
UCT

Space Bounds

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Space

2 Space Classes

3 Nondeterministic Space

4 The Zoo

Where Are We? 2

Based on time complexity and the fundamental idea of nondeterminism, one of
the key area in the vicinity of “easily decidable” looks like this:

SAT

∅

NP

A

Ladner’s theorem provides the intermediate A, assuming P ̸= NP.

1950s 3

context sensitive

regular

context free

decidable

a∗b∗

aibi

aibici

theory of R

...

semidecidable∅′

Before modern complexity theory, there was Chomsky’s hierarchy, motivated by
linguistics rather than effective computation.

A Nuisance 4

Take regular languages and finite state machines, one of the great success
stories of computer science.

What is the complexity of a regular language?

Certainly linear time, but that description misses the boat: the key here is that
finite state machines are memory-less. We currently don’t have a good way of
describing this scenario.

How About Space? 5

Both from the theory perspective (Blum’s idea of an abstract complexity
measure) and practical considerations, arguably the second most important
complexity measure besides time is space—the memory required to carry out a
computation.

Space is a tighter bound than Time.

Space, unlike Time, can be reused.

In the RealWorldTM, space is much less forgiving than time.

Recall: Transducer 6

M

10100
input tape

work tape

aba acab a

0111

output tape

Measuring Work Space 7

We are using an off-line machine: there is a separate, read-only, two-way
input tape. So the input can be read repeatedly (but we cannot mark it
any way).

The machine also has a separate write-only output tape. For acceptors it
is more convenient to use special states instead.

The work tape is read/write in the usual manner. The space complexity is
measured exclusively in terms of the work tape.

In other words, we do not hold the poor Turing machine responsible for input
or output size.

Space Complexity 8

More precisely, let (Ci)i<N be the computation of TM M on input x. Write
spc(C) for the number of tape cells used on the work tape in configuration C.
Then the space complexity of M on x is defined as

SM(x) = max
(

spc(Ci) | 0 ≤ i < N
)

In other words, we consider the largest configuration that appears during the
computation. This makes perfect sense, it does not help much if most of the
computation requires little space, but there is a brief phase where memory goes
way up.

As usual, quietly assume SM(x) = ∞ if the computation diverges and uses
arbitrarily large configurations. But note: a computation can diverge and have
limited space complexity.

White and Gray Blanks 9

One way of avoiding the search for the maximum tape use is to modify the
definition of our Turing machines slightly: orginally the work tape is filled with
white blank symbols (recall that the input is separate).

Once the machine gets going, it never writes a white blank, only other tape
symbols and gray blanks. So in the end we can simply count the ordinary
symbols plus the gray blanks on the tape (which necessarily form a contiguous
block).

In other words, we cannot cheat by using a huge amount of memory at some
point, and then just erasing everything with white blanks.

Worst Case Space Complexity 10

As before with time, we focus on all instances of size n rather than individual
ones.

SM(n) = max
(

SM(x) | x has size n
)

Again, this is worst case, average case space complexity can be defined
similarly. As it turns out, average time complexity is very interesting, but
average space complexity is less so (consider quick sort).

This is really a topic for an algorithms course.

Same Old? 11

Question: What are the similarities/differences between space
and time complexity?

Here is a difference: a divergent computation obviously requires an unbounded
amount of time. But a divergent computation may well only use bounded
amount of space: the computation may be caught in a loop

Note that a loop cannot be too long: there are only exponentially many
configurations (of a Turing machine) with a given space bound.

Loop Monitors 12

Unlike Halting, looping is decidable: given an arbitrary Turing Machine M, we
can construct a new machine M′ that

simulates M, and
keeps track of the history of the computation.

Say, we keep track of the history (all previous configurations) on an extra tape.
Then we can easily check whether M has entered a loop.

Exercise
How much of a slow-down would this simulation cause?
How does the space complexity change?

1 Space

2 Space Classes

3 Nondeterministic Space

4 The Zoo

Space Complexity Classes 14

Definition
Let f : N → N be a function.

SPACE(f) = { L(M) | M a TM, SM(n) = O(f(n)) }

A (deterministic) space complexity class is a class

SPACE(F) =
⋃

f∈F

SPACE(f).

for some collection of functions F .

Again, as in the time complexity case, one needs to be a bit careful with
technical details.

Space Constructibility 15

In this case, the critical condition is the following: a function s : N → N is
space constructible if there is a Turing machine that runs in O(s(n)) space
and, for any input of size n, writes s(n) on the tape as output (in binary).

Any function one encounters in the wild is indeed space constructible.

Without this assumption one has to jump through extra hoops in certain
proofs, or the arguments may fail altogether. For example, one may have to try
out possible values for s(n) until we find one that works.

Some Important Classes 16

Here are some typical examples for deterministic space complexity classes.

SPACE(1), constant space.

SPACE(log n), logarithmic space.

SPACE(n), linear space.

PSPACE = SPACE(poly), polynomial space.

Note that unlike with polynomial time, polynomial space is really a step to too
far, even if we assume that the polynomials involved are low degree for real
problems: a cubic memory requirement would mean a megabyte of input turns
into an exabyte.

Linear or slightly superlinear space is a much more reasonable constraint for
feasible computation.

How Small Can It Get? 17

Recall that we assume that a Turing machine reads all its input, so for time
complexity we have n ≤ TM(n).

Clearly, the analogous restriction n ≤ SM(n) would be totally inappropriate, it
makes perfect sense to talk about sub-linear space complexities.

In fact, even constant space complexity makes sense.

Lemma
SPACE(1) is the class of regular languages.

Proof 18

Consider a Turing machine that uses space ≤ c and uses accept/reject states
(rather than output).

We can remove the work tape by encoding its information in state: there are
only [c] × Σc possible tape inscriptions and head positions and we think of
them as being part of the machine state.

The resulting machine is finite state, but the input tape is two-way. We can
invoke a classical theorem from the Rabin/Scott 1959 paper that shows that
there is an equivalent one-way finite state machine (and the proof is
constructive).

2

A Little Exercise 19

Suppose a directed graph is represented by its adjacency list, written out as a
string:

a11|a12| . . . |a1d1 # a21|a22| . . . |a2d2 # . . . # an1|an2| . . . |andn

where, say, Σ = {0, 1, |, # } and the aij ∈ 2⋆ represent numbers in [n] written
in binary, padded to uniform length k.

Each adjacency list # ai1|ai2| . . . |aidi contains up to n − 1 k-bit blocks,
separated by |. The size of the input is essentially k

∑
(di + 1) = O(log n n2).

Exercise
Find a “natural” graph problem that is in

linear space
logarithmic space
doubly logarithmic space

Falling off a Cliff 20

The last example is already a bit contrived. Certainly it is not at all clear how
to come up with a log log log n algorithm, never mind log4 n or some such.

As mentioned, SPACE(1) is the class of regular languages.

Innocent question: is there anything between log log n and 1?

Theorem (Hartmanis, Lewis, Stearns, 1965)
Let f(n) = o(log log n). Then SPACE(f) is the same as constant space.

Note the little-oh, there are non-regular languages recognizable in space
log log n.

Proof Sketch 21

Suppose M accepts some non-regular language in space f . For every k ≥ 0,
there must be some input that requires at least k space. Hence we can define
an unbounded sequence of numbers

ℓk = min
(

ℓ | ∃ x ∈ Σℓ(M uses ≥ k space on x)
)

Let xk ∈ Σ⋆, |x| = ℓk, be a corresponding witness.

We use crossing sequences:† when the input head moves between positions i
and i + 1, record the configuration of the machine in a crossing sequence Xi.

†You may have seen these in the proof that 2-way DFA are no more powerful than 1-way DFA,
or in the argument that a 1-tape TM requires quadratic time to recognize palindromes.

Contd 22

The number of all possible configurations of M in input xk is bounded by
2cf(ℓk) + log n, where c is some constant: the state plus work tape part, plus
the position of the read head. We’ll get rid of the latter.

Since f(n) ∈ o(log log n), for k sufficiently large, the number of configurations
of M on input xk is o(log ℓk). The entries in a single crossing sequence must
be distinct, otherwise we are stuck in a loop. So we have o(ℓk) distinct possible
sequences (really, crossing sets).

On the other hand, the number of crossing sequences is ℓk and we must have
Xi = Xj for some i ̸= j.

But then we can do surgery on the witness xk to produce a shorter word that
already requires f(ℓk) space, contradicting the minimality of the witness.

2

Space vs. time 23

it is clear from the definitions that time is more constrained than space:

TIME(f) ⊆ SPACE(f)

There is a better result due to Hopcroft et al., but that requires more work.

For a bound going in the opposite direction, we can count the number of
instantaneous descriptions of a Turing machine of given space complexity to
obtain a bound on the length of any accepting computation of such a machine.

Theorem
Let f(n) ≥ log n. Then

SPACE(f) ⊆ TIME(2O(f(n)))

Computation Graphs 24

Here is a simple tool that is often useful: given a Turing machine M
(deterministic or nondeterministic), define the computation graph C(M) as
follows:

vertices are all configurations of M,

there is an edge (C, C′) if the machine can go from C to C′ in one step.

Usually we are only interested in the subgraph C(M, x), for some input x: the
part of C(M) accessible from the initial configuration C init

x .

The size of the nodes in C(M, x) is O(s(|x|)) where s(n) ≥ log n is the space
complexity of M (we can ignore larger nodes as far as acceptance goes; we
could also use strong complexity).

Computation Trees 25

For deterministic machines, C(M, x) is boring, but for nondeterministic ones
we get branching.

On occasion it is preferable to think of the computations of a Turing machine
as describing a tree: C′ is a child of C if the machine can move from C to C′

in one step. Technically, in order to ensure a tree structure, we need to
distinguish between nodes on different branches. For example, we could use
finite sequences of configurations

Cx, C1, C2, . . . , Ck−1, Ck

as nodes, rather than just configurations: we keep track of the history of the
computation.

This is really a general method in graph theory, we can unfold a digraph into a
tree (which may well be infinite if there are cycles).

Proof of Theorem 26

We need to show that SPACE(f) ⊆ TIME(2O(f(n))).

So let M be any space f Turing machine and x an input of size n.

The nodes in the computation graph C(M, x) have size O(f(n)) since
f(n) ≥ log n, so the size of the graph is at most O(2c f(n)) and it can be
constructed in the this amount of time.

But then we can simply run a linear time reachability test like DFS to check for
an eccepting configuration in the graph.

2

Recall: Time Hierarchy Theorems 27

It is intuitively clear that TIME(f) will be larger than TIME(g) provided that f
is sufficiently much “larger” than g. Since the simulation requires a bit of time,
one has to be a bit careful with technical details in a time hierarchy theorem.

Theorem (Hartmanis, Stearns 1965)
Let f be time constructible, g(n) = o(f(n)).
Then TIME(g(n)) ⊊ TIME(f(n) log f(n)).

And Space? 28

As the example of log-log space bounds shows, we need to be careful.

In the following, we assume that time/space functions are always reasonable
(say, time-constructible and space-constructible).

Remember Poincaré: don’t insult the fathers (insulting mothers was
presumably OK around 1900).

Also, on occasion it will be helpful to assume that the functions in question are
not too small, something along the lines of f(n) ≥ log n.

We’ll just call these functions reasonable.

Space Hierarchy 29

The analogous result for space is actually a bit easier to state.

Theorem (Hartmanis, Lewis, Stearns 1965)
Let f, g be reasonable, g(n) = o(f(n)).

Then SPACE(g(n)) ⊊ SPACE(f(n)).

As with time complexity, these results are proved by diagonalization and do not
produce natural examples of hard problems.

Given a concrete combinatorial problem it is usually very, very hard to find a
lower bound for its concrete space complexity, we have to make do with
hardness results, just as for time complexity.

Proof 30

There is a universal Turing machine U that has space complexity f(n) and
simulates all g(n)-space machines Me in the sense that there is a constant ce

such that for n = |x|:

U(e#x) uses space ce · g(n),

U(e#x) = Me(x) ∈ 2 provided that ce · g(n) ≤ f(n),

U(e#x) aborts if ce · g(n) > f(n).

Note that ce cannot be avoided, the simulated machine may have a larger tape
alphabet.

So U has space complexity f by brute force. This is completely analogous to
using a clock to enforce time complexity; this time, we take scissors and cut off
a length of tape.

Contd 31

Now consider a new machine M such that

M(e#x) = 1 − U(e#e#x) = 1 − Me(e#x)

So we flip the output bit if there is one, and abort otherwise. Note that U
simulates Me on input e#x, the usual diagonalization mumbo-jumbo.

Then M also has space complexity f(n), but M(e#x) disagrees with
Me(e#x) for all sufficiently large x by the very definition of M.

Thus M is not in SPACE(g), as required.
2

1 Space

2 Space Classes

3 Nondeterministic Space

4 The Zoo

Nondeterministic Machines 33

Space complexity also makes sense for nondeterministic machines: pick the
(accepting) branch that requires the least memory.

This is directly analogous to our definition of nondeterministic time complexity.

Nondeterministic Space 34

We can handle space complexity SM(x) in a similar manner:

SM(x) = min
(

spc(β) | β accepting branch in Tx

)
Here Tx is the computation tree of the machine on input x, and spc(β) stands
for the largest amount of memory used along branch β. Note that this does
not necessarily mean the the branch shorter than all others.

Similarly define SM(n) in the usual worst-case manner. We will not be
concerned with average-case space complexity here.

Weak versus Strong 35

One might object that from an algorithms point of view our definition is a bit
weak: arguably we would prefer a bound on all branches, not just on the
accepting ones. One should not distinguish between Yes and No instances
when it comes to resource bound.

This alternative notion is called strong space complexity. Similarly we could use
strong time complexity.

All true, but most papers in complexity theory use the weak model rather than
the strong: the difference only comes into play when dealing with low classes,
otherwise we can clean up the machines to make them behave properly. And
weak is easier to deal with than strong.

Trade-Offs 36

Note that one can sometimes trade space for time: a computation can be made
to use less memory by re-computing values rather than storing them. Floyd’s
cycle detection algorithm is a nice example.

Memoizing is a trick that goes in the opposite direction: avoid recomputation
at a cost of an additional hash table.

Or space measure ignores these issues, we go for the least memory-intensive
branch, no matter how long the computation is. Obviously, it would be of
interest to combine both measures.

Nondeterministic Complexity Classes 37

We can now lift the definitions of deterministic space complexity classes to
nondeterministic ones.

Definition
Let f : N → N be a (reasonable) function.

NSPACE(f) = { L(M) | M a nondeterministic TM, SM(n) = O(f(n)) }

As before, this generalizes easily to NSPACE(F) for some class of functions F .

As usual, this is for acceptors (decision problems) only, we don’t yet know how
to handle nondeterministic transducers. In fact, it’s difficult: think about
computing a function on a nondeterministic machine. There is a major clash
between nondeterminism and single-valuedness.

Some Results 38

From the definitions

TIME(f) ⊆ NTIME(f) ⊆ NSPACE(f)

SPACE(f) ⊆ NSPACE(f)

More interesting is the question how much deterministic time/space is required
to capture a nondeterministic class. Using standard ideas from deterministic
simulation, we can show the following.

Theorem
Assume that log n ≤ g(n). Then

NTIME(f) ⊆ SPACE(f)

NSPACE(g) ⊆ TIME(2O(g))

Savitch’s Theorem 39

Theorem (Savitch 1970)
Assume that log n ≤ g(n). Then

NSPACE(g(n)) ⊆ SPACE(g(n)2).

Sketch of proof.
This is again deterministic simulation, but keeping an eye on space
requirements.

The trick is to use a divide-and-conquer approach: a computation of length t is
broken up into two subcomputations of length t/2.

Since the target is a space class and space, unlike time, can be reused, one can
show that the divide-and-conquer algorithm requires no more than g(n)2 space.

Savitch Proof 40

Let L be in NSPACE(g(n)). Suppose M is a non-deterministic Turing
machine that accepts L and has space complexity O(g(n)). Let x be an input
of length n.

Clearly we are dealing with yet another path-existence problem in the
computation graph of C(M, x). This time we will use a recursive algorithm to
check for paths.

Define a reachability predicate that bounds the number of steps to get from
one configuration to the other (uniformly in n). Here C1, C2 are configurations
of M of size at most c g(n).

reach(C1, C2, k) ⇐⇒ ∃ s ≤ 2k
(
C1 ⊢s

M C2
)

Proof Contd 41

Note that x ∈ L iff reach(C init
x , Chalt

Y , O(g(n))), so to test membership in L we
only need to compute the reach relation.

Claim
reach(C1, C2, 0) iff C1 = C2 or C1 ⊢1

M C2.
reach(C1, C2, k + 1) iff ∃ C

(
reach(C1, C, k) ∧ reach(C, C2, k)

)
.

The claim is obvious from the definition, but note that it provides a recursive
definition of reach.

Also observe that the recursion involves an exponential search for the
intermediate configuration C.

Implementing the Recursion 42

Implementing a recursion requires memory, typically a recursion stack: we have
to keep track of pending calls and the required memory information.

In this case the recursion stack will have depth O(g(n)): the length of a
computation is bounded by 2O(g(n)).

Each stack frame requires space O(g(n)) for the configurations.

The search for C can also be handled in O(g(n)) space.

Thus the total space complexity of the algorithm is O(g2(n)): stack size times
frame size.

2

1 Space

2 Space Classes

3 Nondeterministic Space

4 The Zoo

Some Classes 44

SPACE(1), constant space, regular languages

L = SPACE(log), logarithmic space

NL = NSPACE(log), nondeterministic logarithmic space

P = TIME(poly), polynomial time

NP = NTIME(poly), nondeterministic polynomial time

SPACE(n), linear space

NSPACE(n), nondeterministic linear space

PSPACE = SPACE(poly), polynomial space

Classical stuff: CFL, CSL, primitive recursive, decidable, semidecidable.

The Chain 45

Theorem
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE.

Proof.
The sticky points are

NL ⊆ P: see next slide

NP ⊆ PSPACE: search for all witnesses

PSPACE = NPSPACE: Savitch’s theorem

Proof 46

To show that NL ⊆ P, suppose we have a logarithmic space acceptor M.

The nodes in the computation graph C(M, x) can be specified in O(log n) bits:
the input head position requires log n, and the rest of the configuration is
O(log n).

Hence the size of the graph is polynomial in n. Moreover, we can construct the
graph in polynomial time (say, write down the adjacency lists).

But M accepts x iff there is a path in C(M, x) from C init
x to Chalt

Y . We can use
any standard graph reachability algorithm to check this.

2

Separation 47

The time and space hierarchy results of Hartmanis, Lewis and Stearns (from
1965, no less) give us some rather weak separation results:

Theorem
L ̸= PSPACE and P ̸= EXP1.

Surprisingly, that’s it for separation results: nothing else is known at this point.

At the core of all these results is old-fashioned diagonalization: a naysayer
might kvetch that nothing has happened since Cantor (well, let’s say, since
Turing).

That would be grossly unfair; to name just one example, MIP⋆ = RE is truly
mindboggling.

Oracles and Relativization 48

Alas, it is not so easy to come up with other promising approaches to
separation. Annoyingly, it seems that entirely new ideas are needed, there is
little hope to transfer known methods from CRT.

One reason is that CRT seems invariant under oracles: all the basic results of
the classical theory carry over very nicely and with essentially zero effort to a
situation where oracles are allowed (Turing’s genius at work, again).

The classical theory really is nothing but the study of {e}∅.

This means that for every theorem in classical computability theory there is a
relativized version that uses an oracle. In particular all arguments involving
diagonalization carry over to the oracle world.

Oracle Classes 49

By fixing a particular oracle A ⊆ Σ⋆ and attaching it to all machines in a
certain class we can relativize the class.

For example, PA is the collection of all decision problems decidable by a
polynomial time Turing machine with oracle A.

Clearly, PA = P whenever A ∈ P, but for “smarter” oracles we get more
interesting problems.

Exercise
What would PSAT look like†?

†This is perfectly practical and historically accurate, just think of the oracle as being given by a
state-of-the-art SAT solver. What can you do with it?

Oracles Are Monsters 50

Theorem (Baker, Gill, Solovay 1975)
There is an oracle A for which PA = NPA.
There is an oracle B for which PB ̸= NPB .

In conjunction with the relativization claim from above, this means that
standard techniques from computability theory are not going to help to resolve
the P = NP question: all these arguments are invariant under oracles.

New tools are needed, and to-date it is not really clear which line of attack
might ultimately succeed in separating the classes. Not to mention that a
group of researchers think that the answer really is P = NP.

Proof Sketch 51

For the identity PA = NPA, we can use a padded version of halting:

A = { e#x#0n | Me accepts x in at most 2n steps }

This is a padded version of the Halting set for plain exponential computations.
With this oracle it is not too hard to check that

PA = NPA = EXP1

The oracle “absorbs” the potential advantages of nondeterministic
computation.

Incidentally, we could also use a PSPACE-complete oracle (say, quantified
Boolean formulae).

Proof Sketch II 52

To obtain PB ̸= NPB , first define the length set of B ⊆ Σ⋆ as

LB = { 0|x| | x ∈ B } ⊆ 0⋆

and note that the tally language LB is in NPB .

Hence it suffices to construct B such that LB /∈ PB .

This time, we won’t be able to give an explicit definition of B, instead we
resort to our standard trick: B is constructed in stages. We need the usual
enumeration of Turing machines (Me) that return 0/1 outputs (we will clock
them later).

Initially, B0 = ∅. At each stage σ, we will put some strings into B, or block
them from ever entering B. As usual, Bσ always determines only finitely many
strings, the whole construction is effective.

Stage σ 53

Let n = max
(

|x| | x determined by B<σ

)
+ 1.

Run MB<σ
σ (0n) for 2n/42 steps†. This is not a typo, we are doing more than

just destroy polynomial time computations.

Here we assume that oracle queries z ∈ B<σ? are handled as follows:

If the membership status of z has been settled, return the correct answer.
Otherwise, answer No, and block z from entering B.

Now if MB<σ
σ (0n) accepts, then block all strings in 2n from B.

Otherwise, pick a free string z ∈ 2n and place it in Bσ, block the rest. This
string is guaranteed to exist, right?

2

†Ponder deeply: why 42?

Immerman’s Zoo 54

	Space
	Space Classes
	Nondeterministic Space
	The Zoo

