
UCT

More on Space

Klaus Sutner
Carnegie Mellon University
Spring 2024

1 Small Space

2 Crash Course: Grammars

3 Properties of CFLs

Where Are We? 2

SPACE(1), constant space,

L = SPACE(log), logarithmic space,

NL = NSPACE(log), nondeterministic logarithmic space,

P = TIME(poly), polynomial time,

NP = NTIME(poly), nondeterministic polynomial time,

SPACE(n), linear space,

NSPACE(n), nondeterministic linear space,

PSPACE = SPACE(poly), polynomial space.

All the old stuff: regular, CFL, CSL, primitive recursive, decidable,
semidecidable.

Immerman’s Zoo 3

Recall: Computation Graphs 4

Lemma
L ⊆ NL ⊆ P, but no separation known.

The proof uses the computation graph C(M, x): the graph has
polynomial size, so we can use any vanilla graph reachability algorithm to
check acceptance.

Same Old 5

So this is really our old friend

Problem: Graph Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there a path from s to t in G ?

Clearly, Reachability is in deterministic linear time and space: any
standard graph exploration algorithm such as DFS and BFS works just
fine.

Question: Can we squeeze the space requirement?

Prototype Reachability Algorithm 6

In all standard algorithms, we build the set R ⊆ V of vertices reachable
from s in G in stages.

Let’s say uv ∈ E requires attention if u ∈ R but v /∈ R.

// vanilla reachability
R = {s};
while some edge uv ∈ E requires attention do

add v to R;
return R;

DFS and BFS are both instances of this strategy. Alas, these algorithms
require linear space: we have to keep track of R.

How About Logarithmic Space? 7

Any algorithm using logarithmic space cannot in general keep track of
the set of all reachable vertices, so this seems tricky.
It works, though, if we allow nondeterminism. Let n = |V |.

// path guessing
ℓ = 0
x = s
while ℓ < n − 1 do

if x = t then return Yes
guess an edge xy ∈ E
ℓ++
x = y

return No

We will have more to say about this bizarre method in a while.

Works! 8

This “algorithm” works in the usual nondeterministic way:

If there is a path s to t, then, making the right guesses, the algo-
rithm can return Yes.

If there is no path, then the algorithm always returns No.

So, the symmetry between true and false is broken; there may be false
negatives, but there can never by false positives.

We already know that this is a good idea from NP, and even in the world
of practical algorithms: nondeterministic finite state machines work that
way (and are often superior to their deterministic counterparts).

2-Unsatisfiability 9

2-UNSAT is the problem of determining whether a 2-CNF formula fails to
be satisfiable.

This problem is in P: consider the graph on all literals with edges x � y
and y � x for any clause {x, y}. The formula fails to be satisfiable iff
there is a path x⇝ x⇝ x for some variable x. Of course, for P we have
true/false symmetry, so this is underwhelming.

Much more interesting is the following observation, based on path
guessing:

2-UNSAT is in NL

Non-Reachability 10

Since symmetry is broken, how about the opposite problem: target t is
not reachable from source s?

Problem: Graph Non-Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there no path from s to t?

Note that for this version nondeterminism seems totally useless: what
exactly would we guess? A non-path? A proof?? A unicorn???

It is a major surprise that Non-Reachability can also be handled in
nondeterministic logarithmic space, though the logical complexity of the
algorithm is substantially higher. More later.

Guess & Verify 11

For those who prefer the polynomial projection definition of NP, one can
define NL in a similar manner. To wit, A ∈ NL iff there is a
deterministic log-space Turing machine M that accepts a marked
language L and a polynomial p such that

x ∈ A ⇐⇒ ∃ w ∈ Σp(|x|) (
w#x ∈ L

)
BUT:, there is strange constraint: the witness is given to M on a
separate, read-once input tape (just like a one-way finite state machine).

Exercise
Figure out why the read-once condition is necessary.

The Right Reduction 12

As usual, to deal with classes L and NL we need a suitable notion of
reduction: sufficiently fine-grained and compatible.

We have already encountered the right choice: logarithmic space works,
it entails polynomial time, but there is no reason why a polynomial time
computation should require only logarithmic space in general (just think
about depth-first-search).

As always, the underlying machine model separates input/output tapes
from the work tape.

Recall: Log-Space Reductions 13

Definition
Language A is log-space reducible to B if there is a function
f : Σ⋆ → Σ⋆ that is computable by a log-space Turing machine such
that

x ∈ A ⇐⇒ f(x) ∈ B

We will write A ≤l B.

As already pointed out, many of the polynomial time reductions showing
NP-hardness are in fact log-space reductions. For example, SAT is
NP-complete with respect to log-space reductions.

Key Properties 14

Lemma
A ≤l B implies A ≤p

m B.

≤l is a pre-order (reflexive and transitive).

Proof.
The first part is clear: the log-space reduction can be computed in time
O(2c log n) = O(nc).

Reflexivity is trivial, as always.

Transitivity 15

This is more problematic: one cannot simply combine two log-space
transducers by identifying the output tape of the first machine with the
input tape of the second machine: this space would count towards the
work space and may be too large.

Therefore we do not compute the whole output†, rather we keep a
pointer to the current position of the input head of the second machine.

Whenever the head moves, we compute the corresponding symbol from
scratch using the first machine. The pointer needs only
log(nc) = O(log n) bits. For this it is critical that we have a two-way
input tape.

2

†Recall the previous discourse on trade-offs between time and space: recomputa-
tion can save space at the cost of more time.

Closure under Log-Space Reductions 16

The following lemma shows that space complexity classes are closed
under log-space reductions (under some mild technical conditions).

Lemma
Let A ≤l B via a log-space reduction f : Σ⋆ → Σ⋆ and |f(x)| ≤ ℓ(|x|) a
polynomial bound on the output length.
Then B ∈ SPACE(s(n)) implies A ∈ SPACE(s(ℓ(n)) + log n).
The same holds for non-deterministic space.

Again, one cannot use the same argument as for ≤p
m and time classes

since f may inflate the length of its input.

Proof 17

Therefore we use the same trick as in the transitivity lemma.

Let M be an acceptor for B in s(n) space, with separate input tape.
Here is an algorithm to test whether x ∈ A:

Instead of writing y = f(x) on the input tape, we compute y symbol by
symbol and input the symbols directly to M, according to the movements
of its input head. We keep track of the position of the current symbol.

Now |y| ≤ ℓ(|x|), hence M will use no more than s(ℓ(|x|)) space on its
worktape.

Together with the position pointer, the total space requirement is
O((ℓ(n)) + log n).

2

Compatibility 18

Lemma
If B is in L and A ≤l B then A is also in L.

If B is in NL and A ≤l B then A is also in NL.

Proof.
Again, we cannot simply compute y = f(x) in log-space and then use the
log-space algorithm for B.

Instead we recompute every symbol yi on demand, just like above. We
are essentially trading time for space.

The nondeterministic case is entirely similar.
2

Hardness and Completeness 19

Definition
B is NL-hard if for all A in NL: A ≤l B.
B is NL-complete if B is in NL and is also NL-hard.

As before with NP and PSPACE, the key is to produce natural
examples of NL-complete problems.

Ideally these problems should have been studied before anyone even
thought about NL.

Reachability 20

Theorem
Graph Reachability is NL-complete (wrt log-space reductions).

Proof.
Suppose we have a nondeterministic log-space machine M and some
input x.

The computation graph C(M, x) has nodes of size 2c log n (and thus
polynomial size).

The construction of C(M, x) can be carried out in logarithmic space: we
can write down the adjacency matrix using just a handful of counters.

But then acceptance of M translates into a graph reachability problem in
C(M, x), as usual.

2

1 Small Space

2 Crash Course: Grammars

3 Properties of CFLs

RealWorld 22

Inspecting actual algorithms, it seems that

constant space
logarithmic space
linear space

are far and away the most important space complexity classes.

Corresponding roughly to: no dynamic memory; only pointers to the
input; data structure of size similar to the input.

Perhaps surprisingly, nondeterministic linear space is also quite natural.
To see why, let’s take a quick detour and talk a little bit about the
old-fashioned complexity theory from the 1950s.

Generation vs. Recognition 23

Turing machines can be used to check membership in decidable sets.
They can also be used to enumerate semidecidable sets, whence the
classical notion of recursively enumerable sets.

For languages L ⊆ Σ⋆ there is a similar notion of generation.

The idea is to set up a system of simple rules that can be used to derive
all words in a particular formal language. These systems are typically
highly nondeterministic and it is not clear how to find (efficient)
recognition algorithms for the corresponding languages.

Noam Chomsky 24

Historically, these ideas go back to work by Chomsky in the 1950s.
Chomsky was mostly interested natural languages: the goal is to develop
grammars that differentiate between grammatical and and
ungrammatical sentences.

1. The cat sat on the mat.

2. The mat on the sat cat.

Alas, this turns out to be inordinately difficult, syntax and semantics of
natural languages are closely connected and very complicated.

But for artificial languages such as programming languages, Chomsky’s
approach turned out be perfectly suited.

Cat-Mat Example 25

Determiner

The

Noun

cat

Noun Phrase

Verb

sat Preposition

on Determiner

the

Noun

mat

Noun Phrase

Prepositional Phrase

Verb Phrase Punctuation

.

Sentence

Mat-Cat Example 26

Determiner

The

Noun

mat

Noun Phrase

Preposition

on Determiner

the

Adjective

sat

Noun

cat

Noun Phrase

Prepositional Phrase Punctuation

.

Noun Phrase

Killer App: Programming Languages 27

Many programming languages have a block structure like so:

begin
begin
end
begin

begin
end
begin
end

end
end

What is a good description of such structures, and how do we build
appropriate algorithms?

Grammars 28

Definition
A (formal) grammar is a quadruple

G = ⟨V, Σ, P, S⟩

where V and Σ are disjoint alphabets, S ∈ V , and P is a finite set of
productions or rules.

the symbols of V are (syntactic) variables,

the symbols of Σ are terminals,

S is called the start symbol (or axiom).

We often write Γ = V ∪ Σ for the complete alphabet of G. Then P is a
finite subset of Γ ⋆ × Γ ⋆.

Preserving Sanity 29

A, B, C . . . represent elements of V ,

S ∈ V is the start symbol,

a, b, c . . . represent elements of Σ,

w, x, y . . . represent elements of Σ⋆,

X, Y, Z . . . represent elements of Γ ,

α, β, γ . . . represent elements of Γ ⋆.

There are many types floating around here, it’s a good idea to build a
suitable notation system.

Derivations 30

Given a grammar G, we define a one-step relation 1=⇒ on Γ ⋆

αβγ
1=⇒ αδγ if β � δ ∈ P

Think of β as a handle and δ as the replacement string. As usual, by
induction define

α
k+1=⇒ β if ∃ γ (α k=⇒ γ ∧ γ

1=⇒ β)

and

α
∗=⇒ β if ∃ k α

k=⇒ β

in which case one says that α derives or yields β. α is a sentential form if
it can be derived from the start symbol S.

To keep notation simple we’ll often just write α =⇒ β.

Generated Languages 31

Definition
The language of a grammar G is defined to be

L(G) = { x ∈ Σ⋆ | S
∗=⇒ x }

We also say that G generates L(G).

Thus L(G) is the set of all sentential forms in Σ⋆.

In modern parlance one often speaks of rewrite systems. All of this really
comes down to plain word processing: find a handle, and replace it.
Rinse and repeat.

Characterization 32

The following theorem is not hard to show.

Theorem
The languages generated by arbitrary formal grammars are precisely the
semidecidable ones.

So, we have yet another characterization of semidecidable sets, based on
a notion of effective enumeration.

That’s nice, but a catastrophe from the perspective of using grammars as
a way to specify programming languages: clearly, they should all be easily
decidable—something close to linear time. We need to impose
restrictions on the type of productions allowed.

Context Free Grammars 33

Definition (CFG)
A context free grammar is a grammar where the productions have the
form

P ⊆ V × Γ ⋆

Thus we can only replace syntactic variables and the productions take the
particularly simple form

π : A � α

where A ∈ V and α ∈ Γ ⋆.

Note that this makes is very easy to find a handle.

Context Free Languages 34

Definition
A language is context free (CFL) if there exists a context free grammar
that generates it.

Note that in a CFG one can replace a single syntactic variable A by
strings over Γ independently of were A occurs; whence the name
“context free.”

Later on we will generalize to replacement rules that operate on a whole
block of symbols (context sensitive grammars).

Machines 35

General grammars produce arbitrary semidecidable (i.e. recursively
enumerable) sets and thus correspond closely to Turing machines.

For a context-free grammar we don’t need the full power of Turing
machines. Instead, push-down automata (PDA) (essentially finite state
machines with an additional stack) correspond precisely to context-free
languages.

Incidentally, this is an example of a machine class where deterministic
simulation fails: nondeterministic PDA are stricly more powerful than
deterministic ones.

Example: Regular 36

Let G = ⟨{S, A, B}, {a, b}, P, S⟩ where the set P of productions is
defined by:

S � aA | aB
A � aA | aB
B � bB | b.

A typical derivation is:

S ⇒ aA ⇒ aaA ⇒ aaaB ⇒ aaabB ⇒ aaabb

It is not hard to see that
L(G) = a+b+

Not too interesting, we already know how to deal with regular languages.

Exercise
There is a finite state machine hiding in the grammar; which one?

Derivation Graph 37

Derivations of length at most 6 in this grammar.

Labeled 38

aA

aaA aaB

aaaA aaaB

aaaaA aaaaB

aaaaaA aaaaaB aaaab aaaabB

aaab aaabB

aaabb aaabbB

aab aabB

aabb aabbB

aabbb aabbbB

aB

ab abB

abb abbB

abbb abbbB

abbbb abbbbB

S

Example: Mystery 39

Let G = ⟨{A, B}, {a, b}, P, A⟩ where the set P of productions is defined
by:

A � AA | AB | a
B � AA | BB | b.

A typical derivation is:

A ⇒ AA ⇒ AAB ⇒ AABB ⇒ AABAA ⇒ aabaa

Exercise
Find a simple description of the language generated by this grammar.

Derivation Graph 40

Derivations of length at most 3 in this grammar. Three terminal strings
appear at this point.

Depth 4 41

Example: Counting 42

Let G = ⟨{S}, {a, b}, P, S⟩ where the set P of productions is defined by:

S � aSb | ε

A typical derivation is:

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

Clearly, this grammar generates the language { aibi | i ≥ 0 }

It is easy to see that this language is not regular.

Derivation Graph 43

Example: Palindromes 44

Let G = ⟨{S}, {a, b}, P, S⟩ where the set P of productions is defined by:

S � aSa | bSb | a | b | ε

A typical derivation is:

S ⇒ aSa ⇒ aaSaa ⇒ aabSbaa ⇒ aababaa

This grammar generates the language of palindromes.

Exercise
Give a careful proof of this claim.

Derivation Graph 45

Example: Parens 46

Let G = ⟨{S}, {(,)}, P, S⟩ where the set P of productions is defined by:

S � SS | (S) | ε

A typical derivation is:

S ⇒ SS ⇒ (S)S ⇒ (S)(S) ⇒ (S)((S)) ⇒ ()(())

This grammar generates the language of well-formed parenthesized
expressions.

Exercise
Give a careful proof of this claim.

Derivation Graph 47

Example: Expressions of Arithmetic 48

Let G = ⟨{E}, {+, ∗, (,), v}, P, E⟩ where the set P of productions is
defined by:

E � E + E | E ∗ E | (E) | v

A typical derivation is:

E ⇒ E ∗ E ⇒ E ∗ (E) ⇒ E ∗ (E + E) ⇒ v ∗ (v + v)

This grammar generates a language of arithmetical expressions with plus
and times. Alas, there are problems: the following derivation is slightly
awkward.

E ⇒ E + E ⇒ E + (E) ⇒ E + (E ∗ E) ⇒ v + (v ∗ v)

Our grammar is symmetric in + and ∗, it knows nothing about
precedence.

Derivation Graph 49

1 Small Space

2 Crash Course: Grammars

3 Properties of CFLs

Regular Implies Context Free 51

Lemma
Every regular language is context free.

Proof. Suppose M = ⟨Q, Σ, δ; q0, F ⟩ is a DFA for L. Consider a CFG
with V = Q and productions

p � a q if δ(p, a) = q
p � ε if p ∈ F

Let q0 be the start symbol.
2

Note how the productions generate the symbol consumed by the
transitions.

Substitutions 52

Definition
A substitution is a map σ : Σ → P(Γ ⋆) .

The idea is that for any word x ∈ Σ⋆ we can define its image under σ to
be language

σ(x1) · σ(x2) · . . . · σ(xn)

Likewise, σ(L) =
⋃

x∈L σ(x).

If σ(a) = {w} then we have essentially a homomorphism.

The Substitution Lemma 53

Lemma
Let L ⊆ Σ⋆ be a CFL and suppose σ : Σ → P(Γ ⋆) is a substitution such
that σ(a) is context free for every a ∈ Σ. Then the language σ(L) is also
context free.

Proof.
Let G = ⟨V, Σ, P, S⟩ and Ga = ⟨Va, Γ, Pa, Sa⟩ be CFGs for the
languages L and La = σ(a) respectively. We may safely assume that the
corresponding sets of syntactic variables are pairwise disjoint.
Define G′ as follows. Replace all terminals a on the right hand side of a
production in G by the corresponding variable Sa.
It is obvious that f(L(G′)) = L where f is the homomorphism defined
by f(Sa) = a.

Proof, cont’d 54

Now define a new grammar H as follows.
The variables of H are V ∪

⋃
a∈Σ Va, the terminals are Σ, the start

symbol is S and the productions are given by

P ′ ∪
⋃

a∈Σ

Pa

Then the language generated by H is σ(L).
It is clear that H derives every word in σ(L).
For the opposite direction consider the parse trees in H.

2

Closure Properties 55

Corollary
Suppose L, L1, L2 ⊆ Σ⋆ are CFLs. Then the following languages are also
context free: L1 ∪ L2, L1 · L2 and L∗: context free languages are closed
under union, concatenation and Kleene star.

Proof.
This follows immediately from the substitution lemma and the fact that
the languages {a, b}, {ab} and {a}∗ are trivially context free.

2

Non Closure 56

Proposition
CFLs are not closed under intersection and complement.

Consider

L1 = { aibicj | i, j ≥ 0 } L2 = { aibjcj | i, j ≥ 0 }

One can show that L1 ∩ L2 = { aibici | i ≥ 0 } fails to be context free.

More Closure 57

Lemma
Suppose L is a CFL and R is regular. Then L ∩ R is also context free.

Proof.
This requires a machine model for CFLs (push-down automata), we’ll
skip.

2

Dyck Languages 58

One can generalize strings of balanced parentheses to strings involving
multiple types of parens.
To this end one uses special alphabets with paired symbols:

Γ = Σ ∪ { a | a ∈ Σ }

The Dyck language Dk is generated by the grammar

S � SS | a S a | ε

A typical derivation looks like so:

S ⇒ SS ⇒ aSaS ⇒ aaSa aS ⇒ aaSa aaSa ⇒ aaa aaa

Exercise
Find an alternative definition of a Dyck language.

Dyck vs. CF 59

In a strong sense, Dyck languages are the “most general” context free
languages: all context free languages are built around the notion of
matching parens, though this may not at all be obvious from their
definitions (and, actually, not even from their grammars).

Theorem (Chomsky-Schützenberger 1963)
Every context free language L ⊆ Σ⋆ has the form L = h(D ∩ R) where
D is a Dyck language, R is regular and h is a homomorphism.

The proof also relies on push-down automata, so we skip.

The Recognition Problem 60

Problem: Context Free Recognition
Instance: A CFG G and a word x ∈ Σ⋆.
Question: Is x ∈ L(G)?

Of course, in applications to programming languages, just checking
membership is nowhere near enough:

If x is in the language, we want a parse tree.

If x is not in the language, we want a reason; e.g., a place in x
where there might be a typo.

Cocke-Younger-Kasami 61

Theorem
There is a cubic time, quadratic space algorithm that checks whether a
word is generated by a context-free grammar.

The general algorithm requires a special normal form (Chomsky normal
form) and is mostly of academic interest, there are much better methods
for the more restricted types of CFGs relevant for programming
languages.

Discovered and rediscovered by Sakai, Cocke, Younger, Kasami and
Schwartz.

CYK Algorithm 62

for i = 1, . . . , n do
ti,i = { A | A � wi };

for d = 1, . . . , n − 1 do
for i = 1, . . . , n − d do

j = d + i;
for k = i, . . . , j − 1 do

if exists A � BC, B ∈ ti,k, C ∈ tk+1,j

then add A to ti,j ;
check S ∈ t1,n

A classical example of bottom-up parsing and dynamic programming,

Example 63

Consider the following grammar G in CNF, A being the start symbol.

A � AA | AB | a

B � AA | BB | b

Again, it is not entirely clear what language this grammar describes.

The CYK algorithm on input u = ababaaa and v = bababbb produces the
following two recognition matrices, showing that u is in the language
generated by G whereas v is not.

Recognition Matrices 64

A A A, B A, B A, B A, B A, B
B − − B B B

A A A, B A, B A, B
B − B B

A A, B A, B
A A, B

A

B − − B B B B
A A A, B A, B A, B A, B

B − − − −
A A A A

B B B
B B

B

	Small Space
	Crash Course: Grammars
	Properties of CFLs

