(Pseudo) Randomness

KLAUS SUTNER

OO0
CARNEGIE MELLON UNIVERSITY

SPRING 2024

1 Randomness and Physics

2 Formalizing Randomness

3 Generating PRNs

Random Numbers

Random numbers (or random bits) are a crucial ingredient in many algorithms.

For example, all industrial strength primality testing algorithms rely on the
availability of random bits. Modern cryptography is unimaginable without
randomness.

Anyone attempting to produce random numbers by purely arith-
metic means is, of course, in a state of sin.

John von Neumann

Neumann is referring to the inescapable fact that computers are deterministic
devices (more or less), it is actually not all that easy to produce random bits
using a computer: whatever program we run will produce the same bits if we
run it again.

Pre-History

In the olden days, the RAND Corporation used a kind of electronic roulette
wheel to generate a million random digits (rate: one per second).

In 1955 the data were published under the title:
A Million Random Digits With 100,000 Normal Deviates

“Normal deviates” simply means that the distribution of the random numbers
is bell-shaped rather than uniform. But the New York Public Library shelved
the book in the psychology section.

The RAND guys were surprised to find that their original sequence had several
defects and required quite a bit of post-processing before it could pass muster
as a random sequence. This took years to do.

Available at http://www.rand.org/publications/classics/randomdigits.

http://www.rand.org/publications/classics/randomdigits

Predictions

To make matters worse, it is rather difficult to even say exactly what is meant
by a sequence of random bits. Of course, intuitively we all know what

randomness means, right? It is closely connected to a massive inability to
predict outcommes.

In particular, if you roll a die, all 6 outcomes are equally possible.

Flipping Coins

Another often used random bit generator: flipping fair coins.

Nasty Question: What is a fair coin? How do you flip it?

Lorenz Attractor

Here is a famous example discovered by Lorenz in the 1963, in an attempt to
study a hugely simplified model of heat convection in the atmosphere. In terms
of differential equations the model looks like so:

8
I

oy —x)

Yy =rc—y—z2

N
Il

Ty — bz

These are not spatial coordinates, x stands for the amplitude of convective
motion, y for temperature difference between rising and falling air currents, and
z between temperature in the model and a simple linear approximation.

For appropriate values of the parameters we get the following, entirely
deterministic, but random-looking, behavior.

Lava Lamps

R
eSS
i

SEEEC L

LA A AR g
Soeilbe e Ut

Getting Serious

The previous systems seem to produce randomness, but do not escape the
clutches of determinism (well, where does classical physics end and quantum
physics start?). Instead, they exploit high sensitivity to initial conditions, which
produces apparently chaotic behavior.

That may be perfectly good enough for some applications, but leaves an
unpleasant aftertaste. Can we do better and go truly random?

Can we set up a random generator that would not yield to any attempts at
analysis, even in the presence of unlimited compute power?

Krypton-85

Quantum physics in the form of radioactivity is a bold attack on randomness
(except that no one likes to keep a lump of radioactive material and a
Geiger-Miiller counter on their desk). Solution: keep the radioactive stuff
someplace else and get the random bits over the web.

Apparently true random bits from www.fourmilab.ch.

10

www.fourmilab.ch

Huge Difference 11

The last system (and really also the lava lamps, see below) is very different
from the others: if our current understanding of physics is halfway correct,
there is no way to predict certain events in quantum physics, like radioactive
decay. It is fundamentally impossible to predict future behavior, even if we
could establish initial conditions correctly, which we cannot thanks to Herr
Heisenberg. This is utterly weird, since Schrédinger’s wave equation is perfectly
deterministic, it is the measurement process that somehow produces
randomness.

The other, purely mechanical systems such as dice and coins, we encounter
deterministic chaos: given sufficiently precise descriptions of the initial
conditions, and sufficient compute power, one could in principle compute the
outcomes (if we think of them as classical systems). In actual reality, the
inability to establish initial conditions with sufficient accuracy, and
computational issues, make prediction quite impossible here, too.

Cloudflare 12

dTM

Weird systems are actually used in the RealWorl to generate random bits.

Cloudflare e.g. needs lots of high-quality randomness for their internet services.
They harvest their random bits from various physical sources:

@ A wall of lava lamps in San Francisco.

@ A chaotic pendulum in London.

@ A lump of radioactive material in Singapore.
The raw random bits are then fed into a cryptographically secure

pseudo-random number generator (CSPRNG) that generates more good
random bits.

Fiat Lux 13

Incidentally, Noll and Cooper at Silicon Graphics were the first to use lava
lamps as random number generators. They even have a US Patent, number
5,732,138: “Method for seeding a pseudo-random number generator with a
cryptographic hash of a digitization of a chaotic system.”

They discovered one day that the pretty lava lamps were completely irrelevant:
they could get even better random bits with the lens cap on: there is enough
noise in the circuits to get good randomness. So quanum physics strikes again.

The “Entropy Wall” at Cloudflare, by contrast, takes pictures of the whole wall,
and then uses a clever hash function to turn the huge collection of pixels into a
large random number.

Getting Serious 14

A more ambitious way to use light, is to exploit an elementary quantum optical
process: a photon hitting a semi-transparent mirror, and either passes through
or is reflected. Schrédinger already got great mileage out of this idea.

The Quantis system was developed at the University of Geneva, the first
practical model was released in 1998, http://www.idquantique.com/

http://www.idquantique.com/

The Magic Device

http://www.idquantique.com /random-number-generation/
quantis-random-number-generator/

15

http://www.idquantique.com/random-number-generation/quantis-random-number-generator/
http://www.idquantique.com/random-number-generation/quantis-random-number-generator/

Quantis TRNG

Features

@ True quantum randomness
High bit rate of 4Mbits/sec (up to 16Mbits/sec for PCl card)
@ Low-cost device (1000+ Euros)

Compact and reliable
USB or PClI, drivers for Windows and Linux

Applications

@ Numerical Simulations

o Statistical Research

Lotteries and gambling

o Cryptography

16

The Central Issue 17

Anyone who lives in this physical universe of ours is keenly aware of the effects
of randomness—in the sense of unpredictability, a total lack of computational
shortcuts. Just roll a die a couple of times.

But that means absolutely nothing mathematically, in particular since we
currently do not have a satisfactory mathematical model of all of physics. It
requires quite a bit of work to make sense out of randomness in a strictly
mathematical sense, without appeals to physical intuition.

And, as one might suspect, computability falls by the wayside. Recall
Kolmogorov-Chaitin complexity: it provides a definition of randomness for finite
and infinite objects, but fails to be computable.

Hilbert’s 6th Problem 18

Mathematical Treatment of the Axioms of Physics.

The investigations on the foundations of geometry suggest the
problem: To treat in the same manner, by means of axioms,
those physical sciences in which already today mathematics plays
an important part; in the first rank are the theory of probabilities
and mechanics.

This is in reference to Hilbert's seminal “Grundlagen der Geometrie” from
1899, together with Dedekind-Peano arithmetic the first modern axiomatization
of a mathematical area. Well worth reading even today.

Success Stories 19

To be sure, there are excellent physical theories available, in particular relativity
theory and quantum theory, but things get dicey when one tries to prove strict
mathematical results. In essence, we can only argue relative to some
axiomatization, and no one knows how to axiomatize all of physics—or whether
a particular axiomatization correctly describes actual physics.

Still, we can home in on a few central properties of randomness—properties
that we feel intuitively to be associated with randomness (strongly motivated
by our experience of physics) rather than being able to derive them from first
principles. But one has to be careful, intuition is not always reliable.

Unpredictability 20

Unpredictability is the key idea: suppose we are at time 0, and we want to
understand the state of some physical system S at time ¢t > 0. We understand
S(0), but the only way to determine its state S(t) is to “run” the system till
time ¢. But we cannot determine S(t) at time 0 < t’ < ¢ no matter what we
try (in particular execute some clever computation). There is no computational
shortcut, we have computational incompressibility.

This is exactly why {2 is a truly random sequence, there is no way to predict bit
number n+1, even if we somehow have figured out the first n bits.

2 Formalizing Randomness

Obstructions to Randomness

This may sound counterintuitive, but it is actually easier to try to define a
random infinite binary sequence oo € 2“ instead of a single random bit, or a
random finite sequence.

Here is one fruitful line of attack: what would disqualify a sequence a from
being random in any intuitive sense of the word? For example, two obvious
potential problems are:

@ Bias (or skew): the limiting density of a 0 is not 1/2.

o Correlation: the ¢ + 1st bit in « is not independent from the ith bit.

22

Kolmogorov-Randomness

Kolmogorov suggested to use incompressibility as a measure of randomness.

Definition
An infinite sequence o € 2 is Kolmogorov-random if for some constant ¢ and
all n: C(afn]) >n—c.

So the prefixes a[n] are algorithmically c-incompressible with the same
constant ¢; a[n] is essentially the shortest description of itself. Chaitin’s 2 is
the perfect example of a sequence that is random in this sense.

Again, incompressibility is very similar in spirit to the notion of randomness:
there is no rhyme nor reason, one has to have a full record to reconstruct the
sequence.

23

The Importance of Prefix Complexity 24

It is important that the notion of incompressibility is based on Chaitin’s prefix
complexity, not the more intuitive plain Kolmogorov-Chaitin complexity.

Theorem (Martin-L&f)

Let f be computable such that) 277" diverges. Then for any o € 2 there
are infinitely many n such that K(a[n]) < n — f(n).

The proof is quite involved. Note that f(n) = n fails to work, but f(n) = logn
satisfies the hypothesis. Hence we can infinitely often shorten the description in
plain Kolmogorov-Chaitin complexity by a logarithmic amount; we don't have
c-incompressibility.

Martin-Lof Randomness 25

Here is the main idea: We want to define randomness in terms of a
collection of tests, a sequence is random if it survives all the tests.

As we will see, computability plays a major role in describing the tests, without
it, our tests would rule out all sequences.

It is helpful to think of an infinite sequence a € 2“ as an infinite branch in the
full infinite binary tree 2*.

The initial segments are ordinary finite binary words and we can try to express
conditions on « by placing conditions on prefixes a[n].

Example: Bias

Suppose weed out sequences with limiting density at least 2/3.
For x € 2%, define the density to be
_ #iz

el

D(x)

Then for a bad string a € 2% there must be infinitely many n such that

oz[n] S Bn,2/3 :{ZE € 2“ | D(il}) 2 2/3}

Note that it is perfectly fine if this happens only for finitely many n, in this
setting we don't care about bad initial behavior. In practice things are a bit
more complicated, but let's not worry about this yet.

26

Cylinders and Measure 27

We will need to measure the size of sets S C 2%.

To this end let = be a finite word and define the cylinder generated by =
(essentially the subtree anchored at z) and its measure by

ayl(z) ={ae2|zC o}

n(eyl(@)) = 271

For the bias example, each string = € 2" such that D(x) > 2/3 contributes a
cylinder of size 27" to B, o/3.

Extending the Measure 28

These cylinders form basic open sets in 2% and any open set S can be written

as the disjoint union of countably many of them. For the math guys: these are
Borel sets.

Hence we can measure any such set S:

ISEE U cyl(z;)

ps) = 27

In the bias example, we have ;1(B,, 2/3) = d/2" where d is the number of
strings © € 2" such that D(z) > 2/3.

Intuition

Think of 2 as the real interval [0,1] C R: interpret o € 2 as the binary
expansion of some real in [0, 1].

Given a binary word = x1Z2 ... Zn, the cylinder cyl(z) then corresponds to a
real interval comprising all numbers with expansion

O.CEl.’EQ ... Tn ROR1R2 ...

The length of this interval is 27", the measure of cyl(z).

We will try to cover a given set of reals by a collection of intervals of shrinking
size (a set of constructive measure zero).

29

Example: Bias, Contd 30

For the bias example, to weed out sequences with limiting density at least 2/3
we can use the following test sets:

Kn= | Buas=|J{eyl@) |] > n A D(w) > 2/3}

m>n

Being in K, is not a problem per se, but being in K = ﬂn K, is: any such
sequence has limiting density at least 2/3 and should be eliminated from our
pool of potential random sequences.

Of course, we need to perform countably many such tests to make sure that
the limiting density is not larger that 1/2 + £ for any £ > 0. And we need to do
the same for a lower bound.

General Case 31

More generally, we consider tests analogous to the density test: we want a
descending chain of open sets

KoDKiDKaD...DKnD...

where u(K,) < 27" so that these sets are becoming “small” as n increases
and their intersection has constructive measure zero.

We eliminate all sequences in this set K = ﬂn K.

For the math guys: K is a G5 null set.

One needs to tinker a bit with the K, sets from the bias example to make sure
they are sufficiently small.

The Catch 32

We want to declare a sequence « to be random if it survives this kind of test
for various choices of test sequences (K,,). For example, we would want to
apply all possible density tests, and not just for single bits, but also for blocks
of arbitrary lengths.

Unfortunately, we cannot simply allow arbitrary tests (K,): if we do, then all
sequences are eliminated.
To see why, let o € 2% arbitrary and define a special test K;; = cyl(a[n]).

Then K* = N K} = {a}.

So, if we want to get anything useful out of this, we need to limit the
permissible tests (K,).

Computability to the Rescue

The key in designing a usable randomness test lies in imposing a computability
constraint.

Definition
A sequential test has the additional property that
K={(n,z)|cylz) C K, } CNx 2"

is semidecidable.

Think of K as being recursively enumerable: we can compute the pairs (n, x)
one after the other, approximating the intersection that is the actual test.

Clearly, there are only countably many sequential tests.

And, we certainly can no longer design a test that eliminates an arbitrary
sequence « (unless « is computable).

33

Applying a Sequential Test 34

By definition, we can effectively enumerate all the pairs (n,z) in
K={(n,z) |Va(zCa=ac K,)}

What does it mean for a particular sequence « to fail this test?

We need o € [Ky, where

So for every n, we have to find an z such that (n,z) € K and z C a.

Of course this is not effective, even assuming that we have « as an oracle. But
it's not terribly far off.

Universal Tests 35

Taking our definitions at face value, we would have to check all possible
sequential tests to check for randomness.

Here is an amazing result that shows that in essence we only need to deal with
a single test. The proof uses the existence of a universal Turing machine and is
not particularly difficult.

Theorem (Universal Test)

There is a universal sequential test U such that for any sequential test K we
have K,,+. C U,, for some constant c.

Martin-Lof Randomness

Definition

An infinite sequence « is Martin-L6f random if it passes a universal sequential
test.

This definition is very strongly supported by the empirical fact that any
practical test of randomness in ordinary probability theory can be translated
into a sequential test. So, we are just dealing will all of these tests at once
(plus all conceivable others).

As it turns out, the last approach produces the same notion of randomness as
Kolmogorov-Chaitin style program-size complexity.

Theorem

A sequence is Martin-L6f random iff it is Kolmogorov-random.

36

How Bad is Randomness?

The definition may be elegant and right, but, sadly, it does not yield any
methods to construct a random sequence. Aux contraire:

Theorem

Any Martin-Léf random sequence fails to be computable.

A typical example of a low-complexity random sequence is Chaitin's {2 (more
later) which turns out to be A in the arithmetical hierarchy. Close, but not
computable.

37

Truth in Advertising

In the RealWorld™ | one can often get away dealing with randomness by
employing combinatorics and a little measure theory, without ever thinking
about what randomness really means.

For applications in complexity, it is standard to assume the relevant properties
of randomness, essentially in an axiomatic fashion. As long as our source of
randomness is sufficiently well-behaved this will work just fine.

38

Exercises 39

Exercise

Give a detailed proof that limiting density can be checked by a suitable test set.
In particular, make sure that semi-decidability holds.

Exercise

Show how to check for the frequencies of blocks of arbitrary finite length in a
sequential test.

Exercise

Show that every Martin-Léf random sequence fails to be computable. Assume
a random sequence is computable and show how to construct a test that
rejects it.

Exercise

Show that there are uncountably many Martin-Léf random sequences (in fact,
they form a set of measure 1).

3 Generating PRNs

RealWorld™ M

Recall von Neumann's dictum:

Anyone attempting to produce random numbers by purely arith-
metic means is, of course, in a state of sin.

Of course, formally speaking, he is absolutely correct. However, in many places
it suffices to have bits that just appear random to the unaided eye, and the
effort to get real random ones is just not warranted. “Purely arithmetic means’
are often good enough.

What is surprising in this context is that often one can get away with murder.
But beware applications in cryptography.

Pseudo-Randomness 42

In the real world, one often makes do with a pseudo-random number generator
(PRNG) based on iteration: the pseudo-random sequence is the orbit of a some
initial element under some function.

zo = the seed, chosen somehow

Tn+1 = f(mn)

where f is easily computable.

4, -
An excellent choice for the seed xg is to pick it at random. 1r

The Update Map

There are two ways to think about the maps f:

fN—N

fi2F — 2k

In the first case, we want an arithmetical function that somehow manages to
produce bizarre outputs, even though it may seem like a reasonable algebraic
operation.

In the second case we think about messing around with the bits directly,
shifting, masking, xoring, rotating ...

And, of course, we can combine both, just think of a natural number as a
binary string.

43

The Lasso a4

Of course, we are taking a huge step away from real randomness here, this
sequence would perish miserably when exposed to a Martin-Lof test. The
function f typically operates on some finite domain such as 64-bit words. Every
orbit necessarily looks like so:

] @ @ @] @ o]

So we can only hope to make f fast and guarantee long periods.

Still, there are many applications where this type of pseudo-randomness is
sufficient.

One has to be very careful with cryptography, though!

The Seed 45

Needless to say, running a PRNG twice with the same seed x is going to
produce exactly the same “random” sequence.

As a practical matter, this is a huge advantage: it makes computations that are
based on the random numbers reproducible, which is important for debugging
and verification.

More generally, if we are willing to pay for a truly random seed, we would hope
that the iterative PRNG would amplify the randomness: we provide m truly
random bits and get back n high-quality pseudo-random bits where n > m.

Hence PRNGs reduce the need for truly random bits, but do not entirely
eliminate them.

The Real Challenge

As von Neumann kindly pointed out, as a matter of principle we're hosed, no
matter what we do.

So the real question is this: how simple and easy-to-compute can we make our
sinful function f and still get pseudo-random numbers that are sufficiently
good to drive certain algorithms?

In the worst case, we could resort to actual quantum randomness, but that is
expensive in many ways.

As it turns out, often we can get away with PRNGs that seem to be too
simple-minded to actually work.

46

Von Neumann’s RNG 47

Start with a 10-digit number x. Then iterate the following operation: square z,
and extract the central 10 digits.

LR

The first 1000 numbers, starting at 1234567890.

Linear Congruential Generator 48

A typical example: a simple affine map modulo m.

Tnt+1 = aZp +bmodm

The trick here is to choose the proper values for the coefficients. Don't try this
at home, look at the literature or the web. A choice that works reasonably well
is

a=1664525 b= 1013904223 m = 2%2

Note that a modulus of 232 amounts to unsigned integer arithmetic on a 32-bit

architecture, so this is implementation-friendly.

In fact, this LCG produces a full-length cycle for all moduli 2%, k < 32.

”* X AR5 X o.*o
e »J...u. o .-uw&.u..fvu-«M ‘e

S

e it B
ATy
<. Q.o
’oocﬁofw

d D o
AN
L] L °

N .
#0303k v °
mo-ﬂ.otl. .

o . oo b
so W AT,
s \o..c [akd

‘e n' ® e
g O °

Xgoqrdesic

Geartedy 0L

4000

3000

2000

1000

Multiplicative Congruential Generator 50

Omit the additive offset and use multiplicative constants only.

If need be, use a higher order recurrence.

Tpn = Q1Tn—1 + A2Tn—2 + ...ALTn—r mod m

For prime moduli one can achieve period length m* — 1.

This is almost as fast and easy to implement as LCG (though there is of course
more work involved in calculating modulo a prime).

Note, though, that there is more state: we need to store all of the previous
values Tpn—1,Tn—2,...,Tn—k.

Inverse Congruential Generator 51

Choose the modulus m to be a prime number and define the patched inverse of

x to be
_ {0 if £ =0,
T =

x~! otherwise.

Then we can define a pseudo-random sequence by

Tnt+1 = aTp +bmod m

Computing the inverse can be handled by the extended Euclidean algorithm.

Again, it is crucial to choose the proper values for the coefficients.

Modulus 2038074743

25 o® o"o‘.. :

P e

:. H ¢ o .'.R;:'f .o“
0.4"’0\‘ .-" o .‘: ° ®

ot 3 o

e®e® % ° o o
0.2 _oo...‘ °®

1-01...'.=o..°. o ;‘. 0-,3.. e

YRS .‘4..‘-'. e)
0.8:".. :’::1 o s % o .:’-o

L e s
0.6 _.‘:03 N “‘. K .‘Q LAY
L]

52

My Favorite PRNG: ECA 30

REnle s R e Rint el eiieen

:ir--| J
;‘:Ffﬂ'l J:l-'l'd
S
FT".:" 2
VT f”

53

Mersenne Twister

Fairly recent (1998) method by Matsumoto and Nishimura, seems to be the
tool of choice at this point (used in Sage, Maple, Matlab, GMP .. .).

219937

o Has huge period of — 1, a Mersenne prime.

o Is statistically random in all the bits of its output (after a bit of post-
processing).

@ Has negligible serial correlation between successive values.

@ Only statistically unsound generators are much faster.

The technique used is very clever and not exactly obvious.

The algorithm works on bit-vectors of length w (typically 32 or 64).
Let k be the degree of the recursion, and choose 1 <m < k and 0 < r < w.

55

The MT Recurrence

So we are trying to generate a sequence of bit-vectors z; € 2v.

Define the join join(z,y) of z,y € 2% to be the the first w — r bits of x
followed by the last r bits of y.

jOin($7y) = ('I:171:27 s Tw—ry Yw—r—+1;5 - - ~7yw)

We can use the join operation to define the following recurrence:

Tptk = Tntm © join(Tn, Tny1) - A

Here A is a sparse companion-type matrix that makes it easy to perform the
vector-matrix multiplication.

56

Companion Matrix 57

The w x w matrix A has the following form:

0 1 0 0
0 0 1 0
A=
0 0 0 1
Aw—-1 Aw—-2 Aw-3 ... Qo

Note that z - A is not really a vector-matrix operation and can be handled in
O(w) steps.

This is just a convenient way to describe the necessary manipulations.

Good Parameters 58

Here is one excellent choice for the parameters:
w = 32 k=624 m = 397 r =31
and the A matrix is given by
a = 0x9908BODF
which hex-number represents the entries in the last row of A.

Recall that the recurrence determines x,,4x in terms of Xy 4m, Tn and T,4+1, SO
we need to store a bit of state: pn,...,Tntk—1 = Tnt623-

So we need to store 624 words, not too bad.

Initialization 59

Initialization is non-trivial here, we need k£ words before the actual algorithm
can get started.

A standard method is to pick zg € 2% (at random) and then define

i = ¢ (wim1 D rshft(zi—1,w —2)) +1

where c¢ is again cleverly chosen, typically ¢ = 1812433253.

Initial conditions with lots of Os should be avoided, it takes a while before good
randomness appears in the generated sequence.

A Miracle 60

This particular choice of parameters achieves the theoretical upper bound for
the period:

2WFTT = 219937 ~ 4,315 x 10°°°".

After a little bit of post-processing of the sequence (z;);>0, this method
produces very high quality pseudo-random numbers, and is not overly costly.

	Randomness and Physics
	Formalizing Randomness
	Generating PRNs

