
UCT

Program Size Complexity

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Program-Size Complexity

2 Computability and Randomness

Wurzelbrunft’s Problem 2

Prof. Dr. Alois Wurzelbrunft has discovered a special type of algebraic structure,
so-called Wurzelbrunft algebras. W -algebras come in two types, tame or wild.
In an heroic intellectual effort, Wurzelbrunft has shown that there are exactly
42 W -algebras and he knows 2 tame ones and 3 wild ones. Unfortunately, it
seems quite difficult to figure out which of the others are tame.

Wurzelbrunft wonders whether he should try to prove that tame-
ness of W -algebras is undecidable.

If only he had taken a course in complexity theory . . .

The Misery of Finite Problems 3

Any decision problem with finitely many instances is automati-
cally decidable, albeit for entirely the wrong reasons.

To wit, we can hardwire the answers in a lookup table:

x1 x2 x3 . . . xn−1 xn

b1 b2 b3 . . . bn−1 bn

Here bi is a bit that encodes the answer for instance xi.

The problem is that the correct bit-vector b1, b2, . . . , bn exists, basta. At least
somewhere in set theory la-la land.

Alas, we may not know what it is. We know a decision algorithm exists (really,
just a lookup table), but we cannot construct it.

Same Old 4

We have talked about this issue before, in the context of showing that

A set of natural numbers is decidable
iff

its principal function is computable.

Right-to-left runs into a problem: given a program for the principal function,
we cannot decide whether its support is finite. If it is finite, there is a trivial
algorithm. Otherwise, there is an algorithm using the gaps in the principal
function.

We do not know which of the two algorithms works. But, the algorithm always
exists . . .

Algorithm for Riemann Hypothesis 5

We can push this to absurd levels:

Problem: Riemann Hypothesis (RH)
Instance: A banana.
Question: Is the Riemann hypothesis true?

If you don’t like the banana, replace it by a beer-mug. This problem is easily
decidable.

Algorithm I: eat the banana, return Yes

Algorithm II: eat the banana, return No

One of those two algorithms works. Done.

Terminology Warning 6

In the logic literature, the term “decidable” is also used in a different way: one
says that some statement Φ is decidable with respect to some logical theory T
if the theory proves either Φ or its negation.

In other words, T contains enough information to settle the status of Φ.

In this sense, the Continuum Hypothesis is not decidable over Zermelo-Fraenkel
set theory, even which Choice (Gödel and Cohen).

It is best to avoid this double use, call an assertion independent of T instead.

To Be Or Not To Be 7

Pure existence in the standard, non-constructive sense (using set theory) is a
bit thin, we would like to have some method to determine the bits, to actually
construct the answers.

For example, consider only integer polynomials with at most

100 variables, degree 100, coefficients below 100.

It would be nice to have an algorithm that, given one of these finitely many
polynomials, determines whether it has an integral root. An honest algorithm,
not a lookup table (which could not be written down in this universe).

There is no hope for this, none whatsoever. We don’t even know how to handle
degree 4 polynomials with 2 variables. Matiyasevic casts a huge shadow.

How Complicated Is A Bit-Vector? 8

One way to tackle this issue is to try to come up with some way to measure to
the complexity (in the intuitive sense) of finite bit-vectors.

A priori, computation and complexity theory seem to be utterly useless here,
everything is trivial in this framework.

For example, for any string x ∈ 2n, we can build a finite state machine A that
accepts only this string.

Of course, the machine is essentially just the string itself . . .

And Yet . . . 9

. . . everybody knows which text contains more information.

64 Bits 10

01

0101101110111101111101111110111111101111111101111111110111111111

1011010100000100111100110011001111111001110111100110010010000100

0011100101100001011001010100001110011010111111001010000110010011

Which is the least/most complicated?

More Bits? 11

A good way to think about this is to try to predict “future bits” in the
sequence, assuming there is somehow a natural way to extend it (maybe to an
infinite string). Yes, that’s not even ill-defined. Still . . .

(01)ω

concatenate 01i, i ≥ 1

binary expansion of
√

2

random bits generated by a measuring decay of a radioactive source
http://www.fourmilab.ch.

So the last one is a huge can of worms; it looks like we need physics to do this,
pure math and logic are not enough. Kiss ZFC goodbye†.

†Unless you can reconstruct physics in ZFC. Good luck.

http://www.fourmilab.ch

A π Program 12

How about writing a program that generates the finite string in question?

long a[35014], b, c = 35014, d, e, f = 1e4, g, h;

main()
{

for(; b=c-=14; h=printf("%04ld",e+d/f))
for(e=d%=f; g=--b*2; d/=g)

d = d*b + f*(h ? a[b] : f/5), a[b] = d%--g;
}

This program compiles (with a few warnings) and running it produces the first
10000 decimal digits of π.

After removal of all the superfluous white-space this program is only 140 bytes
long.

Program-Size Complexity 13

Examples like these strings and the π program naturally lead to the question:

What is the shortest program that generates some given output?

To obtain a clear quantitative answer, we need to fix a programming language
and everything else that pertains to compilation and execution.

Then we can speak of the shortest program (in length-lex order) that generates
some fixed output in 2⋆.

Note: This is very different from resource based complexity measures (running
time or memory requirement; Blum type measures). We are not concerned with
the time it takes to execute the program, nor with the memory it might
consume during execution.

Short Programs 14

In the actual theory, one uses universal Turing machines to formalize the notion
of a program and its execution. But, as we have seen many times, Turing
machines are bit unwieldy, so for intuition it is better to think of

C programs,
being compiled on a standard compiler,
and executed in some standard environment.

Why C? Because it is a no-BS language, close to actual hardware.

So, informally we are interested in the shortest C program that will produce
same particular target output. As the π example shows, these programs might
be rather weird (in fact, really short programs often are bizarre).

Needless to say, this is just intuition. If we want to prove theorems, we need a
real definition.

Background 15

Consider a universal Turing machine U .

For the sake of completeness, suppose U uses tape alphabet 2 = {0, 1, b}
where we think of b as the blank symbol (so each tape inscription has only
finitely many binary digits).

The machine has a single tape for input/work/output.

The machine operates like this: we write a binary string p ∈ 2⋆ on the tape,
and place the head right before the first bit of p. U runs and, if it halts, leaves
behind a single binary string x on the tape.

We write
U(p) ≃ x

The Picture 16

Up x

Kolmogorov-Chaitin Complexity 17

Definition
For any word x ∈ 2∗, denote x̂ the length-lex minimal program that produces x
on U : U(x̂) ≃ x.

The Kolmogorov-Chaitin complexity of x is defined to be the length of the
shortest program which generates x:

K(x) = |x̂| = min
(

|p| | U(p) ≃ x
)

This concept was discovered independently by Solomonov 1960, Kolmogorov
1963 and Chaitin 1965.

Think of x̂ as the ultimate compressed form of x, the shortest possible
description available (at least in the particular environment U).

The Basics 18

Note that we can always hard-wire a table into the program. It follows that x̂
and therefore K(x) exist, for all x. Informally, the program looks like

print “x1x2 . . . xn”

No problem. Moreover, we have a simple bound, there is a constant c such
that for any string x whatsoever

K(x) ≤ |x| + c

But note that running an arbitrary program p on U may produce no output:
the (simulation of the) program may simply fail to halt. Of course, non-halting
programs are useless as far as Kolmogorov-Chaitin complexity is concerned.

Hold It . . . 19

The claim that K(x) ≤ |x| + c is obvious in the C model.

But remember, we really need to deal with a universal Turing machine.

The program string p = x̂ ∈ 2⋆ here could have the form

p = u x ∈ 2⋆

where u is the instruction part (“print the following bits”), and x is the desired
output.

So the machine actually only needs to erase u in this case. This produces a
very interesting problem: how does U know where u ends and x starts? After
all, everything is just a bunch of 0s and 1s . . .

Self-Delimiting Programs 20

We could use a simple coding scheme to distinguish between the program part
and the data part of p:

p = u10u20 . . . 0ur 1 x1x2 . . . xn

Obviously, U could now parse p just fine, we have a self-delimiting program.
Alas, this seems to inflate the complexity of the program part by a factor of 2.
We’ll have more to say about coding issues later.

Note that there are other simple possibilities like p = 0|u|1 u x. Here the prefix
p = 0|u|1 delimits the program part u. Again, we seem to be wasting half our
bits.

Cheating 21

Also note: we can cheat and hardwire any specific string X of very high
complexity in U into a modified environment U ′.

Let’s say

U ′ on input 0 outputs X.

U ′ on input 1p runs program U(p).

U ′ on input 0p returns no output.

Then U ′ is a perfectly good universal machine that produces good complexity
measures, except for X, which gets the fraudulently low complexity of 1.
Similarly we could cheat on a finite collection of strings X1, . . . , Xn.

Invariance 22

Fortunately, the choice of U doesn’t matter much. If we pick another machine
U ′ and define K′ accordingly, we have

K′(x) ≤ K(x) + c

since U can simulate U ′ using some program of constant size. The constant c
depends only on U and U ′.

This is actually the critical constraint in an axiomatic approach to KC
complexity: we are looking for machines that cannot be beaten by any other
machine, except for a constant factor. Without this robustness our definitions
would be essentially useless.

It is even true that the additive offset c is typically not very large; something
like a few thousand.

Avoiding Cheaters 23

What we would really like is a natural universal machine U that just runs the
given programs, without any secret tables and other slimy tricks. Think about
a real C compiler.

Alas, this notion of “natural” is quite hard to formalize.

One way to avoid cheating, is to insist that U be tiny: take the smallest
universal machine known (for the given tape alphabet). This will drive up
execution time, and the programs will likely be rather cryptic, but that is not
really our concern.

Small Universal 24

A small universal machine like the one above (4 states, 6 tape symbols) would
seem to be free of any kind of treachery.

Concrete U 25

Greg Chaitin has actually implemented such
environments U .

He uses LISP rather than C, but that’s just
a technical detail (actually, he has written his
LISP interpreters in C).

So in some simple cases one can actually deter-
mine precisely how many bits are needed for x̂.

Numbers 26

Proposition
For any positive integer n: K(n) ≤ log n + c.

This is just plain binary expansion: we can write n > 0 in

k = ⌊log2 n⌋ + 1

bits using standard binary notation.

But note that for some n the complexity K(n) may be much smaller than
log n. There is a more concise description than the binary expansion.

For example n = 22k

or n = 222k

requires far fewer than log n bits.

Exercise
Construct some other numbers with small Kolmogorov-Chaitin complexity.

Copy 27

How about duplicating a string? What is K(xx)?

In the C world, it is clear that we can construct a constant size program that
will take as input a program for x and produce xx instead. Hence we suspect

K(xx) ≤ K(x) + O(1).

Again, in the Turing machine model this takes a bit of work: we have a
program p that generates x. To build a program for xx we could run p, then
copy the output. Alternatively, we could try to run p twice and put the output
right next to the first run. Neither method is trivial, since our tape alphabet is
fixed. Just try it.

String Operations 28

A very similar argument shows that

K(xop) ≤ K(x) + O(1).

Concatenation is slightly more complicated: we have to be able to determine
the parts of the program for xy that corresponds to x̂ and ŷ.

K(xy) ≤ K(x) + K(y) + O(log min(K(x), K(y)))

Say, n = K(x) ≤ K(y). The we write down n x̂ ŷ where n is in binary and
self-delimiting.

Computable String Operations 29

Here is a slightly counterintuitive fact: we can apply any computable function
to x, and increase its complexity by only a constant.

Lemma
Let f : 2⋆ → 2⋆ be computable.
Then K(f(x)) ≤ K(x) + O(1).

Proof.
f is computable, hence has a finite description in terms of a Turing machine
program q. Concatenate a self-delimiting version of q with the program x̂.

2

Say What? 30

The last lemma is a bit hard to swallow, but it’s quite correct.

Take your favorite exceedingly-fast-growing recursive function, say, Friedman’s
mindnumbing α function†. There is an almost trivial algorithm to compute
α(n) for any n, just a while loop and little bit of wordprocessing.

Then α(1) = 3, α(2) = 11. But α(3) is a mind-boggling atrocity; just giving a
lower bound for this number requires something like the Ackermann function.
The kind of monster that only exists in recursion theory, not in any other
branch of mathematics.

And yet
K(α(3)) ≤ log 3 + a little = a little

†See the website for notes on Friedman’s function.

Some Exercises 31

Exercise
Prove the complexity bound of a concatenation xy from above.

Exercise
Is it possible to cheat in infinitely many cases? Justify your answer.

Exercise
Use Kolmogorov-Chaitin complexity to show that the language
L = { x xop | x ∈ 2⋆ } of even length palindromes cannot be accepted by an
finite state machine.

Conditional Complexity 32

Suppose we have a string x = 0n.
In some sense, x is trivial, but K(x) may still be high, simply because K(n) is
high: printing 0s is trivial, but we need to know how many.

Definition
Let x, y ∈ 2⋆. The conditional Kolmogorov complexity of x given y is the
length of the shortest program p such that U with input p and y computes x.

Notation: K(x | y).

Then K(0n | n) = O(1), no matter what n is.

And K(x | x̂) = O(1).

The Chain Rule 33

Lemma

K(xy) ≤ K(x) + K(y | x) + O(log min(K(x), K(y)))

Proof.
Once we have x, we can try to exploit it in the computation of y.
As usual, the log factor in the end comes from the need to separate the
shortest programs for x and y.

2

Note that we can also do K(y) + K(x | y) +

1 Program-Size Complexity

2 Computability and Randomness

Compression 35

K(x)/|x| is the ultimate compression ratio: there is no way we can express x
as anything shorter than K(x) (at least in general; recall the comment about
cheating by hardwiring special strings).

An algorithm that takes as input x and returns as output x̂ is the dream of
anyone trying to improve gzip or bzip2.

Well, almost. In a real compression algorithm, the time/space to compute x̂
and to get back from there to x is also critically important. In our setting, time
and space complexity are being ignored completely.

Alas, there is also the slight problem that neither K(x) nor x̂ is computable.

Incompressibility 36

As is the case with compression algorithms, we cannot always succeed in
producing a shorter string.

Definition
A string x ∈ 2⋆ is c-incompressible if K(x) ≥ |x| − c where c ≥ 0.
x is incompressible if it is 0-incompressible.

Hence if x is c-incompressible we can only shave off at most c bits when trying
to write x in a more compact form: an incompressible string is generic, it has
no special properties that one could exploit for compression.

The upside is that we can adopt incompressibility as a definition of randomness
for a finite string – though it takes a bit of work to verify that this definition
really conforms with our intuition. For example, such a string cannot be too
biased.

Kolmogorov Random 37

A string x ∈ 2⋆ is Kolmogorov-random if K(x) ≥ |x|.

So Kolmogorov-random means 0-incompressible.

Claim
There are Kolmogorov-random strings of all lengths.

This is a straightforward application of pigeon hole.

And, like infinite cardinality arguments, it’s a bit disappointing: we would like
to understand why some strings fail to be compressible.

Existence 38

Having incompressible/random strings can be very useful in lower bound
arguments: there is no way an algorithm could come up with a clever, small
data structure that represents these strings.

In general, what can we say about c-incompressible strings? Here is a striking
result whose proof is based on simple counting.

Lemma
Let S ⊆ 2⋆ be a set of words of cardinality n ≥ 1. For all c ≥ 0 there are at
least n(1 − 2−c) + 1 many words x in S such that

K(x) ≥ log n − c.

Examples 39

Example
Consider S = 2k so that n = 2k. By the lemma, about half the words of length
k are 1-incompressible.
Also, there is at least one Kolmogorov-random string of length k.

Example
Pick some size n and let S = { 0i | 0 ≤ i < n }. Specifying x ∈ S comes down
to specifying the length i = |0i|. Writing a program to output the length will
often require close to log n bits.

But is it True? 40

This lemma sounds utterly wrong: why not simply put only simple words (of
low Kolmogorov-Chaitin complexity) into S? There is no restriction on the
elements of S, just its size.

Since we are dealing with strings, there is a natural, easily computable order:
length-lex. Hence there is an enumeration of S:

S = w1, w2, . . . , wn−1, wn

Given the enumeration, we need only some log n bits to specify a particular
element. The lemma says that for most elements of S we cannot get away with
much less.

Exercise
Try to come up with a few “counterexamples” to the lemma and understand
why they fail.

The Proof 41

Proof is by very straightforward counting. Let’s ignore floors and ceilings.

The number of programs of length less than log n − c is bounded by

2log n−c − 1 = n 2−c − 1.

Hence at least

n − (n2−c − 1) = n(1 − 2−c) + 1

strings in S have complexity at least log n − c.
2

Observation 42

It gets worse: the argument would not change even if we gave the program p
access to a database D ∈ 2⋆ as in conditional complexity.

This observation is totally amazing: we could concatenate all the words in S
into a single string

D = w1 . . . wn

that is accessible to p as on oracle.

However, to extract a single string wi, we still need some log n bits to describe
the first and last position of wi in D.

Unbounded Complexity 43

A similar counting argument shows that all sufficiently long strings have large
complexity:

Lemma
The function x 7→ K(x) is unbounded.
Actually, even x 7→ min

(
K(z) | x ≤ℓℓ z

)
is unbounded (and monotonic).

Here x ≤ℓℓ z refers to length-lex order.

So even a trivial string 000 . . . 000 has high complexity if it’s just long enough.
Of course, the conditional complexity K(0n | n) is still small, it’s the n that
causes all the problems.

Halting 44

As mentioned, it may happen that U(p) is undefined simply because the
simulation of program p never halts. And, since the Halting Problem is
undecidable, there is no systematic way of checking:

Problem: Halting Problem for U
Instance: Some program p ∈ 2⋆.
Question: Does p (when executed on U) halt?

So this is really the same as our old version of Halting on empty tape, just as
undecidable as the usual versions.

Computation versus Kolmogorov-Chaitin 45

Let’s try to understand intuitively why Kolmogorov-Chaitin complexity must be
non-computable.

Given a string x of length n, we would look at all programs p1, . . . , pN of
length at most n + c where c is the right constant to deal with the “print”
statement.

We run all these programs on U , in parallel.

At least one of them, say, pi, must halt on output x.

Hence K(x) ≤ |pi|.

But unfortunately, this is just an upper bound: later on a shorter program pj

might also output x, leading to a better bound.
But other programs will still be running; as long as at least one program is still
running we only have a computable approximation, but we don’t know whether
it is the actual value.

Non-Computability Proof 46

Theorem
The function x 7→ K(x) is not computable.

Proof. Suppose otherwise. Consider the following algorithm A with input n,
where the loop is supposed to be in length-lex order.

read n
foreach x ∈ 2⋆ do

let m = K(x)
if n ≤ m then return x

Then A halts on all inputs n, and returns the length-lex minimal word x of
Kolmogorov complexity at least n. But then for some constants c and c′

n ≤ K(x) ≤ K(n) + c ≤ log n + c′,

contradiction. 2

The Connection 47

Consider the following variant of the Halting set H (for empty tape), and
define the Kolmogorov set H ′, the graph of K(.):

H = { e | {e}() ↓ }

H ′ = { x#n | K(x) = n }

Theorem
H and H ′ are Turing equivalent.

Proof 48

It is easy to see that H ′ is H-decidable.

Given a string x of length n, consider all programs p1, . . . , pN of length at
most n + c.

Use oracle H to eliminate all non-halting ones.

Run the others to completion and pick out the shortest one that returns x.

In other words, K(x) is H-computable.

Opposite Direction 49

This is harder.

We have H ′ as oracle, and we need to decide whether Turing machine Me

halts on empty tape. Let n = |e| assuming a binary index e.

Use oracle H ′ to filter out the set of compressible strings of length 2n:

S = { z ∈ 22n | K(z) < 2n }

Let τ be the time when all the corresponding programs ẑ halt.

We can compute τ : we run all programs of length less than 2n until the
appropriate ones have terminated and produced S.

Solving Halting 50

Here is the key fact:
τ is large enough to resolve the Halting question for Me().

Claim: Me() ↓ iff Me,τ () ↓

Assume otherwise, so Me() ↓ but Me,τ () ↑.

Run Me with a clock to determine t > τ such that Me,t() ↓.

But then we can run all programs of size less than 2n for t steps and obtain S,
and thus an incompressible string z′ ∈ 22n − S.

Alas, our computation of z′ shows that K(z′) ≤ n + c, contradiction.
2

Limits 51

If you don’t like oracles, we can also represent K(x) as the limit of a
computable function:

K(x) = lim
σ→∞

D(x, σ)

where D(x, σ) is the length of the shortest program p < σ that generates
output x in at most σ steps, σ otherwise. So D is even primitive recursive.

Recall our convention about truncated computations returning σ as default, so
for small σ we have D(x, σ) = σ.
At some point we find the first program p < σ that produces x in fewer than σ
steps and we get the approximation K(x) ≤ |p|. From then on, the function is
non-increasing in the second argument. It can drop in value a few times as we
find smaller and smaller programs later (that take longer to terminate).

Σ2 52

This limit definition produces a Σ2 function:

K(x) = y ⇐⇒ ∃ s ∀ t
(
s ≤ t ⇒ D(x, t) = y

)
Alas, we cannot compute the threshold s from x, otherwise K(x) would be
computable.

Similarly, we cannot compute how often the value of D(x, σ) is going to drop.

At any rate, K fails to be computable, but it is fairly close, just a limit away.

	Program-Size Complexity
	Computability and Randomness

