
UCT
Intermediate Problems

Klaus Sutner
Carnegie Mellon University
Spring 2024

1 Intermediate Problems

2 Intermediate in NP

3 Sparse Languages

Where Are We? 2

We have a collection of practical NP-complete problems.

It is perfectly reasonable (though not uncontroversial) to assume
that these problems do not admit polynomial time solutions.

Suppose that indeed P ̸= NP.
What can we say about these two classes?

Public Service Announcement 3

There will be three fairly difficult proofs, the rest of the
time I will wax poetic about profound matters. Enjoy.

The “proofs” will be very, very sketchy, the reason being
that an actual, careful a argument would be pages and pages
long, and drive everybody to distraction.

Don’t worry about the endless technical details, just try to
understand the general proof strategy.

Post’s Question 4

∅′

∅

semidecidable

A Is this picture accurate?

Is there an intermediate semidecid-
able set A such that ∅ <T A <T ∅′?

We can borrow an idea from classical recursion theory.

Why? 5

Because it is a matter of experience (not theory) that any natural
problem that is recognized as being semidecidable ultimately will either

turn out to be complete, or

turn out to be decidable.

In other other words, semidecidable sets that occur in the RealWorldTM

only appear at two levels of complexity, bottom or top. Nothing else ever
happens.

It may take a long time to determine which is the case (Diophantine
equations took 70 years), but, in the end, everything turns out to be
decidable or complete. Basta, no exceptions†.

†As of February 2024. I’m quite confident that this won’t change for a long time.

Natural? 6

A “natural problem” is hard to define, it means in essence: not artificially
constructed by some mischievous logician.

Everybody would agree that the following would be a convincing example
of a natural, intermediate problem:

In the late 19th century, the well-known number theorist Prof.
Dr. Wurzelbrunft discovered a very interesting class of integer poly-
nomials, nowadays referred to as W -polynomials.
It was shown in the 1960s that deciding whether a W -polynomial
has an integer root has intermediate complexity.

Warning: This is fake news. Nothing like this has ever happened, not in
any area of mathematics where undecidability results are known.

Friedberg/Mučnik and Sacks 7

So E. Post asked in 1944 whether there are any intermediate
semidecidable sets (i.e., more than just two semidecidable degrees).

Surprisingly, two people found the solution almost simultaneously:
R. M. Friedberg (an undergraduate) in the US and A. A. Mučnik in
Russia (they published their results in 1957 and 1956, respectively).

Theorem (Friedberg, Mučnik 1957/6)
There are intermediate semidecidable problems.

What is perhaps even more surprising, Friedberg and Mučnik used
essentially the same method (nowadays called a finite injury priority
method).

Priority Arguments 8

This proof technique has since become the hallmark of computability
theory and has been used to establish countless results.

Unfortunately, the method is somewhat complicated, in particular if one
tries to seriously address all the many technical problems. At some point
one becomes convinced that the intuition behind the argument is correct
and gives up on serious formalization.

Surprisingly, priority style arguments are also useful in complexity theory,
see Ladner’s theorem below.

Density 9

Friedberg/Mučnik shows that there are semidecidable sets of
incomparable complexity. Here is another strange result, due to G. Sacks,
using a more complicated priority argument.

Theorem (Sacks, 1964)
Suppose A and B are semidecidable and A <T B.
Then there is another semidecidable set C such that A <T C <T B.

Repeating this construction we can generate a dense order of
semidecidable sets, like the rationals. This is not particularly intuitive, to
say the least. In fact, your head might explode thinking about it.

How to Construct a Semidecidable Set 10

To describe the construction of some complicated semidecidable set A, it
is best to use the characterization of semidecidable sets as being
recursively enumerable: we use our old method of building things in
stages σ ∈ N.

At stage σ one builds a finite set Aσ ⊆ N. In the end we set
A :=

⋃
σ≥0 Aσ.

Write A<σ =
⋃

τ<σ Aτ for the part constructed prior to stage σ.

The key idea is that there is an easily computable (say, primitive
recursive) function C, the construction, that determines what to do at
level σ:

Aσ = C(σ, A<σ)

One-Way 11

Critical Constraint:
We can place new elements into A at stage σ, but we cannot
take them out at a later stage (if we realize that something
has gone wrong).

Moreover, the construction C(σ, A<σ) has to be easily computable: our
decision to put an element into A cannot depend on undecidable
properties.

For example, it would often be convenient to have ∅′ as an oracle, but
that’s not allowed. Fuggedaboud high-powered set-theoretic
constructions.

The Dilemma 12

We are stuck with a fundamental problem:

the set must to be semidecidable, but

the set must satisfy complicated conditions, and typically infinitely
many of them.

The solution to this problem is to use a sophisticated strategy that
satisfies more and more of the conditions as σ increases. In the limit, all
the conditions are ultimately satisfied and everything is fine.

A Trick 13

It suffices to construct two incomparable semidecidable sets, i.e., two sets
A and B such that

A ̸≤T B and B ̸≤T A

If we succeed in doing this, then both A and B must be intermediate:
neither one can be decidable, and neither one can be complete.

This may seem like a bold step in the wrong direction, but by exploiting
symmetry this actually simplifies matters a bit.

Notation 14

We systematically confuse sets A ⊆ N with their characteristic functions
N → 2.

So we can write things like
A ̸≃ {e}B

to indicate that oracle B does not decide A via program e.

But beware: this property is not decidable, even if we somehow had
complete knowledge of A and B. And we emphatically don’t, all we have
is some finite approximations A<σ and B<σ.

Requirements 15

Or: the power of wishful thinking.

The two sets are constructed in stages, alternating between A and B in a
completely symmetric manner. To make sure they have the right
properties we use requirements:

(Re) A ̸≃ {e}B insure A ̸≤T B

(R′
e) B ̸≃ {e}A insure B ̸≤T A

These are infinitely many requirements, two for each e ∈ N.

Organizing Work 16

Since there are infinitely many requirements we have to be a bit careful
about organizing our construction and use dovetailing: we work on more
and more requirements as the construction unfolds.

At stage σ we only consider objects < σ (so there are only finitely
many things to do).

We only consider requirements (Re) and (R′
e) for e < σ.

And we run computations only for at most σ steps.

As a result, the construction at stage σ is quite easily computable.

And the sets A and B are indeed semidecidable.

Finite Approximations 17

We need to use oracles that are only partially constructed. Say, at stage
σ, what could

{e}A<σ
σ (a) ≃ b ∈ 2

mean?

Recall that everything we touch is restricted to < σ. So we start the
computation of {e} on input a. If we get to a query 42 ∈ A<σ? we do a
table lookup in the finite list for A<σ and return Yes/No accordingly.

If the computation finishes in fewer than σ steps on output b we’re good.
Otherwise we consider the equation false.

The Catch 18

Suppose at the time of the query 42 ∈ A<σ? the answer was No and we
get some output b.

Later on it may happen that we throw 42 into A, so now the oracle says
Yes, and the computation changes.

This is the crux of the whole construction, and one needs to walk on
eggshells to make sure that in the end everything works out fine.

But How? 19

Suppose we find at stage σ that requirement (Re) is currently broken (in
the sense that the construction will fail unless we can change things at a
later stage):

A<σ ≃ {e}B<σ
σ

We have to break this, otherwise it might turn out in the end that
A ≃ {e}B and A is reducible to B.

Big Question: How?

All we can do is add elements to A or B.

Witnesses 20

Here is what seems to be the only hope: suppose also that we discovered
some witness a = a(e, σ) for (Re):

a /∈ A<σ and {e}B<σ
σ (a) ≃ 0

The next move is practically forced: throw a into Aσ, and we have
broken the equality, at least for the time being.

Attention 21

Terminology: we say that requirement (Re) requires attention.

Action: We throw a into Aσ.

We say that the requirement receives attention. For the time being, the
requirement is happy and goes to sleep.

What could possibly go wrong?

Chaos 22

Say, requirement (Re) just received attention.

But there are other requirements, say, (R′
ℓ):

B ̸≃ {ℓ}A

Since we just changed A, it may happen that some computations using
oracle A now change, and now requirement (R′

ℓ) is angry.

We say that requirement (Re) has just injured requirement (R′
ℓ).

And, of course, if we fix (R′
ℓ) we may clobber some other requirement,

and so on. It looks like we may satisfy a few requirements, but there is
no obvious way to deal with all infinitely many of them.

Priority 23

Here is the central idea: we prioritize requirements as in

R0 > R′
0 > R1 > R′

1 > R2 > R′
2 > . . .

We will work on (Re) at even stages, on (R′
e) at odd stages.

Basic Rule: a requirement can only receive attention
(throw some witness into A or B) if that does not injure a
higher priority requirement.

This has the effect that the high priority requirements get taken care of
first, then the lower priority ones. In the limit, all requirements are
satisfied: endless bliss.

Succeed At Last 24

Suppose higher priority requirement Re blocks R′
ℓ: we would like to place

b into B, but we can’t.

To give R′
ℓ a fair chance, we make sure that Re blocks only finitely many

elements (the ones that could ruin the computation), and, as the
construction unfolds, one considers larger and larger potential witnesses.

Ultimately, one of these witnesses is going to get through. This is a finite
injury priority argument, after getting dinged finitely often all
requirements succeed.

The precise proof is technically messy, but requires no more than plain
induction on the naturals (rather weak in a proof theory sense).

Natural Intermediate Problems? 25

Alas, the Friedberg/Mučnik construction is really quite frustrating: it
builds a semidecidable set that is undecidable and strictly easier than
Halting–but it has no purpose other than this; it is totally artificial.

So it is tempting to ask whether there are natural intermediate problems.
Something like roots of Wurzelbrunft’s polynomials.

Again: Not a single example of such a natural intermediate problem is
known today. All natural semidecidable problems have ultimately turned
out to be either decidable, or complete, sometimes requiring huge effort.

Formalization 26

There ain’t much.

Computability theory is not one of the areas that has attracted much
attention form the theorem proving community.

Maybe it’s not sexy enough, or maybe the endless combinatorial details
that are “obvious” from an intuitive perspective turn into a nightmare
when one tries to nail down every little detail.

Digression: Personal Opinions 27

Mathematics is often presented as this pure, ethereal, crystalline
structure where everything is utterly perfect and eternal. And, of course,
all mathematicians agree on everything.

Nothing could be further from the truth. There are quite a few people
who think that classical recursion theory has gone off the deep end, and
needs a serious reset.

Theoretical computer science and complexity theory might just be the
cure. Initially, the flow of ideas was all from mathematics to TCS, but
there are now examples in the opposite direction.

H. Poincaré 28

Formerly, when one invented a new function, it was to further
some practical purpose; today one invents them in order to make
incorrect the reasoning of our fathers, and nothing more will ever
be accomplished by these inventions.

Martin Davis 29

. . . but one can be quite precise in stating that no one has
produced an intermediate r.e. degree about which it can be said
that it is the degree of a decision problem that had been previ-
ously studied and named.

Dana Scott 30

70 years of research on Turing degrees has shown the struc-
ture to be extremely complicated. In other words, the hierarchy
of oracles is worse than any political system. No one oracle is all
powerful.

Suppose some quantum genius gave you an oracle as a black
box. No finite amount of observation would tell you what it
does and why it is non-recursive. Hence, there would be no way
to write an algorithm to solve an understandable problem you
couldn’t solve before! Interpretation of oracular statements is a
very fine art–as they found out at Delphi.

John Myhill 31

The heavy symbolism used in the theory of recursive functions
has perhaps succeeded in alienating some mathematicians from
this field, and also in making mathematicians who are in this
field too embroiled in the details of their notation to form as
clear an overall picture of their work as is desirable. In particular
the study of degrees of recursive unsolvability by Kleene, Post,
and their successors has suffered greatly from this defect, . . .

Hao Wang 32

The study of degrees seems to be appealing only to some
special kind of temperament since the results seem to go into
many different directions. Methods of proof are emphasized to
the extent that the main interest in this area is said to be not so
much the conclusions proved as the elaborate methods of proof.

Computability, Math, Physics 33

So far, the comments are all due to mathematicians, which is only fair
since computability theory is a branch of mathematical logic.

But there is another group out there that has strong opinions about
computability: a bunch of physicists.

David Deutsch 34

The theory of computation has traditionally been studied al-
most entirely in the abstract, as a topic in pure mathematics.
This is to miss the point of it. Computers are physical objects,
and computations are physical processes. What computers can
or cannot compute is determined by the laws of physics alone,
and not by pure mathematics.

Rolf Landauer 35

Information is not a disembodied abstract entity; it is always tied
to a physical representation. It is represented by an engraving
on a stone tablet, a spin, a charge, a hole in a punched card, a
mark on paper, or some other equivalent. This ties the handling
of information to all the possibilities and restrictions of our real
physical world, its laws of physics and its storehouse of available
parts.

Stephen Wolfram 36

Principle of Computational Equivalence in 2002:

. . . all processes, whether they are produced by human effort or
occur spontaneously in nature, can be viewed as computations.

. . . almost all processes that are not obviously simple can be
viewed as computations of equivalent sophistication.

Clearly false in the setting of classical computability theory. But if one
works in a suitable physics-like model of computation involving observers,
it might actually work out.

1 Intermediate Problems

2 Intermediate in NP

3 Sparse Languages

Scaling Down 38

SAT

∅

NP

A

Could this picture be accurate: P is separate from NP, and there are
problems in NP − P that fail to be complete.

Intermediate in NP 39

Alas, here we don’t know that the classes are distinct (and some notable
researchers like Levin and Knuth suggest that they well may be the
same). So let’s assume P ̸= NP just to get off the ground.

In a rather compelling way, the situation is similar to that in classical
recursion theory: if a natural problem is found to be in NP, after some
amount of effort, it will turn out that either

the problem has a polynomial time algorithm, or
the problem is NP-hard.

Again, this is a matter of experience, not a theorem.

Cliff-Hangers 40

In his seminal 1972 paper, Karp already identified 3 potentially
intermediate problems for NP:

Graph Isomorphism

NonPrime (aka Composite)

Linear Inequalities

As we now know, the last two are in fact in P.
The first one is still a mess and seems to require massive amounts of
group theory.

Ladner’s Theorem, 1974 41

Theorem (P ̸= NP)
There are intermediate problems in NP.

The proof is similar in spirit to the Friedberg/Mučnik construction and
uses requirements. As in CRT, it produces an entirely artificial example
of an intermediate problem.

Since separating P from NP is probably rather difficult, it currently looks
quite hopeless to find natural examples.

Battleplan 42

Assume a repetitive enumeration (Me) of all deterministic polynomial
time Turing machines as usual, say, clocked at |x|e + e.

Also assume that we are given an enumeration (fe) of all polynomial
time computable functions.

We want to construct a set A in NP subject to the following constraints:

(Re) A ̸= L(Me) insure A /∈ P

(Se) for some φ: SAT(φ) ̸= A(fe(φ)) insure SAT ̸≤p
m A

Watering Down SAT 43

We are going to thin out SAT by imposing an additional condition on
yes-instances, using a mystery function g:

A = { φ ∈ SAT | g(|φ|) is even }

The magic function g is arithmetical and, on the face of it, makes no
sense. Note that if g is polynomial time computable, then A is in NP: we
can guess-and-verify that φ is satisfiable, and then check that g(|φ|) is
indeed even (this part requires no nondeterminism).

This assumes some fixed encoding of Boolean formulae as binary strings.
There are lots of possibilities, lets say we write the formula in prefix form
and write variables as x01101 (x ultimately needs to be coded in binary).

Construction 44

As one might expect, there is no nice explicit definition on g, we have to
define the function in stages. Initially set g(0) = g(1) = 2.

Defining g(m+1):

If (log m)g(m) ≥ m we bail out: g(m + 1) = g(m).

log m is the length of the input to g, so we are trying to avoid some
polynomial increase in the length to be too large.

We cannot get stuck in this mode: the LHS increases logarithmically, but
the RHS increases linearly; we must ultimately reach a sufficiently large
m such that the condition fails and we take further action.

Construction II 45

Otherwise consider the following two cases, depending on parity (so we
can work on both kinds of requirements).

Search for a formula φ such that |φ| ≤ log m such that

g(m) = 2e Me(φ) ̸= A(φ)

g(m) = 2e+1 SAT(φ) ̸= A(fe(φ))

Define the next value of g as follows:

g(m + 1) =
{

g(m) + 1 if φ exists
g(m) otherwise.

Observations 46

g is non-decreasing: g(m + 1) = g(m) + 0/1.

If g is unbounded, then all the requirements are satisfied.

If g is bounded, it must be ultimately constant.

So if g is unbounded, we are done: we must have found the formula φ as
in the construction infinitely often. Also, we change the parity of g(m) at
every increase, so all the requirements must be satisfied. Thus, we have
constructed an intermediate set in NP.

Bounded Case 47

Case 1: g is ultimately even.

Then A is SAT minus finitely many instances.

But A is also polynomial time from the even case of the construction,
contradicting our assumption P ̸= NP.

Case 2: g is ultimately odd.

Then A is finite.

From the odd case of the construction, SAT reduces to A. Again,
P = NP, contradicting our assumption.

Recap 48

In CRT, we can prove that there are semidecidable sets ∅ <T A <T ∅′.
There are many natural examples at level ∅ and level ∅′, but all known
intermediate ones are utterly artificial.

Assuming P ̸= NP, we can construct intermediate problems in NP. And
again, these are not natural the way polynomial time and NP-complete
problems are.

This may just be the nature of the beast.

1 Intermediate Problems

2 Intermediate in NP

3 Sparse Languages

Thinning Out SAT 50

Ladner’s theorem can be interpreted as saying that if we remove a
sufficiently large (but not too large) part of SAT, we are left with an
intermediate set, assuming P ̸= NP.

One might wonder if there are other ways to cut down on complexity.

Definition
A language L ⊆ Σ⋆ is sparse if there is some polynomial p such that
|L ∩ Σn| ≤ p(n).

In general we only have an exponential bound |L ∩ Σn| ≤ |Σ|n.

Examples 51

Example
a⋆b⋆a⋆ is sparse.

Example
VC is not sparse.

Example
All tally languages L ⊆ {a}⋆ are sparse.

Example
Figure out when a regular language is sparse (depending on, say, the
minimal DFA).

Exceptions 52

Sparse sets are interesting in that we could use them to weaken
performance guarantees.

Say, we have a pretty good algorithm A for SAT. It would be nice if the
sets of inputs where A messes up (correctness or running time) were
sparse:

{ x | A(x) is slow }

{ x | A(x) is wrong }

Alas, that seems unlikely: sparse sets are not that complicated.

Ordering Truth Assignments 53

Think of strings in 2≤m as partial truth assignments to m Boolean
variables.

2≤m is the complete binary tree of depth m, and we will say that σ is to
the left of τ , in symbols σ ⪯ τ , if τ is a prefix of σ, or σ lies in a branch
to the left of τ .

For example, 011100 ⪯ 0111 and 011011 ⪯ 0111.

Also 0m ⪯ τ ⪯ 1m for all τ ∈ 2m.

Mahaney’s Theorem, 1982 54

Theorem (P ̸= NP)
There are no sparse NP-complete languages.

Proof.
Consider the following version of SAT. Assume φ is a Boolean formula
with m variables.

SAT0 = { φ#τ | τ ∈ 2≤m, ∃ σ ∈ 2m (σ ⪯ τ ∧ σ(φ) = 1) }

We will call the partial assignment τ a hint: we are looking for a
satisfying truth assignment to the left of τ .

Note that φ ∈ SAT ⇐⇒ φ#1m ∈ SAT0, so this version is also hard.

But intuitively, it might be easier to check φ#τ than performing a direct
satisfiability test: there are fewer assignments involved.

This is certainly true for τ = 0m.

Now assume there is a sparse set S so that SAT0 ≤p
m S via a map f .

Since f is polynomial time, there is some polynomial p such that
|f(x)| ≤ p(|x|). On inputs of size n, the reduction can only reach at
most q(n) points in S where

q(n) ≥ |S ∩ Σ≤p(n)|

But S is sparse, so q is another polynomial.

We are going to construct a polynomial time test for SAT0 by
constructing a polynomially small tree of hints τ ∈ 2≤m.

Initially, W = {ε}.

We proceed in m rounds; in each round we extend our current hints by
one more bit. So in the end we will have constructed a few truth
assignments.

Informally, in each round, we start with all possible extensions W · 2. We
then prune the hints until the cardinality drops down to q(n).

The critical part is that pruning must not destroy suitable hints, if they
exist at all.

set W = {ε}

foreach k = 1, . . . , m do

set W = W · 2

if τ1 ≺ τ2 ∈ W and f(φ#τ1) = f(φ#τ2)
then delete τ2

while |W | > q(n)
delete ≺-minimal hint

check all remaining hints

Note that this computation is polynomial time by brute force: at any
point during the execution, |W | ≤ 2q(n).

We have to make sure we are not deleting all hints that are a prefix of a
satisfying assignment (if any).

If w1 ≺ w2 ∈ W and f(φ#w1) = f(φ#w2), deleting w2 cannot destroy
a critical hint: w1 must also be a prefix of a satisfying assignment.

If |W | > q(n), then at least one hint in W maps to S under f . Hence at
least one prefix does not extend to a satisfying assignment. But then the
least one does not, either.

But then checking W ⊆ 2m provides the correct answer: if there is a
satisfying assignment, then the minimal one will survive pruning. If not,
our checks all come out false.

2

	Intermediate Problems
	Intermediate in NP
	Sparse Languages

