
UCT

Karp’s List

Klaus Sutner

Carnegie Mellon University
Spring 2024



1 Karp’s List

2 More Reductions

3 Numerical Problems



Cook’s Theorem 2

In 1971, Steve Cook (a student of Hao Wang) published his seminal paper on
NP-completeness (7945 citations). Levin’s work was unknown in the West at
the time, thanks to the idiocy of the Cold War.

Stephen Cook
The Complexity of Theorem Proving Procedures
Proc. STACS 1971

As with the papers on Boolean functions, the perspective here is proof theory,
not algorithms, and certainly not python programming.

To be clear: if Cook’s paper had been confined to proof theory, no one except
for few logicians would have cared one bit.

http://www.cs.cmu.edu/~15455/resources/Cook1971-complx-thm-proof.pdf


Enter Karp 3

Richard Karp at Berkeley† had a habit of reading Cook’s papers–and, when he
saw the 1971 paper, he realized that this was just the tip of an iceberg.

Richard Karp
Reducibility Among Combinatorial Problems
R.E. Miller, J.W. Thatcher eds., Complexity of Computer Com-
putations, 1972

Karp established NP-completeness of 21 now famous combinatorial problems
that are of independent interest, beyond direct logical considerations.

The original paper Karp 1971 is eminently readable, make sure to take a look.

†Berkeley denied Cook tenure, one of biggest academic blunders ever.

http://www.cs.cmu.edu/~15455/resources/Karp1971.pdf


Roadmap 4



Problems 5

Character building exercise: write a math paper using an IBM selectric.

https://en.wikipedia.org/wiki/IBM_Selectric


Aside 6

Karp also pointed out a number of combinatorial problems that were in NP and
obviously difficult, but not known to be complete.



Update 7

Primality is in P by Agrawal, Kayal and Saxena, 2002.
A beautiful result using high school arithmetic, but unfortunately not
practical. Probabilistic algorithms run circles around this method.

Linear Inequalities is essentially Linear Programming, hence in P by a key
result of L. Khachiyan in 1979.
Similarly, Khachiyan’s original method is not practical. However, there are
now interier point methods that are polynomial time and are competitive
with Dantzig’s classical simplex algorithm at least for some instances.

Graph Isomorphism is still a mess.
This turns out to be the most intransigent problem. Work by Babai uses
a lot of group theory in an attempt to move things towards P, but it is
not clear at this point how far one can push.



1 Karp’s List

2 More Reductions

3 Numerical Problems



Hardness, So Far 9

Satisfiability, CNF Satisfiability, 3-Satisfiability

Vertex Cover, Independent Set, Clique

Hamiltonian Cycle, Hamiltonian Path, Traveling Salesman Problem

LOOP1 Inequivalence

Here are a few more reductions that show how to enlarge the pool of
NP-complete problems, along the lines of Karp’s tree.



Garey & Johnson 10

Sage Advice: If you are serious about complexity, you need to read this.



G&J: Six Basic Problems 11

Satisfiability
3-Dimensional Matching
Vertex Cover
Clique
Hamiltonian Cycle
Partition

We’ll do 3DM and Partition today, as well as other assorted hardness results.



Positive SAT 12

Define the weight of a truth assignment to be the number of variables set to
true.

Problem: Positive SAT
Instance: A formula Φ in CNF, all literals positive, a bound k.
Question: Is there a satisfying truth assignment of weight k?

Lemma
Positive SAT is NP-complete.

Proof.
Membership is trivial, for hardness reduce from 3-SAT.



Let n be the number of Boolean variables in the instance of 3-SAT Φ′. For
each literal z, introduce a new variable uz. Set k = n and define the clauses of
Φ as follows:

truth setting clauses: {ux, ux}.

clause clauses: for Φ′ clause, say, {x, y, z}, introduce {ux, uy, uz}.

A truth-assignment of weight k satisfies either ux or ux, hence it exists only if
Φ′ is satisfiable.
The opposite direction is entirely similar.
Obviously, the Positive SAT instance Φ, k can be constructed in polynomial
time. In fact, again the construction is log-space.

Our claim follows.
2



Aside: Counting Problems 14

Our decision version of Positive SAT is clearly just a way to avoid having to
talk about a natural function/counting problem:

Give an positive CNF formula, compute the least weight of any
satisfying truth-assignment.

Our hardness result for the decision version indicates that this is difficult,
without having to deal with function problems. Make sure you understand how
to solve the counting version given the decision version as an oracle.



Set Cover 15

Problem: Set Cover
Instance: A family of m subsets Si ⊆ [n], a bound k.
Question: Is there I ⊆ [m] of cardinality k such that

⋃
i∈I

Si = [n]?

Lemma
Set Cover is NP-complete.

Proof.
Membership is trivial, for hardness reduce from Vertex Cover.
Let G = ⟨V, E⟩ and k′ be the VC instance. We may assume V = [m] and
E = [n]. Let Si be the edges incident upon vertex i; set k = k′.
Cleary, I ⊆ [m] such that

⋃
i∈I

Si = [n] corresponds to a vertex cover in G.
2



Three-Dimensional Matching 16

Here is a 3-dimensional version of the classical matching problem on graphs.

Problem: Three-Dimensional Matching (3DM)
Instance: Three sets X, Y, Z of cardinality n, M ⊆ X × Y × Z.
Question: Is there a matching M ′ ⊆ M of size n?

Think of a triple (x, y, z) as a hyperedge in a hypergraph. Unfortunately, these
are much harder to draw than ordinary graphs.

Matching here means that

∀ x ∈ X ∃! t ∈ M ′ (t1 = x)

and likewise for the other coordinates: the chosen triples don’t overlap
anywhere (just like in the graph case).



Hardness 17

Theorem
3DM is NP-complete.

Proof. Membership is obvious, for hardness we embed 3-SAT.

Let Ψ be an instance of 3-SAT, with n variables xi and m clauses Cj .

A trick: to construct an instance of 3DM, we use m many incarnations of all
literals xi and xi, one for each clause.

In notation like xij we always assume i ∈ [n], j ∈ [m]: the m-many
incarnations of variable xi.

Also, we assume that the j index wraps around: we interpret j = m + 1 as 1.



The Points 18

We need to build a collection of hyperedges M ⊆ X × Y × Z.

The Key Idea:
The middle component Y is the set of literal variants and is used
to express truth assignments.
X and Z are auxiliary and will be explained in a moment.

Truth setting triples: (aij , xij , bij) and (aij , xij , bi,j+1)

Clause triples: (sj , xij , tj) or (sj , xij , tj) if xi or xi is in Cj .

Garbage collection: (α, u, β) where u is a literal variant.

There are 2nm truth setting triples and 3m clause triples.
Since Y has cardinality 2nm we need to fill up X and Z: we simply add
(meaningless) new points to satisfy the cardinality requirements of 3DM.
The sets X and Z are just the projections of these triples and both have
cardinality 2mn.



Example 19

For simplicity, write X for xi, A for ai, and B for bi.

(A1, X1, B1) (A1, X1, B2)
(A2, X2, B2) (A2, X2, B3)
(A3, X3, B3) (A3, X3, B4)
(A4, X4, B4) (A4, X4, B5)
(A5, X5, B5) (A5, X5, B6)
(A6, X6, B6) (A6, X6, B1)

An example of truth setting triples for m = 6. We will be forced to pick m of
these triples. That means we have to pick exactly one in each row.

Critical observation: if we choose some Xj triple, the must choose all the
others, we cannot select any of the X triples.

We will interpret this as choosing a truth value for xi = X.



Proof 20

Now suppose M ′ ⊆ M is a matching of cardinality 2nm.

Note that M ′ must contain a triples of the form

(aij , −, −) (−, −, bij) (−, xij , −) (−, xij , −)

for all i, j, But by the last observation, this means we have to pick either xij ,
for all j, or xij , for all j.

We can interpret these choices as a truth assignment to each Boolean variable.

So far, we have only used truth setting triples. It remains to check that these
assignments really work, using the other triples.



More Proof 21

Let’s officially translate the matching M ′ into a truth assignment:

σ(xi) =
{

0 if M ′ contains only xi triples,
1 otherwise.

Note the flip, this is critical.

Since M ′ must contain one clause triple of the form (sj , −, −) for all j, it is
not hard to see that σ is a satisfying truth assignment.

But the argument also works in the opposite direction: translate a given
satisfying truth assignment int a corresponding matching.

Needless to say, M can be constructed in polynomial time.
2



Exact Three-Cover 22

Problem: Exact Three-Cover (X3C)
Instance: A family C of cardinality 3-subsets of X, |X| = 3n.
Question: Is there an exact cover C′ ⊆ C?

Exact cover means that each element of X appears in exactly one set in C′ (so
|C′| = n). In other words, C′ partitions X into 3-sets.

Corollary
X3C is NP-complete.

This is an easy corollary to 3DM.



Graph 3-Colorability 23

Problem: Graph 3-Colorability (G3C)
Instance: A ugraph G.
Question: Is G 3-colorable?

Note that this is radically different from 2-colorability, which is easily checkable
in polynomial time

Lemma
Graph 3-Colorability is NP-complete.

Incidentally, colorability is useful for register allocation problems in systems
(Chaitin, 1982). By the theorem, one has to make do with approximation
algorithms.



Proof 24

Membership is obvious, for hardness embed 3SAT.

Assume Ψ is a Boolean formula with n variables x1, . . . , xn and m clauses Cj .

Introduce a triangle with nodes W , T , F (what, true, false).

For each variable x, there is a truth setting edge {x, x} and both nodes are
connected to W .

If there is a 3-coloring, we may safely assume W 7→ blue, T 7→ green, F 7→ red.
Then the truth setting nodes must be either red or green.



Beautiful Picture 25

W

F T

x x y y z z



More Proof 26

Truth setting nodes are also connected to “or-gates,” connections correspond
to occurrence of literals in a clause {a, b, c}.

a

b

c

a ∨ b

a∨b∨c

a

b

c

a ∨ b

a∨b∨c

The rightmost triangle node (the output) is also connected to W and F . The
first clause fails, the second is satisfied.

2



Low Degree 27

One “flaw” of the last construction is that it produces a graph of high
degree–one might ask whether hardness holds of bounded-degree graphs.

Lemma
G3C is NP-complete, even if the graph has degree at most 4.

Proof.
We replace nodes of degree k ≥ 5 in G by little “gadgets” Hk.

Hk will have degree 4, and will have k terminal nodes to which we can connect
the neighbors of the high degree vertex.



Colorability Gadgets 28

This is the gadget H3, The terminals are the three external red nodes.



Killing High Degrees 29

We form Hk by chaining together k − 2 copies of H3, merging the left/right
terminal nodes.

For example, here is H5.

So Hk has 7(k − 2) + 1 vertices, and k external terminals. By construction, Hk

is 3-colorable (but not 2-colorable) and the terminals all have the same color.

We replace nodes v of G of degree k ≥ 5 by a gadget Hk, and reroute the
edges incident upon v to the terminals of Hk.

This yields a new graph H.

Clearly, 3-colorability for G is equivalent to 3-colorability of H.
2



Partition into Triangles 30

Problem: Partition into Triangles
Instance: A ugraph G = ⟨V, E⟩ with |V | = 3n.
Question: Is there a partition of V into 3-sets that all form triangles?

Lemma
Partition into Triangles is NP-complete.

So this is a nice geometric condition: we want to partition V into blocks
{ui, vi, wi}, i = 1, . . . , n so that each block forms a triangle in the graph (a
clique of size 3).



Proof 31

Membership is obvious, for hardness we embed X3C.

Recall that in X3C we have to select 3-subsets of X, |X| = 3n.

Write ci = {xi, yi, zi} ⊆ X for a 3-subset, C = c1, . . . , cm.

Start with V = X and add other nodes as follows. For each i ∈ [m], add fresh
vertices aj

i , bj
i , cj

i , j ∈ [3] and add edges

(xi, a1
i ), (xi, a2

i ), (a1
i , a2

i ), (a1
i , a3

i ), (a2
i , a3

i )

and likewise for y–b and z–c.
Lastly, add a central triangle (see pic)

(a3
i , b3

i ), (a3
i , c3

i ), (b3
i , c3

i )

This produces a 12-node gadget (3 old nodes, 9 new nodes); these can overlap
only at the terminals in X.



Gadget 32

x

y

z

The red points are the elements of X, the rest is all scaffolding. We have one
such gadget for each 3-set in C.



So? 33

We claim that any attempt to partition this graph into triangles is bound to
use one of two methods for each gadget:

z

x

y u

x

v

The first uses all the points in the gadget, the second does not use the
terminals.

But then there is an exact 3 cover iff there is a partition into triangles.
2



1 Karp’s List

2 More Reductions

3 Numerical Problems



Problems Involving Arithmetic 35

So far, our NP-problems are purely combinatorial, arithmetic plays no role (the
artificial bound introduced in some cases is not really arithmetic).

But there are other problems where numbers are an essential part of the input,
and the solution may involve arithmetic operations such as addition or
multiplication: for example primality testing.

Take a look at Linear Programming for a sophisticated numerical method that
has lots and lots of applications.

Question: When are numbers really an essential part of the input?

https://en.wikipedia.org/wiki/Linear_programming


Binary versus Unary 36

Recall that it is a sacred convention to write numbers in a instance of some
decision problem in binary.

This makes perfect sense, since that it is exactly what real algorithms do: no
one would dream about representing a 500-digit number in unary as input to a
primality testing algorithm. Our universe is much too small for that.

Similarly all numerical algorithms rely naturally in binary representations. Fine,
but that provides a handle to distinguish between problems where numbers
really matter, and those where they don’t: nothing much happens when we
write them in unary.



Bounding Numbers 37

Let P be some decision problem and q a polynomial. Define the subproblem Pq

to have all instances x of P such that

|xunary| ≤ q(|x|)

Here xunary is the version of x where all numbers are written in unary, thus
potentially inflating the size by an exponential amount.

For example, if we only consider TSP instances where the edge costs are 1 or 2,
the inflated version xunary is essentially the same as x. So here numbers do not
really matter.

Definition
A problem P is strongly NP-hard if Pq is NP-hard for some polynomial q.



Strong NP-Completeness 38

Thus, in a strongly NP-hard problem the size of the numbers does not matter
much. Even if we write the numbers in unary, the problem is intractable.

Definition
P is solvable in pseudo-polynomial time if it is solvable in time polynomial in
|xunary|, rather than its actual size |x|.

Claim (P ̸= NP)
No strongly NP-complete problem admits a pseudo-polynomial solution.

Example
All non-arithmetic NP-hard problems are strongly so.
TSP is strongly NP-hard.
Partition (next slide) is solvable in pseudo-polynomial time.



Partition 39

Here is a typical arithmetic problem.

Problem: Partition
Instance: A list a1, a2, . . . , an of positive integers.
Question: Is there a subset I ⊆ [n] such that

∑
i∈I

ai =
∑

i/∈I
ai ?

For simplicity, write a(I) for
∑

i∈I
ai whenever I ⊆ [n]. So we are looking for

I such that a(I) = a([n] − I).

Theorem (P ̸= NP)
Partition is NP-complete, but not strongly so.



Proof 40

Main Idea: We will use the bits of the ai as a data structure.
Since ai will be huge, there are lots of bits to do this. Alas, we
only have addition to check properties of the data structure, so
this will be a bit tricky. Here goes.

Membership is obvious, for hardness we embed 3DM.

Consider an instance M ⊆ X × Y × Z of 3DM. Let m = |M | and
k = |X| = |Y | = |Z|. We may safely assume that [k] = X = Y = Z, and that
there are three functions f, g, h : [m] → [k] that enumerate M :

M = { (f(i), g(i), h(i)) | i ∈ [m] }



The Numbers 41

The index set for Partition is [n] = [m] ∪ {α, β}. To describe the integers ai,
let p = ⌈lg m⌉ + 1 and set for i ∈ [k];

ai = 2p(2k+f(i)) + 2p(k+g(i)) + 2p h(i)

Here is a picture of such a number. It is a giant bitvector for sets X, Y and Z,
but the bits are padded to length p.

. . . 1000 . . . . . . 1000 . . . . . . 1000 . . .

Thus, ai has exactly three 1 bits, and each appears in one of k many positions.
The possible positions are spaced out to be a multiple of p.



Example 42

A 3DM Yes-instance:

((3, 4, 5), (3, 5, 3), (1, 4, 5), (4, 6, 3), (5, 4, 3), (1, 1, 6), (2, 3, 4), (3, 4, 4),
(2, 5, 1), (3, 5, 1), (4, 4, 6), (5, 4, 5), (6, 2, 2), (4, 5, 5), (5, 5, 2))

Here m = 15, k = 6.
Each of the critical columns contains exactly one cyan block. The
corresponding rows represent the matching.



More Proof 43

Set S =
∑3k

i=1 2pi and T = a([m]).

Claim: Matchings correspond exactly to subsets I ⊆ [m] such that
a(I) = S.

To see why, think of ai as bit pattern that selects exactly one element in X, Y
and Z, rather than a numerical value.

Here is the critical trick: by the choice of p, we can recover the bit patterns
from a sum: there is no way to fake an entry in some p-block by adding a
sufficient number of 1s from the next p-block.

This would be blatantly false if we used, say, p = 1.



The End 44

Lastly, define the two filler elements to be

aα = 2T − S aβ = T + S

By the definition of T , we cannot have both aα and aβ on the same side of any
valid partition of [n].

So suppose the partition looks like I ∪ {α} and Ī ∪ {β} where I ⊆ [m].

Then a(I) + 2T − S = a(Ī) + T + S and therefore
2a(I) = a(I) + T − a(Ī) = 2S.

Done.



Pseudo-Polynomial Time 45

To see that Partition is pseudo-polynomial time, consider an instance
a1, . . . , an and set 2B = a([n]).

The basic idea is to use standard dynamic programming: we compute a table of
all the sums { a(I) | I ⊆ [n] } truncated at B.

To this end, define a Boolean matrix P (k, b), 1 ≤ k ≤ n, 0 ≤ b ≤ B, by:

P (k, b) ⇔ ∃ I ⊆ [k]
(
a(I) = b

)
.

Clearly we have

P (1, b) ⇔ b = 0 ∨ b = a1

P (k + 1, b) ⇔ P (k, b) ∨ P (k, b − ak+1).

Thus P can be computed in O(nB) steps.



Example 46

The matrix for (2, 4, 5, 7, 9, 11, 20), B = 29.
This is a Yes-instance.



Subset Sum 47

Problem: Subset Sum
Instance: A list of natural numbers a1, . . . , an, b.
Question: Is there a subset I ⊆ [n] such that

∑
i∈I

ai = b?

Claim
Subset Sum is NP-complete

Proof.
Reduction from Partition: keep the ais, set b = a([n])/2. 2

Exercise
This a bit terse, explain what’s really going on.



Scheduling 48

Just to be clear: there are many kinds of scheduling problems, some of them
have perfectly good polynomial time solutions.



Hard Scheduling 49

Suppose we have n jobs, each associated with a

release time ri

deadline di

duration ∆i

all natural numbers.

All jobs must execute on a single processor in contiguous time somewhere in
the interval [ri, di].

The question is: is there a schedule so all jobs finish by their deadline?

Lemma
Scheduling is NP-complete.



Proof 50

Membership is obvious, for hardness reduce from Subset Sum.

Let a1, . . . , an, b be an instance of Subset Sum and let β = a([n]). Note that
we may safely assume b ≤ β. Now define a scheduling instance by

ri = 0 di = β + 1 ∆i = ai

plus one additional job n + 1 with

rn+1 = b dn+1 = b + 1 ∆n+1 = 1

Clearly, job n + 1 can only run in [b, b + 1].

Since all the jobs must run without gaps, some of the jobs, say I ⊆ [n], must
run in [0, b] and thus a(I) = b.

The opposite direction is similar.
2



It’s a Trap 51

Problem: Graph Components
Instance: A ugraph G = ⟨V, E⟩, a number k ≤ |V |.
Question: Is there a collection of connected components of G containing k

nodes altogether?

Reduction from Subset Sum: build a graph with connected components of size
ai, i ∈ [n]. Set k = b.

Exercise
What could possibly go wrong?



Pizza Toppings 52

5 kinds of pizza toppings: pepperoni, sausage, anchovies, mushrooms,
eggplant; to be combined in amounts x1, . . . , x5. Each topping has a cost cj .
Each topping also contains a certain amount of key nutrients, say,
carbohydrates, fats, vitamins. Express the content of nutrient i in topping j by
coefficient aij . Lastly, assume that there is a minimal daily allowance bi for
each key nutrient.

healthy:
∑

j

aijxj ≥ bi

cheap: minimize
∑

j

cixj .

∑
j

cixj is the objective function



Linear Programming 53

Expressed in matrix/vector notation A and b:

3 4 1 0 0 5
4 5 1 0 0 15
0 0 1 2 3 20

c = (4, 3, 5, 2, 1).
Has solution (0, 3, 0, 0, 20/3).

Seriously: dozens of implementations, 100s of books, 1000s of papers, dozens
of companies, 2 Nobel prizes.



More Formally 54

An instance of Linear Programming (LP) expresses a minimization problem for
n variables and m constraints, with a linear objective function.

More precisely, we have an m × n integer matrix A, m ≤ n, a m-component
integer vector b and an n-component integer vector c.

One has to find a real vector x ∈ Rn that

minimize z = c ◦ x

Ax ≥ b

x ≥ 0

Note that these are all very natural geometric conditions, using just a bit of
linear algebra.



Geometry 55

For canonical form LP’s there is a natural geometric interpretation.

F = { x ∈ Rn | Ax ≥ b ∧ x ≥ 0 }

is a convex polytope in n-dimensional space and contained in the first orthant.

This is called the set of feasible solutions or the simplex.

For any number d the set { x ∈ Rn | c ◦ x = d } is a hyperplane perpendicular
to c.

Thus we have to find the first point in F where a hyperplane perpendicular to c
intersects F (if it is moved from infinity towards the simplex in the appropriate
direction).



Simplex Algorithm 56

The Simplex algorithm is an iterative procedure that moves from vertex to
vertex on the simplex F , decreasing the objective function step by step until a
minimum is reached.

Basic Idea: Dantzig 1947

Find a vertex of the feasible region.

Consider all immediate neighbors of the current vertex.

If none of them provide a better value for the objective function, stop.

Otherwise pick one that does, and repeat.



Running Time 57

Klee and Minty showed in 1972 how to construct bad inputs that produce
exponentially long isotonic paths (objective function increases monotonically
along the path). But, depending on the implementation details, Simplex may
not choose such a long path.

Also, the counter examples tend to be somewhat artificial. The average
running time of Simplex is polynomial, both empirically and theoretically
(Smale’s proof attracted a huge amount of criticism).



Other Algorithms 58

In 1979 Khachiyan developed a polynomial time algorithm, the so-called
Ellipsoid Algorithm for LP; unfortunately, it seems that the algorithm is not
practical.

However, in 1984 Karmarkar found a polynomial time algorithm that seems to
be competitive with Simplex on practical inputs, a so-called interior point
method.



Expressiveness of LP 59

To appreciate the power of LP, note that one can easily express rather
complicated flow problems as LP.

Variables: xe is flow along an edge e.

Constraints: 0 ≤ xe ≤ c(e).

Conservation:
∑

e=(u,x) xe =
∑

e=(x,u) xe.

Maximize:
∑

e=(s,x) xe −
∑

e=(x,s) xe



Integer Programming (IP) 60

It is tempting to ask what happens if we try to solve a Linear Program over Z
rather than R.

As Matiyasevic has shown, solving multivariate polynomial equations over Z
turns out to be hugely more difficult than over R: a (highly nontrivial)
decidable problem goes rogue and becomes undecidable.

However, we are saved by the fact that we are dealing with linear algebra here.
Note, though, that IP is not obviously in NP: it is not clear that the solution is
small–but, again, some linear algebra considerations show that there actually is
no problem.



Example: 3SAT as IP 61

Variables: indicator variable xv for each Boolean variable x

Constraints: 0 ≤ xv ≤ 1, 1 ≤ x′
v + y′

v + z′
v for each clause {x, y, z}

Minimize:
∑

xv.

Here x′
v = xv if x appears positively, x′

v = 1 − xv otherwise. To get a decision
problem, distinguish between feasible and not feasible.

This is an example of 0/1-Integer Programming: the variables are constrained
to 2 (and membership in NP is trivial).

Claim
0/1-Integer Programming is NP-complete.


	Karp's List
	More Reductions
	Numerical Problems

