
Counting

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 LBA and Counting

2 Counting Problems

3 Counting Classes

4 More Hardness

Where Are We? 2

We have a collection of space complexity classes, deterministic and nonde-
terministic, analogous to time complexity classes.

Removing nondeterminism for space seems cheaper than for time.

Particularly natural seem
logarithmic space
linear space
PSPACE-complete

Kuroda’s Problems 3

Kuroda stated two open problems in his 1964 paper on linear bounded
automata:

Is nondeterminism in an LBA really needed?

Are context-sensitive languages closed under complements?

The first problem is still open and seems to be very difficult.

But the second one has been solved, using an amazing technique.

Nondeterminism vs. Completeness 4

We have seen a number of PSPACE-complete problems, including:

Quantified Boolean Formulae

Context-Sensitive Recognition

The first has a natural deterministic algorithm in linear space.

The second one is also in linear space, but it seems to require nondeterministic
choices: we don’t know which reverse production to apply next, and where.
And, it is utterly unclear how to eliminate nondeterminism without increasing
space complexity.

Immerman-Szelepsényi 5

Kuroda’s second problem was solved independently by two researchers in the
late 1980s†.

Theorem (Immerman-Szelepsényi, 1988)
Context-sensitive languages are closed under complement.

Just to be clear: for specific CSLs such as { aibici | i ≥ 1 } one can often
construct a CSG for the complement without too much trouble. In this case,
e.g., we only have to worry about strings aibjck and make sure i ̸= j or i ̸= k
or j ̸= k.

The problem is that there appears to be no general method to convert a CSG
to a CSG for the complement. And LBA don’t help, either.

†Just like Friedberg/Muchnik and Cook/Levin.

Proof Strategy 6

Strangely, the way to tackle this problem is to take another look a a seemingly
unrelated and obviously (?) harmless graph problem: our old friend
reachability.

Problem: Graph Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there a path from s to t?

Of course, this can easily be solved in linear time using standard graph
algorithms.

But we are here interested in expoiting nondeterminism to cut down the space
requirement.

Recall: Prototype Reachability Algorithm 7

The strategy is clear, but there is a problem. We build the set R ⊆ V of
vertices reachable from s in G in stages.

Let’s say (u, v) ∈ E requires attention if u ∈ R but v /∈ R.

R = {s};
while some edge (u, v) ∈ E requires attention do

add v to R;
return R;

DFS and BFS are both instances of this strategy. Alas, these algorithms require
linear space: we have to keep track of R. It’s utterly unclear how we could
reduce the space requirement.

How About Logarithmic Space? 8

As already mentioned, we can get down to logarithmic space if we are willing to
go nondeterministic and give up on the usual true/false symmetry.

// path guessing s⇝ t

n = |V |
ℓ = 0
x = s
while ℓ < n − 1 do

if x = t then return Yes
guess an edge (x, y)
ℓ++
x = y

return No

Rather strange, but perfectly correct.

Non-Reachability 9

Unfortunately, to deal with complements we really need the opposite problem:
t is not reachable from s.

Problem: Graph Non-Reachability
Instance: A digraph G, two nodes s and t.
Question: Is there no path from s to t?

This completely wrecks the pass guessing approch, there is nothing to guess for
the negation.

It is a major surprise that Non-Reachability can also be handled in
nondeterministic logarithmic space, though the logical complexity of the
algorithm is substantially higher.

Counting Reachable Points 10

Let

R = { x ∈ V | exists path s⇝ x }

be the set of vertices reachable from s.

From the perspective of nondeterministic logarithmic space, R can be
exponentially large (it may have cardinality up to n). But, it suffices to know
just its cardinality to determine non-reachability.

Claim
Given the cardinality r = |R|, we can solve Non-Reachability in
nondeterministic logarithmic space.

Deciding Non-Reachability 11

// non-reachability algorithm
c = 0 // path counter
forall x ̸= t in V do

guess path s⇝ x
if path found
then c++

return c == r

This works since i = r means that all reachable vertices are different from t.

Surprising and nice, but useless unless we can actually compute r.

Onion Trick 12

Instead of trying to compute r directly, let

Rℓ = { x ∈ V | exists path s⇝ x of length ≤ ℓ }

and set rℓ = |Rℓ|.

Obviously r0 = 1 and rn−1 = r.

So we only have to figure out how to compute rℓ, given rℓ−1.

Counting 13

// inductive counting algorithm
// input: ℓ, current count ρ (supposedly rℓ−1)
// output: next count ρ′ (supposedly rℓ)

ρ′ = 0
forall x in V do

b = 0 // may increment to 1
c = 0 // path counter
forall y in V do

guess path s⇝ y of length < ℓ
if path found
then c++
if y = x or (y, x) ∈ E
then b = 1

assert c == ρ // all paths found
ρ′ = ρ′ + b

return ρ′

Quoi? 14

Suppose ρ is the correct value of rℓ−1.

Since we check that c = ρ, we know that all paths s⇝ y have been guessed
correctly.

But then we have properly found and counted all paths of length at most ℓ: we
just have to add one more edge. Hence, the output ρ′ is indeed rℓ.

Note that the algorithm requires only storage for a constant number of vertices,
so logarithmic space suffices, plus nondeterminism to guess the right path from
s to y. As before, there are no false positives, but the computation may crash.

Nondeterministic Functions? 15

The counting algorithm is heavily nondeterministic: we have to guess multiple
paths s⇝ y (which would never work out if we were to flip a coin to make
nondeterministic decisions).

But note the assert statement: if we make a mistake, the whole computation
crashes. This means in particular that no function value is produced on any of
these branches.

The branches where all the guesses are correct all produce the exact same value
ρ. So this is a fairly tame version of nondeterminism.

Back to Immerman-Szelepsényi 16

The theorem now follows easily.

For suppose M is some LBA (nondeterministic!) which accepts some CSL L.
We would like to build another LBA that accepts Σ⋆ − L.

Consider some input x ∈ Σℓ and the usual computation graph C(M, x).
Clearly the size of C(M, x) is bounded by n = cℓ for some constant c > 1.

Non-acceptance of M now translates into a non-reachability problem for
C(M, x), and we have just seen that this task can be handled by another
nondeterministic LBA; done.

Full Immerman-Szelepsényi 17

We can rephrase the Immerman-Szelepsényi result in terms of space complexity
classes:

Theorem
For any reasonable function s(n) ≥ log n we have
NSPACE(s(n)) = co-NSPACE(s(n)).
In particular NL = co-NL and NSPACE(n) = co-NSPACE(n).

This follows easily by considering the computation graphs of the corresponding
Turing machines.

YABA 18

Yet another Boolean algebra: the context-sensitive languages form a Boolean
algebra, just like the regular and decidable ones.

But the following result is somewhat surprising:

Theorem
The Boolean algebras of regular, context-sensitive and decidable languages are
all isomorphic.

So wrto Boolean operations only, there is no difference between these language
classes. The proof requires a bit of lattice theory; we’ll skip.

Size Matters 19

One can show that the following problem about estimating the size of a power
automaton produced by the Rabin-Scott determinization construction is
PSPACE-complete.

Problem: Power Automaton Size
Instance: An NFA A and a bound β.
Question: Does pow(A) have size at least β?

Again by Immerman-Szelepsényi, the corresponding problems |pow(A)| ≤ β,
|pow(A)| = β, |pow(A)| ̸= β can all be solved by an LBA.

1 LBA and Counting

2 Counting Problems

3 Counting Classes

4 More Hardness

Polynomially Computable Functions 21

We are interested in computing functions

f : 2⋆ → 2⋆

Definition
The class FP is the collection of all functions f : 2⋆ → 2⋆ that can be
computed in polynomial time (by an ordinary deterministic Turing machine).

The intent here is that machine M on input x performs a polynomial time
computation and writes the appropriate output in binary on the output tape.

Writing numbers in binary as usual, addition and multiplication are in FP by the
standard algorithms, but exponentiation is not. Here are two examples where a
combinatorial problem leads to a polynomial time solvable counting problem.

Search To Counting 22

Any search problem

Problem: Π
Instance: Some instances x.
Solution: Some solution z ∈ sol(x), or NO.

can always be turned into a counting problem

Problem: #Π
Instance: Some instances x.
Solution: The number of solutions |sol(x)|.

There is also the associated decision problem

Problem: DΠ
Instance: Some instances x.
Question: Is sol(x) ̸= ∅?

Connections 23

We write #Π(x) for the number of solutions.
The counting problem is always at least as hard as the associated decision
problem:

there is a solution for x ⇐⇒ #Π(x) > 0

So if the decision problem is, say, NP-complete we should not expect the
counting problem to be in FP.

But: Even if the decision version is trivial, #Π may be chal-
lenging to unmanageable.

And it is not clear a priori what the relationship between Π and #Π is.

Spanning Trees 24

Here is a classical example: given an undirected connected graph G = ⟨[n], E⟩
consider its spanning trees. The decision problem here is quite simple: we can
construct a spanning tree using DFS or BFS.
But in the associated counting problem we want to determine the number of
all spanning trees.

Yes, the answer is 812, 017, 791.

Cayley’s Theorem 25

Of course, some cases are easy: Cayley has shown that a complete graph on n
points has nn−2 spanning trees.

The Laplacian of a Graph 26

Define the Laplacian of G to be the n × n matrix L with entries

L(i, j) =


deg(i) if i = j,
−1 if i ̸= j, (i, j) ∈ E,
0 otherwise.

Thus the Laplacian is the difference D − A of the degree matrix and the
adjacency matrix.

This may seem like a rather peculiar construct, but it does have interesting
computational properties. In general, the algebraic properties (characteristic
polynomial, eigenvalues, eigenvectors) of matrices associated with graphs are
quite important for various algorithms (spectral graph theory).

Example: Cube 27

Laplacian:

3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0

0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0

0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3

Kirchhoff’s Theorem 28

Theorem
The number of spanning trees in an undirected connected graph G = ⟨[n], E⟩ is

#(SpanTree, G) = λ1λ2 . . . λn−1/n

where the λi are the non-zero eigenvalues of the Laplacian of G.

In the cube example above the eigenvalues are 6, 4, 4, 4, 2, 2, 2, 0, so there are
384 spanning trees.

This generalizes Cayley’s formula for the complete graph. For example, for
n = 5 the Laplacian looks like

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4


It has nonzero eigenvalues 5, 5, 5, 5.

Exercise
Prove that these matrices have the right eigenvalues.

Kirchhoff’s Theorem, Algorithmically 30

The version stated above is very elegant, but not particularly attractive
computationally: we can easily compute the characteristic polynomial |A − Ix|
but then we need to compute its roots to get at the eigenvalues (all integers).

Here is a better version: the number of spanning trees is

#(SpanTree, G) = det
(
(L)ii

)
Here L is the Laplacian, and (L)ii denotes a cofactor, the submatrix obtained
by removing the ith row and ith column. In fact, this is the original version of
the theorem.

Hence we can compute the number of spanning trees in polynomial time,
#(SpanTree, G) is in FP.

Another Success Story 31

Around 1960 Kasteleyn discovered an amazing way to calculate the number of
perfect matchings in a planar graph.

Of course, the existence of a perfect matching is well-known to be in
polynomial time, but it is by no means clear that once can count all such
matchings without brute-force enumeration.

As with spanning trees, the solution relies on linear algebra and determinants.

Thus, counting spanning trees and counting perfect matchings in a planar
graph are in FP.
Unfortunately, it is rather rare that counting problems associated with standard
combinatorial problems are solvable in polynomial time.

1 LBA and Counting

2 Counting Problems

3 Counting Classes

4 More Hardness

Nondeterministic Counting Machines 33

So far we mostly talked about functions computable in deterministic
polynomial time (except for counting in Immerman-Szelepsényi). Is there a
more systematic way to compute functions using nondeterminism?

The problem is to deal with potentially different results on different branches in
the computation tree. Here is a outside-of-the-box definition that produces
good results.

Definition
A counting Turing machine (CTM) is a nondeterministic Turing machine M,
normalized to 2 choices. For any input x, we define the output of M on x to
be the number of accepting computations of M on x.
#P is the class of all functions that are computable by a polynomial time CTM
in this sense.

Quoi? 34

This definition is rather surprising, we would expect the result to be written on
a output tape, somehow. Instead we use a nondeterministic acceptor, and
count accepting computations from the outside.

The problem is that nondeterministic transducers would produce multiple
possible “results.” Requiring that all results are the same ruins nondeterminism,
so we would need to select one of the many results as the true answer.

One could try to take the min/max/average or some such, but none of these
attempts produce a good theory.

Note that SAT is a great motivation: it is easy to build a nondeterministic
machine that counts the number of satisfying truth assignments in this sense:
first guess the assignment, then verify correctness.

Examples 35

We have reasonable closure properties: e.g., if f and g are in #P then so is
f + g.
To see this, build a machine M that adds one more nondeterministic step that
picks either the machine Mf for f or the machine Mg for g.
Clearly #M(x) = #Mf (x) + #Mg (x).

Exercise
How would you handle the product f · g?

Exercise
Find some other closure properties of the class of #P functions.

Witness Version 36

Recall that NP can be defined either in terms of nondeterministic polynomial
machines, or in terms of polynomially bounded projections on polynomial time
decidable relations. The same applies here.

Definition
A polynomial time decidable relation R(z, x) is polynomially balanced if there
is some polynomial p such that R(z, x) implies |z| ≤ p(|x|).

It is easy to check that #P is the class of all counting problems associated
with polynomially balanced relations R: we need to compute

f(x) = |{ z | R(z, x) }|

Example: Satisfiability 37

Consider SAT, satisfiability of Boolean formulae. Here is the counting version.

Problem: #Satisfiability
Instance: A Boolean formula in CNF.
Solution: The number of satisfying truth assignments.

It is straightforward to construct a polynomial time CTM that counts the
number of satisfying truth assignments of a given formula: guess an
assignment, and verify that the assignment is a model of the formula.

So if #SAT is in FP then P = NP.

This is no big surprise, a hard decision problem will produce hard counting
problems.
Let’s pin down more carefully what we mean by hard counting.

Hardness 38

In order to obtain a notion of hardness we need to define appropriate
reductions. Here we return to polynomial time Turing reductions.

Definition
A counting problem is #P-hard if there is a polynomial time Turing reduction
from any other problem in #P to it. If the problem is also in #P it is said to
be #P-complete.

Note that we are dealing with two function problems here, we want to compute
f : 2⋆ → 2⋆ given g : 2⋆ → 2⋆ .
A polynomial time Turing machine can evaluate g(z) for various values of z
and use the results to compute f(x).

It follows that if any #P-hard problem can be solved in deterministic
polynomial time the whole class can be so solved.

Parsimonious Reductions 39

In practice, there is another more restrictive notion of reduction that seems to
apply to all interesting counting problems.

Definition
A parsimonious transformation from a problem X to a problem Y is given by a
polynomial time computable function f such that #X(x) = #Y (f(x)).

In other words, a parsimonious transformation preserves the number of
solutions when translating instances of one search problem into another.
Of course, a parsimonious reduction is a special case of a polynomial time
Turing reduction: there is only one query and it produces the final result.

As it turns out, many of the polynomial reductions in the study of NP problems
naturally translate into parsimonious transformations.

Example: Satisfiability 40

Theorem
#SAT is #P-complete.

Proof.
This argument is similar to the Levin-Cook theorem: we can translate the
computations of a polynomial time counting Turing machine into satisfying
truth assignments of a suitable Boolean formula.

It is entirely natural to construct the formula in a way that makes the reduction
parsimonious: the number of computations corresponds exactly to the number
satisfying truth assignments.

2

Counting Cycles 41

Let #CYCLE be the problem of counting all simple cycles in a directed graph.
Of course, the decision version here is trivially solvable in linear time.

Theorem
If #CYCLE has a polynomial time solution then P = NP.

Proof.
We will show how to check for Hamiltonian cycles: given a ugraph G on n
points we construct a digraph H such that G is Hamiltonian iff H has at least
nn2

simple cycles.

Proof, Contd 42

Replace every edge (b, e) of G by the gadget shown below:

b

1

1′

2

2′

3

3′

4

4′

e

The gadget has depth m + 1 where m = ⌈n log n⌉; hence there are 2m paths
from begin to exit. Hence a simple cycle of length ℓ in G yields (2m)ℓ simple
cycles in H.

If G is Hamiltonian, then H has at least (2m)n ≥ nn2
cycles.

If not, then this cycle count is at most (2m)n−1 · nn−1 ≤ n(n+1)(n−1) < nn2
.
2

Parsimonious Problems 43

A closer look at the reductions we gave from 3SAT to Vertex Cover, and from
there to Hamiltonian Cycle reveals that all these reductions are parsimonious:
for example, a satisfying truth assignment correspond precisely to one vertex
cover of a certain size.
So we have:

Theorem
#VC is #P-complete.

Theorem
#HAMCYC is #P-complete.

Again, parsimonious reductions are quite common; in fact it takes a bit of
effort to produce natural, non-parsimonious ones. Try.

Permanents 44

It is unsurprising that NP-complete problems should give rise to #P-hard
counting problems.
However, there are examples of problems whose decision version is polynomial
time, but whose counting version nonetheless is #P-hard.

The permanent of an n by n matrix A is defined by

perm(A) =
∑

σ

∏
i

A(i, σ(i))

where σ ranges over all permutations of [n].

So the permanent differs from the determinant only in that the sign of the
permutation is missing.

Permanents are Hard 45

Theorem (L. Valiant 1979)
Computation of the permanent of an integer matrix is #P-complete.
The problem remains #P-complete even when the matrix is binary.

The corresponding decision problem is to check for the existence of a
permutation σ such that

∏
i
A(i, σ(i)) = 1, i.e., such that A(i, σ(i)) = 1 for all

i. But that is equivalent to determining the existence of a perfect matching in
a bipartite graph, a problem well-known to be in P.

Also note that the rather similar problem of computing the determinant of A is
easily solved in cubic time (there are asymptotically better methods).

1 LBA and Counting

2 Counting Problems

3 Counting Classes

4 More Hardness

More Problems 47

Valiant established the #P-hardness of a number of other problems.

Problem: #Minimal Vertex Cover
Instance: An undirected graph G.
Solution: The number of minimal vertex covers.

Problem: #Maximal Clique
Instance: An undirected graph G.
Solution: The number of maximum cliques.

The hardness of counting minimal vertex covers and maximal cliques is fairly
obvious: the corresponding decision problems are NP-hard after all.

How About These Two? 48

Problem: #Monotone 2-Satisfiability
Instance: A monotone formula in 2-CNF.
Solution: The number of satisfying truth assignments.

Problem: #Perfect Matching
Instance: A bipartite graph G.
Solution: The number of perfect matchings.

Monotone here means: no negated variables. Might seem fairly easy. Alas . . .

Surprise 49

Recall that a monotone Boolean formula in 2-CNF has the form

φ = (u1 ∨ v1) ∧ (u2 ∨ v2) ∧ . . . ∧ (us ∨ vs)

where all the ui and vi are variables from some set {x1, x2, . . . , xr}. All these
formulae are trivially satisfiable; it’s only the counting part that is difficult.

Finding a perfect matching in a bipartite graph is also easy (though harder
than Monotone 2-SAT). Again, counting is the difficult part.

Still, both these counting problems are #P-hard.

Example: Network Reliability 50

There is a large group of problems dealing with network reliability: a network is
represented by a (directed or undirected) graph and one would like to
understand how the network behaves under random failures. There are two
basic events:

Edge failure: an edge disappears from the graph.

Vertex failure: a node disappears from the graph, together with all inci-
dent edges.

The problem is that these events occur at random and one would like to
understand how the quality of the networks is degraded by such random events.

Measuring Reliability 51

It is far from clear exactly what properties of a network one should be
interested in from a a reliability perspective. Here are some ideas:

connectivity

connectivity between s and t

number of components

For example, given a pair of critical nodes s and t, we would like to make sure
that there is at least one path from s to t after failures have occurred.

Or we would like the number of connected components after failure to be
small; ideally, just one or two components.

Residual Node Connectedness Reliability 52

Here is one popular reliability model: edges do not fail, but nodes do. Node
failures occur with uniform probability p and independently of each other.

The residual node connectedness reliability RG of G is the likelihood that, after
failure, the remaining graph is still connected.

We can write the reliability in terms of a polynomial in the failure probability p:

RG(p) =
n∑

k=0

Sk(G) pn−k (1 − p)k,

Here Sk(G) is the number of connected k-node subgraphs of G. For
convenience, let S0(G) = 0.

Yet another counting problem: we have to determine the number of such
subgraphs.

Counting Connected Subgraphs 53

To simplify matters a bit we show that RG(1/2) is hard to compute, even when
the underlying graph is not too complicated. Let

S(G) = 2n RG(1/2) =
n∑

k=0

Sk(G)

A split graph is a graph where the vertex set is partitioned into an independent
set and a clique, possibly connected by some edges.

Theorem (KS 1991)
It is #P-complete to compute S(G) for split graphs G.

Proof 54

We will produce a reduction from #Monotone-2-SAT, a well-known
#P-complete problem.

Consider a monotone Boolean formula Φ in 2-CNF with variables x1, . . . , xn

and clauses C1, . . . , Cm . We may safely assume that every variable occurs in
at least one clause: this can be checked in polynomial time, and, if it fails, we
simply multiply by 2k where k is the number of useless variables.

Then n ≤ m/2 and m ≤
(

n
2

)
, so we can think of m as the size of Φ.

Contd 55

For any τ ≥ 1 define a graph Gτ as follows:

truth vertices: X = { xi | i ∈ [n] }
clause vertices: C = { Ci

j | i ∈ [τ], j ∈ [m] },
clause edges: xk is adjacent to Ci

j iff variable xk occurs in clause Cj

clique edges: turn X into a clique.

By construction, Gτ is a split graph on N = n + mτ vertices. Moreover, we
can construct Gτ in time polynomial in m and 0τ .

Note that representing each clause multiple times is a trick similar to the proof
for 3DM.

The Split Graph 56

u u u . . . u u�
�

�
�

Kn


τ

m︷ ︸︸ ︷

ee
e
...

e

ee
e
...

e
. . .

ee
e
...

e

Proof, Contd 57

What do the connected subgraphs H of Gτ look like? We can think of H ∩ X
as a truth assignment αH : the variables in H are set to true, all others to false.

Idea: Organize connected subgraphs according to weight.

Here the weight of a truth assignment α : X → 2 is

w(α) = number of clauses of Φ satisfied by α.

Also let Tk be the number of satisfying truth assignments of weight k,
0 ≤ k ≤ m.

Proof, Contd 58

The trivial case is weight 0: then H is a one-point subset of C (recall that all
variables appear somewhere).

For weight k ≥ 1, we claim that

H = (H ∩ X) ∪ S

where S is an arbitrary subset of { Ci
j | αH |= Cj , i ∈ [τ] }

Hence there are Tk2kτ such connected subgraphs.

That’s it, there are no other connected subgraphs.

Proof, Contd 59

Now consider the degree m polynomial

P (z) = mτ +
∑

1≤k≤m

Tk zk

Then S(Gτ) = P (2τ), and we can use polynomial interpolation to compute the
coefficients by choosing m + 1 sufficiently small values of τ . One can check
that the whole computation is duly polynomial time.

But Tm is the number of satisfying truth assignments of Φ, and we are done.
2

	LBA and Counting
	Counting Problems
	Counting Classes
	More Hardness

