
UCT

Polynomial Hierarchy

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 The Polynomial Hierarchy

2 Alternating Turing Machines

Where Are We? 2

We have seen a variety of time and space complexity classes; we also have a
number of hierarchy theorems (sadly, most of them base on diagonalization and
lacking in natural examples); lastly, there are lots of hardness/completeness
results. This whole discussion is about decision problems.

The counting classes from last time indicate that corresponding counting
problems can be significantly harder—just think about 2-SAT.

Here is yet another look at increased complexity, not by counting solutions, but
by asking slightly more complicated questions than the ones that produce NP
and co-NP.

Recall: Arithmetical Hierarchy 3

Recall that there is a natural hierarchy beyond the fundamental classes of
decidable and semidecidable problems.

∆5

Σ4 Π4

∆4

Σ3 Π3

∆3

Σ2 Π2

∆2

Σ1 Π1

∆1

The hierarchy is proper, and there are fairly straightforward complete problems
such as FIN, TOT, REC and so on (at least for the bottom levels). Higher up,
at least we can get complete problems by discussing the truth of formulae of
arithmetic.

And Complexity? 4

My favorite quote from Stefan Banach:

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

Does this apply to our (relatively) low complexity classes? Is there any
reasonable way to use a similar approch to shed light on, say, the P versus NP
problem?

Knowledge Transfer 5

If we think of P and NP as an analogue to decidable versus semidecidable (the
classes ∆1 versus Σ1 in the AH), it is tempting to try and construct a
polynomial time hierarchy (PH) analogous to the AH.

We mentioned this PH briefly when we first introduced NP, here is a more
detailed discussion.

Warning: Needless to say, we have no idea how to prove an
analogue to Post’s hierarchy theorem this time around.

Still, it may be interesting to study this putative hierarchy. For example, there
might be interesting examples of problems that are complete for the first few
levels of the hierarchy.

Recall: Definition PH 6

Σp
0 = Πp

0 = P

Σp
n+1 = projP (Πp

n)

Πp
n = comp(Σp

n)

∆p
n = Σp

n ∩ Πp
n

PH =
⋃

Σp
n

Here projP refers to polynomially bounded projections: the witness is required
to have length polynomial in the length of the witness. Operation comp is just
plain complement (unchanged from AH).

Graph Example 7

Here is a version of the Independent Set problem that makes slightly more
sense than the usual decision version.

Problem: Maximum Independent Set (MIS)
Instance: A ugraph G, a number k.
Question: Does the largest independent set in G have size k?

Even more natural would be the counting or search version, but for a discussion
of the polynomial hierarchy we have to stick with decision problems. Hence the
annoying k parameter.

How Hard? 8

Intuitively, how difficult should we expect MIS to be?

We can easily guess a vertex set of size k and verify that it is independent.

Of course, that’s nowhere near enough: we have to make sure no larger
independent sets exist. In this case, it suffices to check that there are no such
sets of size k + 1.

There are
(

n
k+1

)
possible candidates, an exponential number since k is not

fixed.

So, at least intuitively, MIS seems to be a there-exists-for-all problem,
something in Σp

2 rather than just NP.

Boolean Example 9

It is most natural to try to find the smallest Boolean formula equivalent to a
given one. We express this search problem as a decision problem, say, for DNF
formulae.

Problem: Minimum Equivalent DNF (MEQDNF)
Instance: A Boolean DNF formula Φ, a bound k.
Question: Is Φ equivalent to a DNF formula with at most k

literals?

Here we assume that our language has Boolean variables, constants, and the
usual connectives. In particular we have constants ⊤ and ⊥.

We could nondeterministically guess the small formula Φ′, but then we need to
verify that it is equivalent to Φ. In other words, we have to check that Φ ⇔ Φ′

is a tautology, which is co-NP-complete.

Where’s the Problem? 10

Access to a MEQDNF oracle would immediately demolish SAT.

Lemma
SAT is polynomial time Turing reducible to MEQDNF.

Proof.
Let Ψ =

∧
Ci be a CNF formula, an instance of SAT.

Define the DNF formula Φ = ¬Ψ =
∨

¬Ci.

So Ψ is satisfiable iff Φ fails to be a tautology.

It is easy to check in polynomial time whether Φ is a contradiction. If not, Φ is
a tautology iff it is equivalent to a formula with 0 literals: the constant ⊤
(constant ⊥ is ruled out since Φ is not a contradiction).

2

Language Example 11

A pattern π is an expression formed from strings in 2⋆ and variables, using only
concatenation: something like 1X1. We can generate a language L(π) by
replacing the variables by strings over 2⋆.

This is a bit like regular expressions, just think of a variable X as 2. Careful,
though, it’s actually quite a bit more complicated. For example

L(XX) = { ww | w ∈ 2⋆ }

is the copy language which fails to be context-free, never mind regular. The
language is context-sensitive, though. On the other hand, we cannot produce
all context-sensitive languages this way: { (00)i(01)i(10)i | i ≥ 0 } cannot be
described this way.

Learning Patterns 12

Given (finite) languages P [N] of positive[negative] examples, we would like a
pattern that is consistent with P and N .

Problem: Pattern Consistency
Instance: Two finite languages P, N ⊆ 2⋆.
Question: Is there a pattern π such that P ⊆ L(π) ⊆ N?

Again, we could perform a simple nondeterministic guess, but it seems that the
guess would have to be followed by an exponential brute-force verification: we
have to find the proper substitutions for all the variables to show P ⊆ L(π) and
we need to make sure that there is no substitution that produces N ∩ N ̸= ∅.

A Closer Look 13

Suppose π = u1Xu2Y u3Xu4Zu5 and m = |u1 . . . u5|.

Graph Example 14

Here is a problem about avoiding subgraphs by making a limited number of
deletions in a given graph.

Problem: Node Deletion
Instance: Two graphs G and H, a number k.
Question: Can one delete at most k vertices from G to obtain

a graph that does not contain H as a subgraph?

We could nondeterministically guess the vertices that determine the subgraph
G′, and then verify that G′ has no subgraph isomorphic to H. Again, the
second part seems exponential.

The Class Σp
2 15

Let’s take a closer look at the class Σp
2 in the polynomial hierarchy.

Definition
L is in Σp

2 if there is a polynomial time decidable relation V , the verifier, and a
polynomial p such that

x ∈ L ⇐⇒ ∃ u ∈ 2p(|x|) ∀ v ∈ 2p(|x|) V (u, v, x).

So from the definition we have NP, co-NP ⊆ Σp
2 .

All the examples from above are in Σp
2 : use the existential quantifiers for

guessing a witness and the universal ones for verification of the guess. The
verification process can be handled by a deterministic polynomial time TM.

Completeness 16

All of our examples of problems in Σp
2 are complete for this class:

Maximum Independent Set

Minimum Equivalent DNF

Pattern Consistency

Node Deletion

So Σp
2 seems to be a reasonable class that contains at least some RealWorldTM

problems.

More Classes 17

For Σp
2 we have one block of existential quantifiers followed by one block of

universal quantifiers. Of course, this generalizes:

Σp
k : k alternating blocks of quantifiers, starting with existential

Πp
k : k alternating blocks of quantifiers, starting with universal

So e.g. L is in Πp
3 iff

x ∈ L ⇐⇒ ∀ u ∈ 2p(|x|) ∃ v ∈ 2p(|x|) ∀ w ∈ 2p(|x|) V (u, v, w, x).

Note that this description also lends itself nicely to finding a class in the PH
that contains a particular given problem: write things down concisely, then
count quantifiers. This is very similar to the arithmetical hierarchy in CRT.

Validity Testing 18

It is clear from the definitions that Σp
k is closely connected to the problem of

testing the validity of a Σk Boolean formula (and similarly Πk for Πp
k): we can

express the workings of the Turing machine acceptor as a Boolean formula as in
the Cook-Levin theorem.

Theorem
Validity of Σk Boolean formulae is Σp

k-complete.
Validity of Πk Boolean formulae is Πp

k -complete.

So just like for the AH, we can find reasonable complete problems for the PH.
But in this case we don’t know that they get more and more complicated.

Example: Integer Expressions 19

Recall the ICE problem which turns out to be PSPACE-complete.

Problem: Integer Circuit Evaluation (ICE)
Instance: A ICE circuit C, an integer a.
Question: Is a in the output set?

We have a circuit computing sets of integers. At the leaves, there are
singletons {x} and the internal gates are

Union A ∪ B

Sum A ⊕ B = { a + b | a ∈ A, b ∈ B }
Product A ⊗ B = { a · b | a ∈ A, b ∈ B }

Sum Only 20

In a very similar scenario we have sum integer expressions, composed of
numbers (written in binary), and binary operations ∪ and ⊕. There is no
multiplication.

Write L(E) ⊆ N for the finite set associated with the expression E. An interval
in L(E) is a subset [a, b] ⊆ L(E). Here is a sligthly strange question about
intervals being contained in the set generated by E.

Problem: Sum Integer Expression Intervals (SIEI)
Instance: An integer expression E, a number k.
Question: Does L(E) have an interval of length k?

As before with ICE, the cardinality of L(E) is not polynomially bounded by
|E|, so we cannot simply evaluate the expression in polynomial time.

Proof Membership 21

Lemma
Sum Integer Expression Intervals is Σp

3 -complete.

Assume that all inputs are at most ℓ-bit and the expression has depth d (think
of E as a parse tree or a circuit). Then the largest number m in L(E) is at
most ℓ + d bits and thus polynomial in |E|.

To check a ∈ L(E) for a ≤ m, we can guess a subtree T of E. T has nodes
labeled by Z, contains the root with label a, and has the following properties.
Let ν be a node in T , then:

If ν is a union node labeled b, then T contains exactly one child node of
ν, also labeled b.
If ν is a sum node labeled b, then T contains both child nodes of ν, la-
beled b1 and b2, where b = b1 + b2.
If ν is a leaf, it’s label is the same as the number stored there.

Proof, Contd 22

Then there is an interval of length k iff

∃ a, b ≤ m ∀ x ≤ m
(
b = a + k − 1 ∧ a ≤ x ≤ b ⇒ x ∈ L(E)

)
.

We have just seen x ∈ L(E) is in NP, so SIEI is in Σp
3 . 2

Alas, completeness is much harder, we’ll skip.

A similar argument shows that inequality of sum integer expressions is Σp
2 .

More Oracles 23

We know how to attach an oracle A ⊆ Σ⋆ to a Turing machine M. If we do
this systematically for all machines in a certain class C, we obtained a
relativized class CA.

The oracle may vary over a class D:

CD =
⋃

A∈D

CA

For example, PP = P and PNP = PSAT.

Similar definitions apply to function classes, and function oracles.

Alternative Polynomial Hierarchy 24

We can now check that our original definition of PH in terms of projections
and complements can also be expressed in terms of oracles like so:

Σp
0 = Πp

0 = P

Σp
n+1 = NPΣ

p
n

Πp
n = comp(Σp

n)

∆p
n+1 = PΣ

p
n

PH =
⋃

Σp
n

Exercise
Verify that our two definitions are really equivalent.

Alas . . . 25

There is no analogue to the hierarchy theorem for the arithmetical hierarchy,
but it is still true that

Σp
k ∪ Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩ Πp
k+1

Also, if there is a glitch at some level k ≥ 1, then the rest of the hierarchy
collapses:

Σp
k = Πp

k implies Σp
k = PH

Σp
k = Σp

k+1 implies Σp
k = PH

This leaves open the possibility that, say, the first 42 levels are proper, and the
rest collapses. Perish the thought.

Versus PSPACE 26

Lemma
PH ⊆ PSPACE.
PH = PSPACE implies the polynomial hierarchy collapses.

Proof.
Containment in PSPACE is clear from the alternating quantifier description.

For the collapse, recall that QBF Validity is in PSPACE, and subsumes all the
Σk Validity problems.
If we had equality, then QBF Validity would already be equivalent to Σk

Validity for some level k, and everything would collapse down to that level.
2

Completeness? 27

We have Σp
k-complete problems for all levels k ≥ 1, generic as well as concrete

(at least for some levels).

But note that the last argument seems to rule out the existence of
PH-complete problems: if L were PH-complete, then L ∈ Σp

k for some k
simply by the definition of the polynomial hierarchy.

But then the hierarchy collapses at level k—which sounds less than plausible.
Famous last words.

1 The Polynomial Hierarchy

2 Alternating Turing Machines

Machine Models 29

We defined the polynomial hierarchy in analogy to the arithmetical hierarchy:
by applying suitable projections and complements to polynomial time decidable
sets. An alternative definition can be given in terms of oracles.

Question: Is there a machine model for PH?

In other words, we would like some class of Turing machines that defines
precisely the languages in PH.

We will have to push the envelope a bit to make this happen, the resulting
machines are a bit more complicated than ordinary Turing machines, or even
plain nondeterministic ones.

Turing versus Physics 30

Plain, deterministic Turing machines are our goto model of computation;
they have all kinds of great properties and some obnoxious ones. In par-
ticular, they are clearly physically realizable.

Nondeterministic Turing machines add a significant level of abstraction:
we are now dealing with a tree of computations; realizability fades away.
Another substantial difference is that it becomes much more difficult to
talk about computing functions, and even decision problems are somewhat
awkward†

Probabilistic Turing machines return to the realm of realizable computa-
tion and seem critical for a adequate definition of feasibility. But: there is
a major difference between nondeterministic and probabilistic machines.

Alternating Turing machines push the level of abstraction much higher
and are quite removed from realizability.

†The big justification really is the enormous success of nondeterminism in the context of finite
state machines.

Warm-Up: Finite State Machines 31

A DFA is just the formalization of a perfectly practical algorithm: scan a string
letter by letter, update your state via table lookup, decide acceptance on the
basis of the last state. Runs in linear time and constant space with very good
constants.

By contrast, an NFA is prima facie an abstraction: there may be exponentially
many possible runs on a single input, and acceptance is determined by an
existential quantification: is there a run

The reason this abstract model is still hugely important for practical algorithms
is that acceptance testing for NFAs is still linear time, albeit with worse
constants. On the other hand, other operations such as union are actually
easier for NFAs.

Fast Acceptance Testing 32

Proposition
For any DFA A and any input string x we can test in time linear in |x| whether
A accepts x, with very small constants.

p = q0; // reset
while(a = x.next()) // next input symbol

p = delta[p][a]; // table look-up

return p in F; // table look-up

Of course, it might take some time to compute the lookup table δ in the first
place, but once we have it acceptance testing is very fast.

Nondeterministic Machines Acceptance Testing 33

The key insight is that testing for nondeterministic machines is very, very
similar: instead of single states p, we have sets of states P ⊆ Q.

// nondeterministic acceptance testing

P = I
while a = x.next() do

P = { q | ∃ p ∈ P (p a→ q) }
return P ∩ F ̸= ∅

Dealing with a set of states P rather than a single state p is slower, but only by
a constant. And there are many hacks to make the computation reasonably
fast in typical practical situations.

The total damage is still O(|x|) and the constants are often quite reasonable.

Mucking with Acceptance 34

So here is a wild idea:

Question: Is there a useful notion of acceptance based on
“for all runs such that such and such”?

One problem is whether these “universal” automata are more powerful than
ordinary FSMs. As we will see, we still only get regular languages.

But this raises the question of how the state complexities compare: recall that
nondeterministic FSMs can be exponentially smaller than their deterministic
counterparts—one of the reasons they are attractive in practical pattern
matching applications.

Forall Automata 35

How would one formally define a type of FSM A = ⟨Q, Σ, δ; I, F ⟩ where
acceptance means all runs have a certain property?
The underlying transition system ⟨Q, Σ, δ⟩ will be unaffected, it is still a
labeled digraph.

The acceptance condition now reads:

A accepts x if all runs of A on x starting at I end in F .

Let’s call these machines ∀FA.

Read: for-all-FA. It’s tempting to call them “universal FA”, but that collides
with the standard use where universal means “accepting all inputs.”

By the same token, a NFA would be a ∃FA, a there-exists-FA.

Logical And 36

As an example consider the mod counter languages

Ka,m = { x ∈ 2⋆ | #a x = 0 (mod m) }

with state complexity m. For the union K0,m ∪ K1,n we have a natural NFA of
size m + n. However, for the intersection K0,m ∩ K1,n we only have a product
machine that has size mn.

More importantly, note that nondeterminism does not seem to help with
intersection: there is no obvious way to construct a smaller NFA for
K0,m ∩ K1,n.

This happens on a number of occasions: there are regular languages where
nondeterminism seems utterly useless. The natural construction of the machine
is automatically deterministic.

Example Modcounter Intersection 37

But we can build a ∀FA of size just m + n: take the disjoint union and declare
the acceptance condition to be universal.

A Hidden Product 38

What is really going on here?

Let’s assume that Q1 and Q2 are disjoint. Starting at {q01, q02} we update
both components. So after a while we are in state

{p, q} p ∈ Q1, q ∈ Q2

In the end we accept iff p ∈ F1 and q ∈ F2.

This is really no different from a product construction, we just don’t spell out
all the product states explicitly: a perfect example of a succinct representation.

Choosing clever representations is often critically important.

That’s Not Insane 39

For example, acceptance testing for a ∀FA is basically the same as for an NFA:
we keep track of the set of states δ(I, x) ⊆ Q reachable under some input and
simply change the notion of acceptance: this time we want δ(I, x) ⊆ F .

For example, if some word x crashes all possible computations so that
δ(I, x) = ∅, then x is accepted. This may sound weird, but it’s perfectly fine.

Likewise we can modify the Rabin-Scott construction that builds an equivalent
DFA: as before calculate the (reachable part of the full) powerset and adjust
the notion of final state:

F ′ = { P ⊆ Q | P ⊆ F }

There is almost no difference.

And Once Again . . . 40

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analo-
gies between proofs and the best mathematician can notice
analogies between theories. One can imagine that the ultimate
mathematician is one who can see analogies between analogies.

S. Banach

An Analogy (pace Banach) 41

We can think of the transitions in a NFA as being disjunctions:

δ(p, a) = q1 ∨ q2

We can arbitrarily pick q1 or q2 to continue. Similarly, in a ∀FA, we are dealing
with conjunctions:

δ(p, a) = q1 ∧ q2

meaning: We must continue both at q1 and at q2. So how about

δ(p, a) = (q1 ∨ q2) ∧ (q3 ∨ q4)

Or perhaps

δ(p, a) = (q1 ∨ ¬q2) ∧ q3

Does this make any sense?

Threads 42

Think of threads: both ∧ and ∨ correspond to launching multiple threads. The
difference is only in how we interpret the results returned from each of the
threads.

For ¬ there is only one thread, and we flip the answer bit.

In other words, a “Boolean” automaton produces a computation tree very
much like a plain NFA. But the acceptance condition is a bit more involved.

For historical reasons, these devices are called alternating automata.

Alternating Automata 43

In an alternating finite automaton (AFA) we admit transitions of the form

δ(q, a) = φ(q1, q2, . . . , qn)

where φ is an arbitrary Boolean formula over Q = {q1, q2, . . . , qn}, even one
containing negations.

How would such a machine compute? Initially we are in “state”

q01 ∨ q02 ∨ . . . ∨ q0k

the disjunction of all the initial states.

One Step and Acceptance 44

Suppose we are in state Φ, some Boolean formula over Q. Then under input a
the next state is defined by substituting formulae for the variables:

Φ[q1 7→ δ(q1, a), . . . , qn 7→ δ(qn, a)]

The substitutions are supposed to be carried out in parallel, so each variable
q ∈ Q is replaced by δ(q, a), yielding a new Boolean formula. In the end we
accept if

Φ[F 7→ 1, F 7→ 0] = 1

Meaning: replace all variables in F by true, and all variables in F by false.

Exercise
Verify that for both NFA and ∀FA this definition behaves as expected.

Why Alternating? 45

The name “alternating automaton” may sound a bit strange.

The original paper by Chandra, Kozen and Stockmeyer that introduced these
machines in 1981 showed that one can eliminate negation without reducing the
class of languages.
One can then think of alternating between existential states (at least one
spawned process must succeed) and universal states (all spawned processes
must succeed).

In a moment, we will use an analogous construction to Turing machines.

nil novis sub solem 46

Theorem
Alternating automata accept only regular languages.

Proof.
Let Bool(Q) be the collection of all Boolean formulae with variables in Q and
Bool0(Q) a subset where one representative is chosen in each class of
equivalent formulae (say, the length-lex first in DNF) and consider the
corresponding normalization map ν : Bool(Q) → Bool0(Q).

We can build an equivalent DFA over the state set Bool0(Q) of state
complexity at most 22n

.

The DFA 47

The initial state is ν(
∨

q∈I
q).

Transitions are ∆(p, a) = ν(p 7→ δ(p, a)).

The final states are { φ ∈ Bool0(Q) | φ[F 7→ 1, F 7→ 0] = 1 }.

It is easy to see that the new, ordinary DFA is equivalent to the given,
alternating one.

2

But note that the cost of eliminating alternation is potentially doubly
exponential, significantly worse that for determinization (corresponding to
logical-or only).

Why Would Anyone Care? 48

Because an AFA can be much, much smaller that the minimal DFA. In fact,
the 22n

bound is tight: there are AFAs on n states where the minimal
equivalent DFA is doubly exponential in n.

So we have a succinct representation for a regular language, but one that still
behaves reasonably well under the usual algorithms. Avoiding the standard
DFA representation is often critical for feasibility: in reality we cannot actually
construct the full DFA in many cases. Laziness is a good idea in this context.

BTW, this is even true in pattern matching: DFAs should be avoided unless
they are absolutely necessary (because the pattern contains a negation).

Alternating Turing Machines (ATM) 49

So we understand alternating finite state machines, but we really need to talk
about alternating Turing machines.

As before, we assume there are two transition functions

δi : Q × Σ → Q × Σ × {−1, 0, 1}

where i ∈ 2, we can choose either one at each step.

Here is the critical idea: every state is labeled by ∃ or ∀.

These labels are used in the definition of acceptance.

The notion of alternation comes from the fact that one could alternate between
∃ and ∀ states in a computation.

The Computation Graph 50

Suppose M is an ATM and let C(M, x) be the computation graph defined as
usual.
Now define the following class of “accepting nodes” in C(M, x):

Accepting configurations are accepting nodes.

If state p in configuration C is labeled ∃, and there is a successor of C
that is accepting, then C is also accepting.

If state p in configuration C is labeled ∀, and all the successors of C are
accepting, then C is also accepting.

We say that M accepts x if the initial configuration q0x is accepting.

Same Graph 51

Just to be entirely clear about this: the computation graph C(M, x) has not
changed at all, it’s no different from any old nondeterministic Turing machine.

What has changed is our definition of acceptance, just having at least one path
to an accepting configuration is no longer sufficient. In particular, acceptance
cannot be simply translated into a graph reachability question.

ATIME 52

Definition
Let M be an alternating Turing machine.
We say that M runs in alternating time t(n) if every path in the computation
graph C(M, x), |x| = n, has length at most t(n).
Similarly we define alternating space.

In symbols: ATIME(t) and ASPACE(s)

Lastly, define

AP = ATIME(poly)

ALOG = ASPACE(log)

The big question is how these alternating polynomial time/space classes relate
to ordinary complexity classes.

Characterizatoins 53

Lemma
ALOG = P

Lemma
AP = PSPACE

Both claims will follow easily from the more general results below.

Alternation versus Plain 54

Theorem
Suppose f(n) ≥ n is reasonable. Then

ATIME(f) ⊆ SPACE(f) ⊆ ATIME(f2)

Theorem
Suppose f(n) ≥ log n is reasonable. Then

ASPACE(f) = TIME(2O(f))

Proof 1 55

ATIME(f) ⊆ SPACE(f)

Suppose M is alternating, O(f) time. Construct a simulator M′ that performs
a DFS traversal of the computation graph CM(x) of M on input x to
determine acceptance.

We have to make sure that M′ needs only O(f) deterministic space. The
naive approach would produce a recursion stack of depth O(f), with stack
frames of size O(f), yielding space complexity O(f2).

To avoid this, simply record the nondeterministic choice at each step (a single
bit), and recompute the actual configuration when needed (we are focused on
space, not time).

Proof 2 56

SPACE(f) ⊆ ATIME(f2)

This is similar to the approach in Savitch’s theorem. Instead of the plain
recursion used there, our alternating machine will branch existentially to find
the “middle point”, and then universally to verify both pieces.

We check for paths of length 2cf(n) where c is large enough so this number
bounds the total number of configurations. Hence the total damage is O(f2)
alternating time.

Proof 3 57

ASPACE(f) ⊆ TIME(2O(f))

Suppose M is alternating, O(f) space. Construct a simulator M′ that builds
the computation graph CM(x) of M on input x, first ignoring alternation.
Nodes have size at most cf(n) for some constant c.

Then run a marking algorithm that labels nodes as accepting when appropriate,
working backwards from the leaves. Accept x if the initial configuration is
ultimately marked.

The size of the graph is 2O(f), and one round of marking is linear in the size.
There are at most 2O(f) rounds, yielding our deterministic time bound.

Proof 4 58

TIME(2O(f)) ⊆ ASPACE(f)

This time M is an ordinary deterministic machine, time 2O(f). The alternating
machine M′ must obey a O(f) space bound, so we cannot simply construct a
computation graph. This is rather tricky, here is a sketch of the proof.

Think of the computation of M on input x as being laid out in a N × N
square, N = 2O(f), much as in the homework problem on square tilings (
except here we don’t have to bother with tilings, each row will just be a
configuration represented as a word in Σ⋆QΣ⋆). The square itself is too large,
but we can keep pointers to individual cells.

We guess the position of the accepting state in (r, c). Then, for all
s = r, r−1, . . . , 1, we guess existentially the three cells in the row below, check
that they are good, and universally verify that the parents are also good. In the
bottom row we verify against the initial configuration of M.

Close, but no Cigar 59

It seems plausible that PH ⊊ PSPACE, so our ATMs are a bit too powerful to
characterize the polynomial hierarchy.

To fix this, we can impose more constraints: call an ATM Σk if the initial state
is labeled ∃, and every path in C(M, x) alternates at most k − 1 times between
different labels. This produces a notion of ΣkTIME that matches with the
polynomial hierarchy:

Σp
k =

⋃
ΣkTIME(nc).

So it is unbounded alternation that seems to push us a bit too far.

Oracles, Again 60

Kozen has shown that, for every k, one can construct an oracle A such that

(Σp
k)A ̸= (Σp

k+1)A = PSPACEA

One could interpret this as a warning that one should not be too sure about
the structure of the polynomial hierarchy.

Just to be clear, very little is known about collapsing/separating oracles in the
spirit of Baker-Gill-Solovay, and the inferences one should draw from these
results. For example, it is an open problem whether

PrA[PA = NPA] = 1.

The BGS theorem just shows that there is some A for which equality holds,
and another for which it fails.

	The Polynomial Hierarchy
	Alternating Turing Machines

