
UCT

Polynomial Space

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Context Sensitive Languages

2 Linear Bounded Automata

3 Polynomial Space

Where Are We? 2

Logarithmic space and linear (deterministic) space clearly make algorith-
mic sense. But how about nondeterministic linear space?

Generalizing context-free grammars naturally leads to context-sensitive
grammars and the obvious parsing “algorithm” for a context-sensitive lan-
guage is in NSPACE(n) (and, by Savitch, in SPACE(n2)).

Somewhat surprisingly, it’s just a small step from there to all of PSPACE.

Context-Sensitive Grammars 3

Definition (CSG)
A context-sensitive grammar (CSG) is a grammar where all productions are of
the form

αAβ � αγβ where γ ̸= ε

A language is context-sensitive if it can be generated by a context-sensitive
grammar.

Note the constraint that the replacement string γ ̸= ε; as a consequence we
have

α ⇒ β implies |α| ≤ |β|

Hence, no CSG can generate the empty word. To avoid this nuisance, some
authors also allow S � ε in which case S may not appear on the right hand
side of any production.

Brute-Force Recognition 4

Lemma
Every context-sensitive language is decidable.

Proof.
Suppose w ∈ Σn. In any potential derivation (αi)i<N we have |αi| ≤ n.
So consider the derivation graph D (recall the pictures from last time for
CFLs):

vertices are Γ ≤n,
edges are α ⇒1 β.

Then w is in L if w is reachable from vertex S in D.
2

Experience 5

. . . shows that one can build context-sensitive grammars for very complicated
languages. In fact, as long as a language is decidable, it looks like one can
build a corresponding CSG.

Question:
Is every decidable language context-sensitive?

Alas, Diagonalization 6

Lemma
Not all decidable languages are context-sensitive.

Proof. Here is a cute diagonalization proof that looks like Russel’s paradox.

Let (xi)i be an effective enumeration of Σ⋆ and (Gi)i an effective enumeration
of all CSG over Σ (say, both in length-lex order). Consider the language

L = { xi | xi /∈ L(Gi) }

By the last lemma, L is decidable, uniformly in i.

But L cannot be context-sensitive by the usual diagonal mumbo-jumbo.
2

Example: Counting 7

It is well-known that the language

L = { aibici | i ≥ 1 }

is not context free (as opposed to aibi). On the other hand, here is a
context-sensitive grammar G for L: let V = {S, B} and set

S � aSBc | abc

cB � Bc

bB � bb

A typical derivation looks like

S ⇒ an+1bc(Bc)n ⇒ an+1bBncn+1 ⇒ an+1bn+1cn+1

It follows by induction that L ⊆ L(G).

Not so fast . . . 8

Alas, we also need to show that L(G) ⊆ L.

This is a bit harder: we need to show that the productions cannot be abused in
some unintended way to generate other strings: recall that there is no
restriction on the order in which productions can be applied, they just have to
match.
E.g., the following is perfectly allowed:

S ⇒ aaSBcBc ⇒ aaSBBcc

In the end, though, we need a string of terminals, and that will force us back
into the language.

Exercise
Figure out the details.

Dire Warning 9

The production

cB � Bc

is not context-sensitive.

Rather, it is a so-called monotonic production. We will show shortly that this
in not a problem, we can translate monotonic productions into
context-sensitive ones.

The given form is just much, much easier to read.

Example: More Counting 10

It is also known that the language

L = { x ∈ {a, b, c}⋆ | #ax = #bx = #cx }

is not context free. But, again, it is easily context-sensitive: let
V = {S, A, B, C} and set

S � S′ | ε

S′ � S′ABC | ABC

XY � Y X for all X, Y ∈ {A, B, C}
A � a

B � b

C � c

Note that almost all productions are actually context free. The only exception
are the critical commutation productions for A, B, C.

Closure Properties 11

Theorem
Context-sensitive languages are closed under union, concatenation, Kleene star
and reversal.
They are also closed under ε-free homomorphisms.

Proof. Straightforward by manipulating the grammar. 2

Note that arbitrary homomorphisms do not work in this case: they erase too
much information and can force too large a search. This corresponds directly
to the length condition on the productions of a CSG.

Two Innocent Questions 12

Are CSL closed under intersection?

Are CSL closed under complement?

The answer is Yes in both cases (so this is quite different from context-free
languages).

The proof for intersection can be based on a machine model, and is much
easier than the proof for complement (which requires a special and very
surprising counting technique; see next lecture).

Normal Form 13

Theorem (Kuroda)
Every context-sensitive grammar can be written with productions of the form

A � BC AB � CD A � a

The proof is very similar to the argument for Chomsky normal form for CFG
(using only productions A � BC and A � a).

Note that the recognition algorithm becomes particularly simple when the CSG
is given in Kuroda normal form: we first get rid of all terminals and then
operate only on pairs of consecutive variables.

Monotonicity 14

Derivations in CSGs are length-non-decreasing. Correspondingly, define a
grammar to be monotonic if all productions are of the form

π : α � β where α ∈ Γ ⋆V Γ ⋆, β ∈ Γ ⋆, |α| ≤ |β|

The condition that α must contain a syntactic variable is somewhat weird: it
precludes replacements of strings made up of terminals only. One can also
study general rewrite systems without any restrictions.

As we have seen already, a monotonic grammar can only generate a decidable
language. In fact, these look rather similar to context-sensitive grammars
except that we are now allowed to manipulate the context. Clearly, every CSG
is monotonic.

Monotonic is Context-Sensitive 15

Theorem
A language is context-sensitive iff it is generated by a monotonic grammar.

One way to prove this is to convert monotonic productions to context-sensitive
ones. As a simple example, consider a commutativity rule

AB � BA

Here are equivalent context-sensitive rules using a new variable X = XAB :

AB � AX

AX � BX

BX � BA

The green variable is the one that is being replaced. Note how the left/right
context is duly preserved.

And the Difference? 16

Both CFGs and CSGs produce decidable languages, but the context-free ones
are much, much less complicated (recall the CYK algorithm).

Lemma
The Emptiness problem (is L(G) = ∅?) for CFLs is solvable in linear time.

To see how, call a variable productive if it can derive a string of terminals,
A ⇒ x ∈ Σ⋆. Clearly all variables with productions A � x are productive, say,
at level 0. From those we can inductively define variables productive at level 1:
productions A � α where α contains only terminals and variables productive at
level 0, and so on. Then G has empty language iff S fails to be productive.

Could a similar approach work for CSLs? As Kuroda normal form shows, on the
face of it, the productions seem only mildly more complicated. Try, but it is
really crucial here that the LHSs of context-free productions are in V .

Undecidability of CSG Emptiness 17

Recall that we can easily code computations of a TM as strings, producing a
language of all accepting computations:

C(M) = { # C init
x # C2 # . . . # Cn−1 # Chalt

Y # | . . . }

It is not terribly hard to construct a context-sensitive grammar for this
language C(M). This requires a bit of work using a grammar directly, but is
fairly easy to see from the machine model (see below).

Theorem (CSL Emptiness)
It is undecidable whether a CSG generates the empty language.

Proof. C(M) = ∅ iff M halts on no input, a Π1-complete problem. 2

And Context-Free Languages? 18

One might wonder whether this kind of argument could be reorganized to
produce undecidability results for CFLs.

At first glance, this seems highly problematic: the copy language
{ ww | w ∈ Σ⋆ } is not context-free, and C(M) is clearly worse.

Trick One:
The representation from the last slide is arguably the most natural, but there
are other options: we could use alternating mirror images of configurations. For
simplicity, assume that the number of steps is odd.

Cop(M) = { # C1 # Cop
2 # C3 # Cop

4 . . . # Cop
2n # | . . . }

This may seem contrived, but nobody says we have to use the “canonical”
representation†.

†In fact, exactly what is canonical lies in the eye of the beholder.

So What? 19

Two consecutive blocks Ci # Cop
i+1 are almost palindromes. Hence they should

be manageable by a CFG.

Alas, there is another problem: we have to check not just one pair, but all of
them: for a string to be in Cop(M), all consecutive pairs have to be correct
(and the first and last must be initial and accepting). To get around this
problem, we use the negation: unlike correctness, having an error is a local,
existential property.

Trick Two:
Consider the complement

Cop(M) = Σ⋆ − Cop(M)

all strings that do not represent an accepting computation.

So Cop(M) = Σ⋆ iff L(M) = ∅, an undecidable property.

CFL Universality 20

Theorem
The complement Cop(M) of all accepting computations is context-free.
Hence it is undecidable whether a context-free language is all of Σ⋆.

Proof.
We can focus on syntactically correct strings of the form (# Σ⋆QΣ⋆)⋆#, all
others form a regular language that we can simply add on to the part generated
by a context-free grammar (we are dealing with strings that look right
syntactically, but have a semantics error somewhere).

We want to generate strings that contain a bad part #C#C′#: two
near-palindromes that do not represent a step in a computation.

Proof Contd 21

The problem is that we need to know which of the two configurations is written
backwards.

Therefore we set up two CFGs Geven and Godd that generate bad strings with at
least one error between consecutive configurations:

C2i+1 # Cop
2i+2 or Cop

2i # C2i+1

Each grammar “knows” whether the first or second configuration is written
backwards, so it can generate a corresponding near-palindrome with at least
one error. For example, given δ(p, a) = (q, b, +1), grammar Geven could
produce the error

xℓ . . . x1 p a y1 . . . yr # yr . . . y1 b q x1 . . . xℓ

Make sure you understand why this fragment is in fact incorrect.

Proof Contd 22

We can then pad out the bad pair with the appropriate even/odd number of
configurations to get a string representing a computation with error.

For example, grammar Geven must pad on the left and right by an even number
of configurations.

The union of these grammars, plus the regular language for the syntactically
wrong strings produces the desired context-free language of all
non-computations.

2

Exercise
Determine in greater detail what the even/odd grammars need to do.
Then find another way of organizing this proof by using yet another
representation.

More? 23

So we have

Recognition and Emptiness for context-free languages are decidable (in
fact polynomial time).

Universality of context-free languages is undecidable.

Anything else that could go wrong? We know CFLs are not closed under
intersections, so how about the following:

Problem: CFL Intersection
Instance: Two context-free grammars G1, G2.
Question: Is L(G1) ∩ L(G2) = ∅?

CFL Intersection 24

Theorem
The language Cop(M) of accepting computations is the intersection of
context-free languages.
Hence it is undecidable whether the intersection of two CFLs is empty.

Sketch of proof.
Since CFLs are closed under intersection by a regular language, we can easily
force all strings to be of the syntactically correct form (# Σ⋆QΣ⋆)⋆#,

To ensure semantic correctness, we can adapt the even/odd approach: in L1,
all the even/odd pairs are correct, in L2 the odd/even pairs. This works since
we are dealing with repeated near-palindromes.

Then Cop(M) = L1 ∩ L2.
2

Decidability Overview 25

x ∈ L L = ∅ L = Σ⋆ L = K L ∩ K = ∅

regular Y Y Y Y Y

DCFL Y Y Y Y N

CFL Y Y N N N

CSL Y N N N N

decidable Y N N N N

semidec. N N N N N

Standard decision problems for various language classes.

Needless to say, for the decidable ones we would like a more precise complexity
classification (in which case it may matter how precisely the instance is given).

Formal Grammar vs. CSG 26

Note that one can “simulate” an arbitrary formal grammar G with a
semidecidable language by a CSG G′ as follows: let S′ be the new start
symbol, new terminals b and #, and add productions

S′ � #S

α � β if |α| ≤ |β|
α � βbr if 0 < r = |α| − |β|

xb � bx x ∈ Γ, x = #

Then G derives w iff G′ derives br#w for some r.

By projection, we get back the original language, but padding by the
appropriate number of bs renders things decidable.

1 Context Sensitive Languages

2 Linear Bounded Automata

3 Polynomial Space

A Machine Model? 28

In order to find a parser for CSL it seems natural to look for an associated
machine models:

semidecidable — Turing machines
context free — pushdown automata
regular — finite state machines

We need a machine model that is stronger than pushdown automata (FSM
plus stack), but significantly weaker than full Turing machines.

Note that two stacks are equivalent to TMs, so we need a different approach.

Backwards Derivation 29

Suppose L is context-sensitive via G. The idea is to run a derivation of G
backwards, starting at a string x of terminals.

To this end, nondeterministically guess a handle in the current string, a place
where there is a substring of the form β, where α � β is a production in G.
Erase β and replace it by α. Rinse and repeat.

The original string x is in L iff we can ultimately reach S this way.

Of course, this is yet another path existence problem in a suitable digraph.

Linear Bounded Automata 30

Definition
A linear bounded automaton (LBA) is a type of one-tape, nondeterministic
Turing machine acceptor where the input is written between special
end-markers and the computation can never leave the space between these
markers (nor overwrite them).

Thus the initial configuration looks like

#q0x1x2 . . . xn#

and the tape head can never leave this part of the tape.

It may seem that there is not enough space to perform any interesting
computations on an LBA, but note that we can use a sufficiently large tape
alphabet to “compress” the input to a fraction of its original size and make
room.

The Myhill-Landweber-Kuroda Theorem 31

The development happened in stages:

Myhill 1960 considered deterministic LBAs.

Landweber 1963 showed that they produce only context-sensitive lan-
guages.

Kuroda 1964 generalized to nondeterministic LBAs and showed that this
produces precisely all the context-sensitive languages.

Theorem
A language is accepted by a (nondeterministic) LBA iff it is context-sensitive.

Proof 1 32

Here is the argument for a monotonic grammar, dealing with CSGs is entirely
similar.

Initially, some terminal string a1, a2, . . . , an is written on the tape. Then repeat
the following steps:

Search handle: the head moves to the right a random number of places,
say, to ai.
Check righthand side: the machine verifies that ai, . . . , aj = β where
α � β is a production.
Replace by left-hand side: the block ai, . . . , aj is replaced by α, possibly
leaving some blanks.
Collect: remove possible blanks by shifting the rest of the tape left.

This loop repeats until the tape is reduced to S and we accept. If any of the
guesses goes wrong we reject.

Proof 2 33

Also note that nondeterminism is critical here: grammars are naturally
nondeterministic and a deterministic machine would have to search through all
possible choices. That seems to require more than just linear space (open
problem, see below).

For the opposite direction it is a labor of love to check in great gory detail that
the workings of an LBA can be described by a context-sensitive grammar. The
critical point here is that the LBA cannot expand or shrink the tape, it just
changes the inscription between the endmarkers.

Digression: Physical Realizability II 34

It was recognized already in the 1950s that Turing machines are, in many ways,
too general to describe anything resembling the type of computation that was
possible on emerging digital computers.

The Rabin-Scott finite state machine paper was one forceful attempt to impose
a radical constraint on Turing machines that brings them into the realm of
“feasible” computation.

Myhill’s introduction of LBA is another attempt at constructive restrictions. As
we now know, LBAs are still a rather generous interpretation of the notion of
feasible computation; real, practical algorithms need further constraints.

Still, it is a perfectly good model and there are many interesting problems that
fit perfectly into this framework.

Intersection Closure 35

Theorem
CSL are closed under intersection.

Proof.

Given two LBAs Mi for Li. we can construct a new LBA for L1 ∩ L2 by using
a 2-track tape alphabet Γ = Σ × Σ.
The upper track is used to simulate M1, the lower track is used to simulate M2.
It is easy to check that the simulating machine is again a LBA (it will sweep
back and forth over the whole tape, updating both tracks by one step on the
way).

2

Why Not CFG? 36

In essence, the argument says that we can combine two LBAs into a single one
that checks for intersection. This is entirely similar to the argument for FSMs.

Burning Question:
Why can’t we do the same for PDAs?

Because we cannot in general combine two stacks into a single one (though
this works in some cases; the stack height differences need to be bounded).
But in general, two stacks suffice to simulate a Turing machine.

1 Context Sensitive Languages

2 Linear Bounded Automata

3 Polynomial Space

More Problems 38

Context-sensitive recognition is naturally† in NSPACE(n), and by Savitch, in
SPACE(n2).

Two natural questions:

Are there other natural decision problems of this kind?

Is there any reason to consider larger space classes, say, SPACE(n42)?

†We can simply copy the input to the work tape.

Quantified Boolean Formulae 39

Definition
A quantified Boolean formula (QBF) is a formula consisting of propositional
connectives “and,” “or” and “not,” as well as existential and universal
quantifiers.

If all variables in a QBF are bounded by a quantifier, then the formula has a
truth value: we can simply expand it out as in

∃ x φ(x) 7→ φ(0) ∨ φ(1)

∀ x φ(x) 7→ φ(0) ∧ φ(1)

In the end we are left with a propositional formula without variables which can
simply be evaluated in time linear in its size. Of course, that size is exponential
in the size of the original one.

The QBF is a succinct description of the expanded one.

Validity of QBF 40

Problem: Validity of Quantified Boolean Formulae (QBF)
Instance: A quantified Boolean sentence φ.
Question: Is φ valid?

Note that many properties of propositional formulae can easily be expressed in
terms of QBF. For example, φ(x1, x2, . . . , xn) is satisfiable iff

∃ x1, . . . , xn φ(x1, x2, . . . , xn) is valid

Likewise, the formula is a tautology iff

∀ x1, . . . , xn φ(x1, x2, . . . , xn) is valid

QBF 41

Lemma
Validity of QBF can be checked by a deterministic LBA.

Proof. As a case in point, consider the formula

∀ x1, . . . , xn ∃ y1, . . . , ym φ(x, y)

The argument easily extends to any other formula.

To check validity we use two loops, one counting from 0 to 2n − 1 for x and
another counting from 0 to 2m − 1 for y.

Validity Tester 42

foreach x = 0, . . . , 2n − 1 do
b = 0
foreach y = 0, . . . , 2m − 1 do

if φ(x, y) is true
then b = 1

if b = 0
then return No

return Yes

Of course, the running time is exponential, but linear space is quite enough.
2

QBF Solvers 43

http://satisfiability.org/

http://www.qbflib.org/

There is a lot of current research on building powerful QBF solvers.

http://satisfiability.org/
http://www.qbflib.org/

Succinct Representations 44

A quantified Boolean formula can be construed as a succinct representation of
a much larger ordinary Boolean formula: deciding validity becomes harder
because the input is much shorter.

Succinct representations appear in many places:

Succinct Hypercube 45

Vertex set: 2d

Edge set: (x, y) ∈ 2d × 2d such that dist(x, y) = 1

Here dist(x, y) refers to the Hamming distance: |{ i | xi ̸= yi }|.

More generally, we could use a Boolean formula Φ(x, y) to determine the edges
in a graph G(2d, Φ) on 2d.

And, there are clever ways to represent a Boolean formula such as circuits or
ROBDDs.

Games 46

Many games such as Hex, Checkers, Chess, . . . are naturally finite (at least with
the right set of rules). Thus, from the complexity perspective, they are trivial.

However, they often generalize to an infinite class of games. For example, Hex
can obviously be played on any n × n board.

Incidentally, John Nash proved that there is no draw in Hex (in 1949).

Winning 47

There are several natural questions one can ask about these generalized games:

Is a particular board position winning?

Does the first player have a winning strategy?

If the total number of moves in a game is polynomial in the size of the board
(Checkers, Hex, Reversi), then these questions are typically in PSPACE: we
can systematically explore the game tree to check if a position is winning.

Integer Circuit Evaluation 48

Consider a circuit with n integer inputs; we think of x ∈ Z as the singleton {x}.
Internal nodes all have indegree 2 (but unbounded outdegree), and come in
three types:

Union A ∪ B

Sum A ⊕ B = { a + b | a ∈ A, b ∈ B }
Product A ⊗ B = { a · b | a ∈ A, b ∈ B }

We assume there is exactly one output node of outdegree 0, the subset of Z
appearing there is the result of evaluating the circuit.

Problem: Integer Circuit Evaluation (ICE)
Instance: A ICE circuit C, an integer a.
Question: Is a in the output set?

PSPACE 49

A ∪ B is linear; we might also admit arbitrary finite sets as input.

But: A ⊕ B and A ⊗ B are both potentially quadratic, so the sets defined by
an ICE can be exponentially large.

Lemma
ICE is in PSPACE.

Sketch of proof. We cannot simply evaluate the circuit in polynomial space:
the sets might be too large.
But we can nondeterministically guess the one element in each set that is
actually needed to obtain the target value a in the end, and follow these
witnesses throughout the circuit.

2

Comment 50

This result may seem a bit contrived, but it actually is quite natural: there is a
long-standing question of how circuit evaluation compares to formula
evaluation (it should be slightly harder if the fan-out is higher than 1).

For example, Boolean circuit evaluation is P-complete, but evaluating a
Boolean formula is in NC1 (presumably a smaller class based on circuits, more
later).

More generally, there are interesting connections between various kinds of
circuits (or straight-line programs) and small complexity classes.

Boring Completeness 51

As before with NP, it is not too hard to come up with a totally artificial
PSPACE-complete problem:

K = { 1s # e # x | x accepted by Me in s = |x|e + e space }

Because of the padding, we can easily check membership in K in linear space.
And the standard reduction shows that the problem is hard.

Clearly correct, but not too interesting. Here is a much better problem.

Quantified Boolean Formulae 52

Theorem
Validity testing for quantified Boolean formulae is PSPACE-complete.

Proof.
Membership in PSPACE is easy to see: we can check validity by brute-force
using just linear space.

The argument is exactly the same in the general case as the Π2 case a few
slides ago.

This method is exponential time but linear space.

Proof Contd 53

For hardness one uses the fact that a configuration of a Turing machine can be
expressed by a (large) collection C of Boolean variables much as in Cook-Levin,
plus ideas from Savitch’s theorem.

We will construct a quantified Boolean formula Φk of polynomial size such that

Φk(C1, C2) ⇐⇒ ∃ t ≤ 2k (C′
1 ⊢t

M C′
2).

This is straightforward for k = 0, 1: copy the appropriate parts of the
Cook-Levin argument.

For k > 1 note that

Φk(C1, C2) ⇐⇒ ∃ C
(
Φk−1(C1, C) ∧ Φk−1(C, C2)

)

No Cigar 54

Unfortunately, this direct approach causes an exponential blow-up in size: Φk is
about twice as large as Φk−1. Therefore we use a trick:

Φk(C1, C2) ⇐⇒ ∃ C ∀ D1, D2
(

(C1, C) = (D1, D2) ∨ (C, C2) = (D1, D2) ⇒ Φk−1(D1, D2)
)

This quantified formula is only slightly larger than Φk−1 and can be built in
polynomial time. On the other hand, it is logically equivalent to the original
one from the last slide.

So we have a polynomial time reduction, as required.
2

Context Sensitive Recognition 55

We have seen that for context-sensitive grammars it is decidable whether a
word is generated by the grammar (and that’s about all that is decidable). On
the other hand, non-emptiness is already undecidable, so one might expect that
recognition is difficult.

Problem: Context Sensitive Recognition (CSR)
Instance: A CSG G = ⟨V, Σ, P, S⟩ and a word x ∈ Σ⋆.
Question: Is x in L(G)?

Note that this problem is in NSPACE(n), near the apparent bottom of
PSPACE.

CSR Completeness 56

Theorem
Context Sensitive Recognition is PSPACE-complete.

Proof.
For hardness use the following well-known fact from language theory:
ε /∈ L ∈ NSPACE(n) implies L is context-sensitive (via monotonic grammars).
Now let L ⊆ Σ⋆ be in PSPACE, say, L ∈ SPACE(p(n)). Define

L′ = { 1p(|x|) # x | x ∈ L }

By the previous remark L′ is context-sensitive. In fact, a grammar G for L′ can
be constructed in polynomial time from a Turing machine for L.
Hence the map f defined by f(x) = (G, 1p(|x|) # x) is a polynomial time
reduction from L to CSR.

2

PSPACE and FSMs 57

Here is a question regarding the intersection of a family of DFAs.

Problem: DFA Intersection
Instance: A list A1, . . . , Am of DFAs.
Question: Is

⋂
L(Ai) empty?

Note that m, the number of machines, is not fixed. We can check Emptiness in
linear time on the accessible part of the product machine A =

∏
Ai; alas, the

latter has exponential size in general.

Theorem (Kozen 1977)
The DFA Intersection Problem is PSPACE-complete.

The Proof 58

The problem is in linear NSPACE as follows.
Let ni = |Ai| and set n =

∏
ni.

set pi = init(Ai)
for i = 1..n do

guess a ∈ Σ
compute pi = δi(pi, a)
if pi ∈ Fi for all i
then return Yes

return No

As usual, this “algorithm” may produce false No’s, but a Yes guarantees a
yes-instance.

For hardness, let T be a Turing machine with polynomial space bound
p(n) ≥ n. As usual, encode configurations as strings

C = aℓ . . . a2a1 p b1b2 . . . br

and a whole computation as a string

#C1#C2 . . . #Cm$

and $ are new markers and we may safely assume that the length of each
configuration is exactly N = p(n) + 2: pad with blank tape symbols and make
sure there is at least one blank never used at either end. Also, assume that m
is odd (modify the TM if necessary).

The idea is similar to the even/odd approach for CSLs: we construct a family
of DFAs that make sure that C2i+1 7→ C2i+2 is correct, and another family
that checks C2i 7→ C2i+1. We will only deal with the first case.

Here is machine Ak, 0 ≤ k ≤ N − 3, that checks #C2i+1#C2i+2.

It reads # and skips k letters.

It remembers the next 3 letters x, y and z.

It skips N − k − 3 letters, reads a # and skips k more letters.

Then Ak makes sure that the next three letters x′, y′, z′ are compatible
with the transition function of the Turing machine.

It skips another N − k − 3 letters. If it reads a # it starts all over; other-
wise, it reads $ and accepts.

More precisely, if xyz = apb and δ(p, b) = (c, q, +1), then x′y′z′ = acq. For
δ(p, b) = (c, q, −1) we have x′y′z′ = qac.

If y /∈ Q we simply skip forward, without any checks.

Combining “odd” Ak machines with corresponding “even” machines insures
that every accepted string is indeed a computation: the state is in some
position k + 2, so machine Ak (or its counterpart) checks that the next
configuration is proper. The other machines ignore this particular
configuration, and the next.

Lastly, we add one more DFA that checks that the sequence of configurations
starts and ends at the proper initial and final configuration.

All the DFAs together accept precisely one string, coding the accepting
computation of M , iff the polynomial space machine M accepts its input.

2

And More 62

Many of the generalized games from above turn out to be PSPACE-complete.
The proofs rely heavily on clever gadgets and can be quite difficult.

ICE is PSPACE-complete. So arithmetic circuits are difficult.

Testing whether two regular expressions are equivalent is PSPACE-complete
(even if one of them is Σ⋆). The same holds true for nondeterministic finite
state machines. But not for DFAs, those can be checked in near linear time
(using Union-Find).

	Context Sensitive Languages
	Linear Bounded Automata
	Polynomial Space

