the v-chain is determined by whether
u ∈ C ∧ v ∈ C (type half) or u ∈ C ⊕ v ∈ C (type full).

Thus G has a VC of size k iff H is Hamiltonian. Clearly, G can be constructed
in polynomial time.

2

Low Hanging Fruit 55

Corollary
Traveling Salesman is NP-complete.

Corollary
Hamiltonian Path is NP-complete.

Corollary
Longest Path is NP-complete.

Exercise
Verify all these claims.

	Separation
	Cook-Levin
	Beachhead

